da033c0f4c
also many small fixes
260 lines
10 KiB
Text
260 lines
10 KiB
Text
-- definitions, theorems and attributes which should be moved to files in the HoTT library
|
||
|
||
import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2 algebra.graph algebra.category.functor.equivalence
|
||
|
||
open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc pi group
|
||
is_trunc function unit prod bool
|
||
|
||
universe variable u
|
||
|
||
namespace eq
|
||
|
||
definition transport_lemma {A : Type} {C : A → Type} {g₁ : A → A}
|
||
{x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) :
|
||
transport C (ap g₁ p)⁻¹ (f (transport C p z)) = f z :=
|
||
by induction p; reflexivity
|
||
|
||
definition transport_lemma2 {A : Type} {C : A → Type} {g₁ : A → A}
|
||
{x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) :
|
||
transport C (ap g₁ p) (f z) = f (transport C p z) :=
|
||
by induction p; reflexivity
|
||
|
||
variables {A A' B : Type} {a a₂ a₃ : A} {p p' : a = a₂} {p₂ : a₂ = a₃}
|
||
{a' a₂' a₃' : A'} {b b₂ : B}
|
||
|
||
end eq open eq
|
||
|
||
namespace nat
|
||
|
||
-- definition rec_down_le_beta_lt (P : ℕ → Type) (s : ℕ) (H0 : Πn, s ≤ n → P n)
|
||
-- (Hs : Πn, P (n+1) → P n) (n : ℕ) (Hn : n < s) :
|
||
-- rec_down_le P s H0 Hs n = Hs n (rec_down_le P s H0 Hs (n+1)) :=
|
||
-- begin
|
||
-- revert n Hn, induction s with s IH: intro n Hn,
|
||
-- { exfalso, exact not_succ_le_zero n Hn },
|
||
-- { have Hn' : n ≤ s, from le_of_succ_le_succ Hn,
|
||
-- --esimp [rec_down_le],
|
||
-- exact sorry
|
||
-- -- induction Hn' with s Hn IH,
|
||
-- -- { },
|
||
-- -- { }
|
||
-- }
|
||
-- end
|
||
|
||
end nat
|
||
|
||
-- definition ppi_eq_equiv_internal : (k = l) ≃ (k ~* l) :=
|
||
-- calc (k = l) ≃ ppi.sigma_char P p₀ k = ppi.sigma_char P p₀ l
|
||
-- : eq_equiv_fn_eq (ppi.sigma_char P p₀) k l
|
||
-- ... ≃ Σ(p : k = l),
|
||
-- pathover (λh, h pt = p₀) (respect_pt k) p (respect_pt l)
|
||
-- : sigma_eq_equiv _ _
|
||
-- ... ≃ Σ(p : k = l),
|
||
-- respect_pt k = ap (λh, h pt) p ⬝ respect_pt l
|
||
-- : sigma_equiv_sigma_right
|
||
-- (λp, eq_pathover_equiv_Fl p (respect_pt k) (respect_pt l))
|
||
-- ... ≃ Σ(p : k = l),
|
||
-- respect_pt k = apd10 p pt ⬝ respect_pt l
|
||
-- : sigma_equiv_sigma_right
|
||
-- (λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)))
|
||
-- ... ≃ Σ(p : k ~ l), respect_pt k = p pt ⬝ respect_pt l
|
||
-- : sigma_equiv_sigma_left' eq_equiv_homotopy
|
||
-- ... ≃ Σ(p : k ~ l), p pt ⬝ respect_pt l = respect_pt k
|
||
-- : sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||
-- ... ≃ (k ~* l) : phomotopy.sigma_char k l
|
||
|
||
namespace pointed
|
||
|
||
|
||
end pointed open pointed
|
||
|
||
namespace trunc
|
||
open trunc_index sigma.ops
|
||
|
||
-- TODO: redefine loopn_ptrunc_pequiv
|
||
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) :
|
||
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
|
||
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
|
||
begin
|
||
revert n, induction k with k IH: intro n,
|
||
{ reflexivity },
|
||
{ exact sorry }
|
||
end
|
||
|
||
end trunc open trunc
|
||
|
||
|
||
namespace sigma
|
||
open sigma.ops
|
||
-- open sigma.ops
|
||
-- definition eq.rec_sigma {A : Type} {B : A → Type} {a₀ : A} {b₀ : B a₀}
|
||
-- {P : Π(a : A) (b : B a), ⟨a₀, b₀⟩ = ⟨a, b⟩ → Type} (H : P a₀ b₀ idp) {a : A} {b : B a}
|
||
-- (p : ⟨a₀, b₀⟩ = ⟨a, b⟩) : P a b p :=
|
||
-- sorry
|
||
|
||
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
||
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
|
||
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
|
||
-- begin
|
||
-- fapply equiv.MK,
|
||
-- { exact pathover_pr1 },
|
||
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
||
-- { intro q, induction q,
|
||
-- have c = c', from !is_prop.elim, induction this,
|
||
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
|
||
-- { esimp, generalize ⟨b, c⟩, intro x q, }
|
||
-- end
|
||
|
||
|
||
definition sigma_equiv_of_is_embedding_left_fun [constructor] {X Y : Type} {P : Y → Type}
|
||
{f : X → Y} (H : Πy, P y → fiber f y) (v : Σy, P y) : Σx, P (f x) :=
|
||
⟨fiber.point (H v.1 v.2), transport P (point_eq (H v.1 v.2))⁻¹ v.2⟩
|
||
|
||
definition sigma_equiv_of_is_embedding_left [constructor] {X Y : Type} {P : Y → Type}
|
||
(f : X → Y) (Hf : is_embedding f) (HP : Πx, is_prop (P (f x))) (H : Πy, P y → fiber f y) :
|
||
(Σy, P y) ≃ Σx, P (f x) :=
|
||
begin
|
||
apply equiv.MK (sigma_equiv_of_is_embedding_left_fun H) (sigma_functor f (λa, id)),
|
||
{ intro v, induction v with x p, esimp [sigma_equiv_of_is_embedding_left_fun],
|
||
fapply sigma_eq, apply @is_injective_of_is_embedding _ _ f, exact point_eq (H (f x) p),
|
||
apply is_prop.elimo },
|
||
{ intro v, induction v with y p, esimp, fapply sigma_eq, exact point_eq (H y p),
|
||
apply tr_pathover }
|
||
end
|
||
|
||
definition sigma_equiv_of_is_embedding_left_contr [constructor] {X Y : Type} {P : Y → Type}
|
||
(f : X → Y) (Hf : is_embedding f) (HP : Πx, is_contr (P (f x))) (H : Πy, P y → fiber f y) :
|
||
(Σy, P y) ≃ X :=
|
||
sigma_equiv_of_is_embedding_left f Hf _ H ⬝e sigma_equiv_of_is_contr_right _ _
|
||
|
||
end sigma open sigma
|
||
|
||
namespace group
|
||
|
||
|
||
-- definition is_equiv_isomorphism
|
||
|
||
|
||
-- some extra instances for type class inference
|
||
-- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G))
|
||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
-- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' _
|
||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
-- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
|
||
-- definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) :=
|
||
-- mul.comm4 a b c d
|
||
|
||
open option
|
||
definition add_point_AbGroup [unfold 3] {X : Type} (G : X → AbGroup) : X₊ → AbGroup
|
||
| (some x) := G x
|
||
| none := trivial_ab_group_lift
|
||
|
||
-- definition trunc_isomorphism_of_equiv {A B : Type} [inf_group A] [inf_group B] (f : A ≃ B)
|
||
-- (h : is_mul_hom f) :
|
||
-- Group.mk (trunc 0 A) (group_trunc A) ≃g Group.mk (trunc 0 B) (group_trunc B) :=
|
||
-- begin
|
||
-- apply isomorphism_of_equiv (trunc_equiv_trunc 0 f), intros x x',
|
||
-- induction x with a, induction x' with a', apply ap tr, exact h a a'
|
||
-- end
|
||
|
||
|
||
end group open group
|
||
|
||
namespace fiber
|
||
|
||
/- if we need this: do pfiber_functor_pcompose and so on first -/
|
||
-- definition psquare_pfiber_functor [constructor] {A₁ A₂ A₃ A₄ B₁ B₂ B₃ B₄ : Type*}
|
||
-- {f₁ : A₁ →* B₁} {f₂ : A₂ →* B₂} {f₃ : A₃ →* B₃} {f₄ : A₄ →* B₄}
|
||
-- {g₁₂ : A₁ →* A₂} {g₃₄ : A₃ →* A₄} {g₁₃ : A₁ →* A₃} {g₂₄ : A₂ →* A₄}
|
||
-- {h₁₂ : B₁ →* B₂} {h₃₄ : B₃ →* B₄} {h₁₃ : B₁ →* B₃} {h₂₄ : B₂ →* B₄}
|
||
-- (H₁₂ : psquare g₁₂ h₁₂ f₁ f₂) (H₃₄ : psquare g₃₄ h₃₄ f₃ f₄)
|
||
-- (H₁₃ : psquare g₁₃ h₁₃ f₁ f₃) (H₂₄ : psquare g₂₄ h₂₄ f₂ f₄)
|
||
-- (G : psquare g₁₂ g₃₄ g₁₃ g₂₄) (H : psquare h₁₂ h₃₄ h₁₃ h₂₄)
|
||
-- /- pcube H₁₂ H₃₄ H₁₃ H₂₄ G H -/ :
|
||
-- psquare (pfiber_functor g₁₂ h₁₂ H₁₂) (pfiber_functor g₃₄ h₃₄ H₃₄)
|
||
-- (pfiber_functor g₁₃ h₁₃ H₁₃) (pfiber_functor g₂₄ h₂₄ H₂₄) :=
|
||
-- begin
|
||
-- fapply phomotopy.mk,
|
||
-- { intro x, induction x with x p, induction B₁ with B₁ b₁₀, induction f₁ with f₁ f₁₀, esimp at *,
|
||
-- induction p, esimp [fiber_functor], },
|
||
-- { }
|
||
-- end
|
||
|
||
|
||
end fiber open fiber
|
||
|
||
namespace function
|
||
variables {A B : Type} {f f' : A → B}
|
||
open is_conn sigma.ops
|
||
|
||
definition homotopy_group_isomorphism_of_is_embedding (n : ℕ) [H : is_succ n] {A B : Type*}
|
||
(f : A →* B) [H2 : is_embedding f] : πg[n] A ≃g πg[n] B :=
|
||
begin
|
||
apply isomorphism.mk (homotopy_group_homomorphism n f),
|
||
induction H with n,
|
||
apply is_equiv_of_equiv_of_homotopy
|
||
(ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn_of_is_embedding (n+1) f)),
|
||
exact sorry
|
||
end
|
||
|
||
definition merely_constant_pmap {A B : Type*} {f : A →* B} (H : merely_constant f) (a : A) :
|
||
merely (f a = pt) :=
|
||
tconcat (tconcat (H.2 a) (tinverse (H.2 pt))) (tr (respect_pt f))
|
||
|
||
definition merely_constant_of_is_conn {A B : Type*} (f : A →* B) [is_conn 0 A] :
|
||
merely_constant f :=
|
||
⟨pt, is_conn.elim -1 _ (tr (respect_pt f))⟩
|
||
|
||
end function open function
|
||
|
||
namespace is_conn
|
||
|
||
open unit trunc_index nat is_trunc pointed.ops sigma.ops prod.ops
|
||
|
||
-- definition is_conn_pfiber_of_equiv_on_homotopy_groups (n : ℕ) {A B : pType.{u}} (f : A →* B)
|
||
-- [H : is_conn 0 A]
|
||
-- (H1 : Πk, k ≤ n → is_equiv (π→[k] f))
|
||
-- (H2 : is_surjective (π→[succ n] f)) :
|
||
-- is_conn n (pfiber f) :=
|
||
-- _
|
||
|
||
-- definition is_conn_pelim [constructor] {k : ℕ} {X : Type*} (Y : Type*) (H : is_conn k X) :
|
||
-- (X →* connect k Y) ≃ (X →* Y) :=
|
||
|
||
end is_conn
|
||
|
||
|
||
namespace sphere
|
||
|
||
-- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S n →* S m) :
|
||
-- f ~* pconst (S n) (S m) :=
|
||
-- begin
|
||
-- assert H : is_contr (Ω[n] (S m)),
|
||
-- { apply homotopy_group_sphere_le, },
|
||
-- apply phomotopy_of_eq,
|
||
-- apply inj !sphere_pmap_pequiv,
|
||
-- apply @is_prop.elim
|
||
-- end
|
||
|
||
end sphere
|
||
|
||
|
||
namespace paths
|
||
|
||
variables {A : Type} {R : A → A → Type} {a₁ a₂ a₃ a₄ : A}
|
||
|
||
definition mem_equiv_Exists (l : R a₁ a₂) (p : paths R a₃ a₄) :
|
||
mem l p ≃ Exists (λa a' r, ⟨a₁, a₂, l⟩ = ⟨a, a', r⟩) p :=
|
||
sorry
|
||
|
||
end paths
|