Spectral/colimit/pushout.hlean
2017-11-22 16:15:35 -05:00

216 lines
9.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Suppose we have three sequences A = (Aₙ, fₙ)ₙ, B = (Bₙ, gₙ)ₙ, C = (Cₙ, hₙ)ₙ with natural
transformations like this: B ← A → C. We can take pushouts pointwise and then take the colimit,
or we can take the colimit of each and then pushout. By the 3x3 lemma these are equivalent.
Authors: Floris van Doorn
-/
import .seq_colim ..homotopy.pushout ..homotopy.three_by_three
open eq nat seq_colim is_trunc equiv is_equiv trunc sigma sum pi function algebra sigma.ops
section
variables {A B : → Type} {f : seq_diagram A} {g : seq_diagram B} (i : Π⦃n⦄, A n → B n)
(p : Π⦃n⦄ (a : A n), i (f a) = g (i a)) (a a' : Σn, A n)
definition total_seq_rel [constructor] (f : seq_diagram A) :
(Σ(a a' : Σn, A n), seq_rel f a a') ≃ Σn, A n :=
begin
fapply equiv.MK,
{ intro x, exact x.2.1 },
{ intro x, induction x with n a, exact ⟨⟨n+1, f a⟩, ⟨n, a⟩, seq_rel.Rmk f a⟩ },
{ intro x, induction x with n a, reflexivity },
{ intro x, induction x with a x, induction x with a' r, induction r with n a, reflexivity }
end
definition pr1_total_seq_rel_inv (x : Σn, A n) :
((total_seq_rel f)⁻¹ᵉ x).1 = sigma_functor succ f x :=
begin induction x with n a, reflexivity end
definition pr2_total_seq_rel_inv (x : Σn, A n) : ((total_seq_rel f)⁻¹ᵉ x).2.1 = x :=
to_right_inv (total_seq_rel f) x
include p
definition seq_rel_functor [unfold 9] : seq_rel f a a' → seq_rel g (total i a) (total i a') :=
begin
intro r, induction r with n a,
exact transport (λx, seq_rel g ⟨_, x⟩ _) (p a)⁻¹ (seq_rel.Rmk g (i a))
end
open pushout
definition total_seq_rel_natural [unfold 7] :
hsquare (sigma_functor2 (total i) (seq_rel_functor i p)) (total i)
(total_seq_rel f) (total_seq_rel g) :=
homotopy.rfl
end
section
open pushout sigma.ops quotient
parameters {A B C : → Type} {f : seq_diagram A} {g : seq_diagram B} {h : seq_diagram C}
(i : Π⦃n⦄, A n → B n) (j : Π⦃n⦄, A n → C n)
(p : Π⦃n⦄ (a : A n), i (f a) = g (i a)) (q : Π⦃n⦄ (a : A n), j (f a) = h (j a))
definition seq_diagram_pushout : seq_diagram (λn, pushout (@i n) (@j n)) :=
λn, pushout.functor (@f n) (@g n) (@h n) (@p n)⁻¹ʰᵗʸ (@q n)⁻¹ʰᵗʸ
local abbreviation sA := Σn, A n
local abbreviation sB := Σn, B n
local abbreviation sC := Σn, C n
local abbreviation si : sA → sB := total i
local abbreviation sj : sA → sC := total j
local abbreviation rA := Σ(x y : sA), seq_rel f x y
local abbreviation rB := Σ(x y : sB), seq_rel g x y
local abbreviation rC := Σ(x y : sC), seq_rel h x y
set_option pp.abbreviations false
local abbreviation ri : rA → rB := sigma_functor2 (total i) (seq_rel_functor i p)
local abbreviation rj : rA → rC := sigma_functor2 (total j) (seq_rel_functor j q)
definition pushout_seq_colim_span [constructor] : three_by_three_span :=
@three_by_three_span.mk
sB (rB ⊎ rB) rB sA (rA ⊎ rA) rA sC (rC ⊎ rC) rC
(sum.rec pr1 (λx, x.2.1)) (sum.rec id id)
(sum.rec pr1 (λx, x.2.1)) (sum.rec id id)
(sum.rec pr1 (λx, x.2.1)) (sum.rec id id)
(total i) (total j) (ri +→ ri) (rj +→ rj) ri rj
begin intro x, induction x: reflexivity end
begin intro x, induction x: reflexivity end
begin intro x, induction x: reflexivity end
begin intro x, induction x: reflexivity end
definition ua_equiv_ap {A : Type} (P : A → Type) {a b : A} (p : a = b) :
ua (equiv_ap P p) = ap P p :=
begin induction p, apply ua_refl end
definition pushout_elim_type_eta {TL BL TR : Type} {f : TL → BL} {g : TL → TR}
(P : pushout f g → Type) (x : pushout f g) :
P x ≃ pushout.elim_type (P ∘ inl) (P ∘ inr) (λa, equiv_ap P (glue a)) x :=
begin
induction x,
{ reflexivity },
{ reflexivity },
{ apply equiv_pathover_inv, apply arrow_pathover_left, intro y,
apply pathover_of_tr_eq, symmetry, exact ap10 !elim_type_glue y }
end
definition pushout_flattening' {TL BL TR : Type} {f : TL → BL} {g : TL → TR}
(P : pushout f g → Type) : sigma P ≃
@pushout (sigma (P ∘ inl ∘ f)) (sigma (P ∘ inl)) (sigma (P ∘ inr))
(sigma_functor f (λa, id)) (sigma_functor g (λa, transport P (glue a))) :=
sigma_equiv_sigma_right (pushout_elim_type_eta P) ⬝e
pushout.flattening _ _ (P ∘ inl) (P ∘ inr) (λa, equiv_ap P (glue a))
definition equiv_ap011 {A B : Type} (P : A → B → Type) {a a' : A} {b b' : B}
(p : a = a') (q : b = b') : P a b ≃ P a' b' :=
equiv_ap (P a) q ⬝e equiv_ap (λa, P a b') p
definition tr_tr_eq_tr_tr [unfold 8 9] {A B : Type} (P : A → B → Type) {a a' : A} {b b' : B}
(p : a = a') (q : b = b') (x : P a b) :
transport (P a') q (transport (λa, P a b) p x) = transport (λa, P a b') p (transport (P a) q x) :=
by induction p; induction q; reflexivity
definition pushout_total_seq_rel :
pushout (sigma_functor2 (total i) (seq_rel_functor i p))
(sigma_functor2 (total j) (seq_rel_functor j q)) ≃
Σ(x : Σ ⦃n : ℕ⦄, pushout (@i n) (@j n)), sigma (seq_rel seq_diagram_pushout x) :=
pushout.equiv _ _ _ _ (total_seq_rel f) (total_seq_rel g) (total_seq_rel h)
homotopy.rfl homotopy.rfl ⬝e
pushout_sigma_equiv_sigma_pushout i j ⬝e
(total_seq_rel seq_diagram_pushout)⁻¹ᵉ
definition pr1_pushout_total_seq_rel :
hsquare pushout_total_seq_rel (pushout_sigma_equiv_sigma_pushout i j)
(pushout.functor pr1 pr1 pr1 homotopy.rfl homotopy.rfl) pr1 :=
begin
intro x, refine !pr1_total_seq_rel_inv ⬝ _, esimp,
refine !pushout_sigma_equiv_sigma_pushout_natural⁻¹ ⬝ _,
apply ap sigma_pushout_of_pushout_sigma,
refine !pushout_functor_compose⁻¹ ⬝ _,
fapply pushout_functor_homotopy,
{ intro v, induction v with a v, induction v with a' r, induction r, reflexivity },
{ intro v, induction v with a v, induction v with a' r, induction r, reflexivity },
{ intro v, induction v with a v, induction v with a' r, induction r, reflexivity },
{ intro v, induction v with a v, induction v with a' r, induction r, esimp, generalize p a,
generalize i (f a), intro x r, cases r, reflexivity },
{ intro v, induction v with a v, induction v with a' r, induction r, esimp, generalize q a,
generalize j (f a), intro x r, cases r, reflexivity },
end
definition pr2_pushout_total_seq_rel :
hsquare pushout_total_seq_rel (pushout_sigma_equiv_sigma_pushout i j)
(pushout.functor (λx, x.2.1) (λx, x.2.1) (λx, x.2.1) homotopy.rfl homotopy.rfl)
(λx, x.2.1) :=
begin
intro x, apply pr2_total_seq_rel_inv,
end
/- this result depends on the 3x3 lemma, which is currently not formalized in Lean -/
definition pushout_seq_colim_equiv [constructor] :
pushout (seq_colim_functor i p) (seq_colim_functor j q) ≃ seq_colim seq_diagram_pushout :=
have e1 :
pushout (seq_colim_functor i p) (seq_colim_functor j q) ≃ pushout2hv pushout_seq_colim_span, from
pushout.equiv _ _ _ _ !quotient_equiv_pushout !quotient_equiv_pushout !quotient_equiv_pushout
begin
refine _ ⬝hty quotient_equiv_pushout_natural (total i) (seq_rel_functor i p),
intro x, apply ap pushout_quotient_of_quotient,
induction x,
{ induction a with n a, reflexivity },
{ induction H, apply eq_pathover, apply hdeg_square,
refine !elim_glue ⬝ _ ⬝ !elim_eq_of_rel⁻¹,
unfold [seq_colim.glue, seq_rel_functor],
symmetry,
refine fn_tr_eq_tr_fn (p a)⁻¹ _ _ ⬝ eq_transport_Fl (p a)⁻¹ _ ⬝ _,
apply whisker_right, exact !ap_inv⁻² ⬝ !inv_inv }
end
begin
refine _ ⬝hty quotient_equiv_pushout_natural (total j) (seq_rel_functor j q),
intro x, apply ap pushout_quotient_of_quotient,
induction x,
{ induction a with n a, reflexivity },
{ induction H, apply eq_pathover, apply hdeg_square,
refine !elim_glue ⬝ _ ⬝ !elim_eq_of_rel⁻¹,
unfold [seq_colim.glue, seq_rel_functor],
symmetry,
refine fn_tr_eq_tr_fn (q a)⁻¹ _ _ ⬝ eq_transport_Fl (q a)⁻¹ _ ⬝ _,
apply whisker_right, exact !ap_inv⁻² ⬝ !inv_inv }
end,
have e2 : pushout2vh pushout_seq_colim_span ≃ pushout_quotient (seq_rel seq_diagram_pushout), from
pushout.equiv _ _ _ _
(!pushout_sum_equiv_sum_pushout ⬝e sum_equiv_sum pushout_total_seq_rel pushout_total_seq_rel)
(pushout_sigma_equiv_sigma_pushout i j)
pushout_total_seq_rel
begin
intro x, symmetry,
refine sum_rec_hsquare pr1_pushout_total_seq_rel pr2_pushout_total_seq_rel
(!pushout_sum_equiv_sum_pushout x) ⬝ ap (pushout_sigma_equiv_sigma_pushout i j) _,
refine sum_rec_pushout_sum_equiv_sum_pushout _ _ _ _ x ⬝ _,
apply pushout_functor_homotopy_constant: intro x; induction x: reflexivity
end
begin
intro x, symmetry,
refine !sum_rec_sum_functor ⬝ _,
refine sum_rec_same_compose
((total_seq_rel seq_diagram_pushout)⁻¹ᵉ ∘ pushout_sigma_equiv_sigma_pushout i j) _ _ ⬝ _,
apply ap (to_fun (total_seq_rel seq_diagram_pushout)⁻¹ᵉ ∘ to_fun
(pushout_sigma_equiv_sigma_pushout i j)),
refine !sum_rec_pushout_sum_equiv_sum_pushout ⬝ _,
refine _ ⬝ !pushout_functor_compose,
fapply pushout_functor_homotopy,
{ intro x, induction x: reflexivity },
{ intro x, induction x: reflexivity },
{ intro x, induction x: reflexivity },
{ intro x, induction x: exact (!idp_con ⬝ !ap_id ⬝ !inv_inv)⁻¹ },
{ intro x, induction x: exact (!idp_con ⬝ !ap_id ⬝ !inv_inv)⁻¹ }
end,
e1 ⬝e three_by_three pushout_seq_colim_span ⬝e e2 ⬝e (quotient_equiv_pushout _)⁻¹ᵉ
definition seq_colim_pushout_equiv [constructor] : seq_colim seq_diagram_pushout ≃
pushout (seq_colim_functor i p) (seq_colim_functor j q) :=
pushout_seq_colim_equiv⁻¹ᵉ
end