Spectral/higher_groups.hlean
2018-01-31 13:01:17 -05:00

379 lines
15 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Ulrik Buchholtz, Egbert Rijke and Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Egbert Rijke, Floris van Doorn
Formalization of the higher groups paper
-/
import .homotopy.EM
open eq is_conn pointed is_trunc trunc equiv is_equiv trunc_index susp nat algebra
prod.ops sigma sigma.ops category EM
namespace higher_group
set_option pp.binder_types true
universe variable u
/- Results not necessarily about higher groups which we repeat here, because they are mentioned in
the higher group paper -/
namespace hide
open pushout
definition connect_intro_pequiv {k : } {X : Type*} (Y : Type*) (H : is_conn k X) :
ppmap X (connect k Y) ≃* ppmap X Y :=
is_conn.connect_intro_pequiv Y H
definition is_conn_fun_prod_of_wedge (n m : ) (A B : Type*)
[cA : is_conn n A] [cB : is_conn m B] : is_conn_fun (m + n) (@prod_of_wedge A B) :=
is_conn_fun_prod_of_wedge n m A B
end hide
/- The k-groupal n-types.
We require that the carrier has a point (preserved by the equivalence) -/
structure GType (n k : ) : Type := /- (n,k)GType, denoted here as [n;k]GType -/
(car : ptrunctype.{u} n)
(B : pconntype.{u} (k.-1)) /- this is Bᵏ -/
(e : car ≃* Ω[k] B)
structure InfGType (k : ) : Type := /- (∞,k)GType, denoted here as [∞;k]GType -/
(car : pType.{u})
(B : pconntype.{u} (k.-1)) /- this is Bᵏ -/
(e : car ≃* Ω[k] B)
structure ωGType (n : ) := /- (n,ω)GType, denoted here as [n;ω]GType -/
(B : Π(k : ), (n+k)-Type*[k.-1])
(e : Π(k : ), B k ≃* Ω (B (k+1)))
attribute InfGType.car GType.car [coercion]
variables {n k l : }
notation `[`:95 n:0 `; ` k `]GType`:0 := GType n k
notation `[∞; `:95 k:0 `]GType`:0 := InfGType k
notation `[`:95 n:0 `;ω]GType`:0 := ωGType n
open GType
open InfGType (renaming B→iB e→ie)
open ωGType (renaming B→oB e→oe)
/- some basic properties -/
lemma is_trunc_B' (G : [n;k]GType) : is_trunc (k+n) (B G) :=
begin
apply is_trunc_of_is_trunc_loopn,
exact is_trunc_equiv_closed _ (e G),
exact _
end
lemma is_trunc_B (G : [n;k]GType) : is_trunc (n+k) (B G) :=
transport (λm, is_trunc m (B G)) (add.comm k n) (is_trunc_B' G)
local attribute [instance] is_trunc_B
definition GType.sigma_char (n k : ) :
GType.{u} n k ≃ Σ(B : pconntype.{u} (k.-1)), Σ(X : ptrunctype.{u} n), X ≃* Ω[k] B :=
begin
fapply equiv.MK,
{ intro G, exact ⟨B G, G, e G⟩ },
{ intro v, exact GType.mk v.2.1 v.1 v.2.2 },
{ intro v, induction v with v₁ v₂, induction v₂, reflexivity },
{ intro G, induction G, reflexivity },
end
definition GType_equiv (n k : ) : [n;k]GType ≃ (n+k)-Type*[k.-1] :=
GType.sigma_char n k ⬝e
sigma_equiv_of_is_embedding_left_contr
ptruncconntype.to_pconntype
(is_embedding_ptruncconntype_to_pconntype (n+k) (k.-1))
begin
intro X,
apply is_trunc_equiv_closed_rev -2,
{ apply sigma_equiv_sigma_right, intro B',
refine _ ⬝e (ptrunctype_eq_equiv B' (ptrunctype.mk (Ω[k] X) !is_trunc_loopn_nat pt))⁻¹ᵉ,
assert lem : Π(A : n-Type*) (B : Type*) (H : is_trunc n B),
(A ≃* B) ≃ (A ≃* (ptrunctype.mk B H pt)),
{ intro A B'' H, induction B'', reflexivity },
apply lem }
end
begin
intro B' H, apply fiber.mk (ptruncconntype.mk B' (is_trunc_B (GType.mk H.1 B' H.2)) pt _),
induction B' with G' B' e', reflexivity
end
definition GType_equiv_pequiv {n k : } (G : [n;k]GType) : GType_equiv n k G ≃* B G :=
by reflexivity
definition GType_eq_equiv {n k : } (G H : [n;k]GType) : (G = H :> [n;k]GType) ≃ (B G ≃* B H) :=
eq_equiv_fn_eq_of_equiv (GType_equiv n k) _ _ ⬝e !ptruncconntype_eq_equiv
definition GType_eq {n k : } {G H : [n;k]GType} (e : B G ≃* B H) : G = H :=
(GType_eq_equiv G H)⁻¹ᵉ e
/- similar properties for [∞;k]GType -/
definition InfGType.sigma_char (k : ) :
InfGType.{u} k ≃ Σ(B : pconntype.{u} (k.-1)), Σ(X : pType.{u}), X ≃* Ω[k] B :=
begin
fapply equiv.MK,
{ intro G, exact ⟨iB G, G, ie G⟩ },
{ intro v, exact InfGType.mk v.2.1 v.1 v.2.2 },
{ intro v, induction v with v₁ v₂, induction v₂, reflexivity },
{ intro G, induction G, reflexivity },
end
definition InfGType_equiv (k : ) : [∞;k]GType ≃ Type*[k.-1] :=
InfGType.sigma_char k ⬝e
@sigma_equiv_of_is_contr_right _ _
(λX, is_trunc_equiv_closed_rev -2 (sigma_equiv_sigma_right (λB', !pType_eq_equiv⁻¹ᵉ)))
definition InfGType_equiv_pequiv {k : } (G : [∞;k]GType) : InfGType_equiv k G ≃* iB G :=
by reflexivity
definition InfGType_eq_equiv {k : } (G H : [∞;k]GType) : (G = H :> [∞;k]GType) ≃ (iB G ≃* iB H) :=
eq_equiv_fn_eq_of_equiv (InfGType_equiv k) _ _ ⬝e !pconntype_eq_equiv
definition InfGType_eq {k : } {G H : [∞;k]GType} (e : iB G ≃* iB H) : G = H :=
(InfGType_eq_equiv G H)⁻¹ᵉ e
-- maybe to do: ωGType ≃ Σ(X : spectrum), is_sconn n X
/- Constructions on higher groups -/
definition Decat (G : [n+1;k]GType) : [n;k]GType :=
GType.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (B G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (e G) ⬝e* _,
symmetry, exact !loopn_ptrunc_pequiv_nat
end end
definition Disc (G : [n;k]GType) : [n+1;k]GType :=
GType.mk (ptrunctype.mk G (show is_trunc (n.+1) G, from _) pt) (B G) (e G)
definition Decat_adjoint_Disc (G : [n+1;k]GType) (H : [n;k]GType) :
ppmap (B (Decat G)) (B H) ≃* ppmap (B G) (B (Disc H)) :=
pmap_ptrunc_pequiv (n + k) (B G) (B H)
definition Decat_adjoint_Disc_natural {G G' : [n+1;k]GType} {H H' : [n;k]GType}
(g : B G' →* B G) (h : B H →* B H') :
psquare (Decat_adjoint_Disc G H)
(Decat_adjoint_Disc G' H')
(ppcompose_left h ∘* ppcompose_right (ptrunc_functor _ g))
(ppcompose_left h ∘* ppcompose_right g) :=
pmap_ptrunc_pequiv_natural (n + k) g h
definition Decat_Disc (G : [n;k]GType) : Decat (Disc G) = G :=
GType_eq !ptrunc_pequiv
definition InfDecat (n : ) (G : [∞;k]GType) : [n;k]GType :=
GType.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (iB G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (ie G) ⬝e* _,
symmetry, exact !loopn_ptrunc_pequiv_nat
end end
definition InfDisc (n : ) (G : [n;k]GType) : [∞;k]GType :=
InfGType.mk G (B G) (e G)
definition InfDecat_adjoint_InfDisc (G : [∞;k]GType) (H : [n;k]GType) :
ppmap (B (InfDecat n G)) (B H) ≃* ppmap (iB G) (iB (InfDisc n H)) :=
pmap_ptrunc_pequiv (n + k) (iB G) (B H)
/- To do: naturality -/
definition InfDecat_InfDisc (G : [n;k]GType) : InfDecat n (InfDisc n G) = G :=
GType_eq !ptrunc_pequiv
definition Deloop (G : [n;k+1]GType) : [n+1;k]GType :=
have is_conn k (B G), from is_conn_pconntype (B G),
have is_trunc (n + (k + 1)) (B G), from is_trunc_B G,
have is_trunc ((n + 1) + k) (B G), from transport (λ(n : ), is_trunc n _) (succ_add n k)⁻¹ this,
GType.mk (ptrunctype.mk (Ω[k] (B G)) !is_trunc_loopn_nat pt)
(pconntype.mk (B G) !is_conn_of_is_conn_succ pt)
(pequiv_of_equiv erfl idp)
definition Loop (G : [n+1;k]GType) : [n;k+1]GType :=
GType.mk (ptrunctype.mk (Ω G) !is_trunc_loop_nat pt)
(connconnect k (B G))
(loop_pequiv_loop (e G) ⬝e* (loopn_connect k (B G))⁻¹ᵉ*)
definition Deloop_adjoint_Loop (G : [n;k+1]GType) (H : [n+1;k]GType) :
ppmap (B (Deloop G)) (B H) ≃* ppmap (B G) (B (Loop H)) :=
(connect_intro_pequiv _ !is_conn_pconntype)⁻¹ᵉ*
definition Deloop_adjoint_Loop_natural {G G' : [n;k+1]GType} {H H' : [n+1;k]GType}
(g : B G' →* B G) (h : B H →* B H') :
psquare (Deloop_adjoint_Loop G H)
(Deloop_adjoint_Loop G' H')
(ppcompose_left h ∘* ppcompose_right g)
(ppcompose_left (connect_functor k h) ∘* ppcompose_right g) :=
(connect_intro_pequiv_natural g h _ _)⁻¹ʰ*
/- to do: naturality -/
definition Loop_Deloop (G : [n;k+1]GType) : Loop (Deloop G) = G :=
GType_eq (connect_pequiv (is_conn_pconntype (B G)))
definition Forget (G : [n;k+1]GType) : [n;k]GType :=
have is_conn k (B G), from !is_conn_pconntype,
GType.mk G (pconntype.mk (Ω (B G)) !is_conn_loop pt)
abstract begin
refine e G ⬝e* !loopn_succ_in
end end
definition Stabilize (G : [n;k]GType) : [n;k+1]GType :=
have is_conn k (susp (B G)), from !is_conn_susp,
have Hconn : is_conn k (ptrunc (n + k + 1) (susp (B G))), from !is_conn_ptrunc,
GType.mk (ptrunctype.mk (ptrunc n (Ω[k+1] (susp (B G)))) _ pt)
(pconntype.mk (ptrunc (n+k+1) (susp (B G))) Hconn pt)
abstract begin
refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
apply loopn_pequiv_loopn,
exact ptrunc_change_index !of_nat_add_of_nat _
end end
definition Stabilize_adjoint_Forget (G : [n;k]GType) (H : [n;k+1]GType) :
ppmap (B (Stabilize G)) (B H) ≃* ppmap (B G) (B (Forget H)) :=
have is_trunc (n + k + 1) (B H), from !is_trunc_B,
pmap_ptrunc_pequiv (n + k + 1) (⅀ (B G)) (B H) ⬝e* susp_adjoint_loop (B G) (B H)
definition Stabilize_adjoint_Forget_natural {G G' : [n;k]GType} {H H' : [n;k+1]GType}
(g : B G' →* B G) (h : B H →* B H') :
psquare (Stabilize_adjoint_Forget G H)
(Stabilize_adjoint_Forget G' H')
(ppcompose_left h ∘* ppcompose_right (ptrunc_functor (n+k+1) (⅀→ g)))
(ppcompose_left (Ω→ h) ∘* ppcompose_right g) :=
begin
have is_trunc (n + k + 1) (B H), from !is_trunc_B,
have is_trunc (n + k + 1) (B H'), from !is_trunc_B,
refine pmap_ptrunc_pequiv_natural (n+k+1) (⅀→ g) h ⬝h* _,
exact susp_adjoint_loop_natural_left g ⬝v* susp_adjoint_loop_natural_right h
end
/- to do: naturality -/
definition ωForget (k : ) (G : [n;ω]GType) : [n;k]GType :=
have is_trunc (n + k) (oB G k), from _,
have is_trunc n (Ω[k] (oB G k)), from !is_trunc_loopn_nat,
GType.mk (ptrunctype.mk (Ω[k] (oB G k)) _ pt) (oB G k) (pequiv_of_equiv erfl idp)
definition nStabilize (H : k ≤ l) (G : GType.{u} n k) : GType.{u} n l :=
begin
induction H with l H IH, exact G, exact Stabilize IH
end
definition Forget_Stabilize (H : k ≥ n + 2) (G : [n;k]GType) : B (Forget (Stabilize G)) ≃* B G :=
loop_ptrunc_pequiv _ _ ⬝e*
begin
cases k with k,
{ cases H },
{ have k ≥ succ n, from le_of_succ_le_succ H,
assert this : n + succ k ≤ 2 * k,
{ rewrite [two_mul, add_succ, -succ_add], exact nat.add_le_add_right this k },
exact freudenthal_pequiv (B G) this }
end⁻¹ᵉ* ⬝e*
ptrunc_pequiv (n + k) _
definition Stabilize_Forget (H : k ≥ n + 1) (G : [n;k+1]GType) : B (Stabilize (Forget G)) ≃* B G :=
begin
assert lem1 : n + succ k ≤ 2 * k,
{ rewrite [two_mul, add_succ, -succ_add], exact nat.add_le_add_right H k },
have is_conn k (B G), from !is_conn_pconntype,
have Π(G' : [n;k+1]GType), is_trunc (n + k + 1) (B G'), from is_trunc_B,
note z := is_conn_fun_loop_susp_counit (B G) (nat.le_refl (2 * k)),
refine ptrunc_pequiv_ptrunc_of_le (of_nat_le_of_nat lem1) (@(ptrunc_pequiv_ptrunc_of_is_conn_fun _ _) z) ⬝e*
!ptrunc_pequiv,
end
definition stabilization (H : k ≥ n + 2) : is_equiv (@Stabilize n k) :=
begin
fapply adjointify,
{ exact Forget },
{ intro G, apply GType_eq, exact Stabilize_Forget (le.trans !self_le_succ H) _ },
{ intro G, apply GType_eq, exact Forget_Stabilize H G }
end
definition ωGType.mk_le {n : } (k₀ : )
(C : Π⦃k : ℕ⦄, k₀ ≤ k → ((n+k)-Type*[k.-1] : Type.{u+1}))
(e : Π⦃k : ℕ⦄ (H : k₀ ≤ k), C H ≃* Ω (C (le.step H))) : ([n;ω]GType : Type.{u+1}) :=
begin
fconstructor,
{ apply rec_down_le _ k₀ C, intro n' D,
refine (ptruncconntype.mk (Ω D) _ pt _),
apply is_trunc_loop, apply is_trunc_ptruncconntype, apply is_conn_loop,
apply is_conn_ptruncconntype },
{ intro n', apply rec_down_le_univ, exact e, intro n D, reflexivity }
end
/- for l ≤ k we want to define it as Ω[k-l] (B G),
for H : l ≥ k we want to define it as nStabilize H G -/
definition ωStabilize_of_le (H : k ≥ n + 2) (G : [n;k]GType) : [n;ω]GType :=
ωGType.mk_le k (λl H', GType_equiv n l (nStabilize H' G))
(λl H', (Forget_Stabilize (le.trans H H') (nStabilize H' G))⁻¹ᵉ*)
definition ωStabilize (G : [n;k]GType) : [n;ω]GType :=
ωStabilize_of_le !le_max_left (nStabilize !le_max_right G)
definition ωstabilization (H : k ≥ n + 2) : is_equiv (@ωStabilize n k) :=
sorry
/- to do: adjunction (and ωStabilize ∘ ωForget =?= id) -/
definition GType_hom (G H : [n;k]GType) : Type :=
B G →* B H
definition is_trunc_GType_hom (G H : [n;k]GType) : is_trunc n (GType_hom G H) :=
is_trunc_pmap_of_is_conn _ (k.-2) _ (k + n) _ (le_of_eq (sub_one_add_plus_two_sub_one k n)⁻¹)
(is_trunc_B' H)
definition is_set_GType_hom (G H : [0;k]GType) : is_set (GType_hom G H) :=
is_trunc_GType_hom G H
definition is_trunc_GType (n k : ) : is_trunc (n + 1) [n;k]GType :=
begin
apply @is_trunc_equiv_closed_rev _ _ (n + 1) (GType_equiv n k),
apply is_trunc_succ_intro, intros X Y,
apply @is_trunc_equiv_closed_rev _ _ _ (ptruncconntype_eq_equiv X Y),
apply @is_trunc_equiv_closed_rev _ _ _ (pequiv.sigma_char_pmap X Y),
apply @is_trunc_subtype (X →* Y) (λ f, trunctype.mk' -1 (is_equiv f)),
exact is_trunc_GType_hom ((GType_equiv n k)⁻¹ᵉ X) ((GType_equiv n k)⁻¹ᵉ Y)
end
local attribute [instance] is_set_GType_hom
definition cGType [constructor] (k : ) : Precategory :=
pb_Precategory (cptruncconntype' (k.-1))
(GType_equiv 0 k ⬝e equiv_ap (λx, x-Type*[k.-1]) (ap of_nat (zero_add k)) ⬝e
(ptruncconntype'_equiv_ptruncconntype (k.-1))⁻¹ᵉ)
example (k : ) : Precategory.carrier (cGType k) = [0;k]GType := by reflexivity
-- TODO
-- example (k : ) (G H : cGType k) : (G ⟶ H) = (B G →* B H) :=
-- begin esimp [cGType] end
--by induction G, induction H, reflexivity
definition cGType_equivalence_cType [constructor] (k : ) : cGType k ≃c cType*[k.-1] :=
!pb_Precategory_equivalence_of_equiv
definition cGType_equivalence_Grp [constructor] : cGType.{u} 1 ≃c Grp.{u} :=
equivalence.trans !pb_Precategory_equivalence_of_equiv
(equivalence.trans (equivalence.symm Grp_equivalence_cptruncconntype')
proof equivalence.refl _ qed)
definition cGType_equivalence_AbGrp [constructor] (k : ) : cGType.{u} (k+2) ≃c AbGrp.{u} :=
equivalence.trans !pb_Precategory_equivalence_of_equiv
(equivalence.trans (equivalence.symm (AbGrp_equivalence_cptruncconntype' k))
proof equivalence.refl _ qed)
--has sorry
print axioms ωstabilization
-- no sorry's
print axioms Decat_adjoint_Disc
print axioms Decat_adjoint_Disc_natural
print axioms Deloop_adjoint_Loop
print axioms Deloop_adjoint_Loop_natural
print axioms Stabilize_adjoint_Forget
print axioms Stabilize_adjoint_Forget_natural
print axioms stabilization
print axioms is_trunc_GType
print axioms cGType_equivalence_Grp
print axioms cGType_equivalence_AbGrp
end higher_group