Spectral/colim.hlean
2017-03-30 17:00:15 -04:00

487 lines
18 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- authors: Floris van Doorn, Egbert Rijke
import hit.colimit types.fin homotopy.chain_complex .move_to_lib
open seq_colim pointed algebra eq is_trunc nat is_equiv equiv sigma sigma.ops chain_complex
namespace seq_colim
definition pseq_colim [constructor] {X : → Type*} (f : Πn, X n →* X (n+1)) : Type* :=
pointed.MK (seq_colim f) (@sι _ _ 0 pt)
definition inclusion_pt [constructor] {X : → Type*} (f : Πn, X n →* X (n+1)) (n : )
: inclusion f (Point (X n)) = Point (pseq_colim f) :=
begin
induction n with n p,
reflexivity,
exact (ap (sι f) (respect_pt _))⁻¹ᵖ ⬝ !glue ⬝ p
end
definition pinclusion [constructor] {X : → Type*} (f : Πn, X n →* X (n+1)) (n : )
: X n →* pseq_colim f :=
pmap.mk (inclusion f) (inclusion_pt f n)
definition seq_diagram [reducible] (A : → Type) : Type := Π⦃n⦄, A n → A (succ n)
definition pseq_diagram [reducible] (A : → Type*) : Type := Π⦃n⦄, A n →* A (succ n)
structure Seq_diagram : Type :=
(carrier : → Type)
(struct : seq_diagram carrier)
definition is_equiseq [reducible] {A : → Type} (f : seq_diagram A) : Type :=
forall (n : ), is_equiv (@f n)
structure Equi_seq : Type :=
(carrier : → Type)
(maps : seq_diagram carrier)
(prop : is_equiseq maps)
protected abbreviation Mk [constructor] := Seq_diagram.mk
attribute Seq_diagram.carrier [coercion]
attribute Seq_diagram.struct [coercion]
variables {A : → Type} (f : seq_diagram A)
include f
definition rep0 [reducible] (k : ) : A 0 → A k :=
begin
intro a,
induction k with k x,
exact a,
exact f x
end
definition is_equiv_rep0 [constructor] [H : is_equiseq f] (k : ) :
is_equiv (rep0 f k) :=
begin
induction k with k IH,
{ apply is_equiv_id},
{ apply is_equiv_compose (@f _) (rep0 f k)},
end
local attribute is_equiv_rep0 [instance]
definition rep0_back [reducible] [H : is_equiseq f] (k : ) : A k → A 0 :=
(rep0 f k)⁻¹
section generalized_rep
variable {n : }
definition rep [reducible] (k : ) (a : A n) : A (n + k) :=
by induction k with k x; exact a; exact f x
definition rep_f (k : ) (a : A n) : pathover A (rep f k (f a)) (succ_add n k) (rep f (succ k) a) :=
begin
induction k with k IH,
{ constructor},
{ apply pathover_ap, exact apo f IH}
end
definition rep_back [H : is_equiseq f] (k : ) (a : A (n + k)) : A n :=
begin
induction k with k g,
exact a,
exact g ((@f (n + k))⁻¹ a),
end
definition is_equiv_rep [constructor] [H : is_equiseq f] (k : ) :
is_equiv (λ (a : A n), rep f k a) :=
begin
fapply adjointify,
{ exact rep_back f k},
{ induction k with k IH: intro b,
{ reflexivity},
unfold rep,
unfold rep_back,
fold [rep f k (rep_back f k ((@f (n+k))⁻¹ b))],
refine ap (@f (n+k)) (IH ((@f (n+k))⁻¹ b)) ⬝ _,
apply right_inv (@f (n+k))},
induction k with k IH: intro b,
exact rfl,
unfold rep_back,
unfold rep,
fold [rep f k b],
refine _ ⬝ IH b,
exact ap (rep_back f k) (left_inv (@f (n+k)) (rep f k b))
end
definition rep_rep (k l : ) (a : A n) :
pathover A (rep f k (rep f l a)) (nat.add_assoc n l k) (rep f (l + k) a) :=
begin
induction k with k IH,
{ constructor},
{ apply pathover_ap, exact apo f IH}
end
definition f_rep (k : ) (a : A n) : f (rep f k a) = rep f (succ k) a := idp
end generalized_rep
section shift
definition shift_diag [unfold_full] : seq_diagram (λn, A (succ n)) :=
λn a, f a
definition kshift_diag [unfold_full] (k : ) : seq_diagram (λn, A (k + n)) :=
λn a, f a
definition kshift_diag' [unfold_full] (k : ) : seq_diagram (λn, A (n + k)) :=
λn a, transport A (succ_add n k)⁻¹ (f a)
end shift
section constructions
omit f
definition constant_seq (X : Type) : seq_diagram (λ n, X) :=
λ n x, x
definition seq_diagram_arrow_left [unfold_full] (X : Type) : seq_diagram (λn, X → A n) :=
λn g x, f (g x)
-- inductive finset : → Type :=
-- | fin : forall n, finset n → finset (succ n)
-- | ftop : forall n, finset (succ n)
definition seq_diagram_fin : seq_diagram fin :=
λn, fin.lift_succ
definition id0_seq (x y : A 0) : → Type :=
λ k, rep0 f k x = rep0 f k y
definition id0_seq_diagram (x y : A 0) : seq_diagram (id0_seq f x y) :=
λ (k : ) (p : rep0 f k x = rep0 f k y), ap (@f k) p
definition id_seq (n : ) (x y : A n) : → Type :=
λ k, rep f k x = rep f k y
definition id_seq_diagram (n : ) (x y : A n) : seq_diagram (id_seq f n x y) :=
λ (k : ) (p : rep f k x = rep f k y), ap (@f (n + k)) p
end constructions
section over
variable {A}
variable (P : Π⦃n⦄, A n → Type)
definition seq_diagram_over : Type := Π⦃n⦄ {a : A n}, P a → P (f a)
variable (g : seq_diagram_over f P)
variables {f P}
definition seq_diagram_of_over [unfold_full] {n : } (a : A n) :
seq_diagram (λk, P (rep f k a)) :=
λk p, g p
definition seq_diagram_sigma [unfold 6] : seq_diagram (λn, Σ(x : A n), P x) :=
λn v, ⟨f v.1, g v.2⟩
variables {n : } (f P)
theorem rep_f_equiv [constructor] (a : A n) (k : ) :
P (rep f k (f a)) ≃ P (rep f (succ k) a) :=
equiv_apd011 P (rep_f f k a)
theorem rep_rep_equiv [constructor] (a : A n) (k l : ) :
P (rep f (l + k) a) ≃ P (rep f k (rep f l a)) :=
(equiv_apd011 P (rep_rep f k l a))⁻¹ᵉ
end over
omit f
-- do we need to generalize this to the case where the bottom sequence consists of equivalences?
definition seq_diagram_pi {X : Type} {A : X → → Type} (g : Π⦃x n⦄, A x n → A x (succ n)) :
seq_diagram (λn, Πx, A x n) :=
λn f x, g (f x)
namespace ops
abbreviation ι [constructor] := @inclusion
abbreviation pι [constructor] {A} (f) {n} := @pinclusion A f n
abbreviation pι' [constructor] [parsing_only] := @pinclusion
abbreviation ι' [constructor] [parsing_only] {A} (f n) := @inclusion A f n
end ops
open seq_colim.ops
definition rep0_glue (k : ) (a : A 0) : ι f (rep0 f k a) = ι f a :=
begin
induction k with k IH,
{ reflexivity},
{ exact glue f (rep0 f k a) ⬝ IH}
end
definition shift_up [unfold 3] (x : seq_colim f) : seq_colim (shift_diag f) :=
begin
induction x,
{ exact ι _ (f a)},
{ exact glue _ (f a)}
end
definition shift_down [unfold 3] (x : seq_colim (shift_diag f)) : seq_colim f :=
begin
induction x,
{ exact ι f a},
{ exact glue f a}
end
definition shift_equiv [constructor] : seq_colim f ≃ seq_colim (shift_diag f) :=
equiv.MK (shift_up f)
(shift_down f)
abstract begin
intro x, induction x,
{ esimp, exact glue _ a},
{ apply eq_pathover,
rewrite [▸*, ap_id, ap_compose (shift_up f) (shift_down f), ↑shift_down,
elim_glue],
apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹}
end end
abstract begin
intro x, induction x,
{ exact glue _ a},
{ apply eq_pathover,
rewrite [▸*, ap_id, ap_compose (shift_down f) (shift_up f), ↑shift_up,
elim_glue],
apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹}
end end
definition pshift_equiv [constructor] {A : → Type*} (f : Πn, A n →* A (succ n)) :
pseq_colim f ≃* pseq_colim (λn, f (n+1)) :=
begin
fapply pequiv_of_equiv,
{ apply shift_equiv },
{ exact ap (ι _) !respect_pt }
end
section functor
variable {f}
variables {A' : → Type} {f' : seq_diagram A'}
variables (g : Π⦃n⦄, A n → A' n) (p : Π⦃n⦄ (a : A n), g (f a) = f' (g a))
include p
definition seq_colim_functor [unfold 7] : seq_colim f → seq_colim f' :=
begin
intro x, induction x with n a n a,
{ exact ι f' (g a)},
{ exact ap (ι f') (p a) ⬝ glue f' (g a)}
end
theorem seq_colim_functor_glue {n : } (a : A n)
: ap (seq_colim_functor g p) (glue f a) = ap (ι f') (p a) ⬝ glue f' (g a) :=
!elim_glue
omit p
definition is_equiv_seq_colim_functor [constructor] [H : Πn, is_equiv (@g n)]
: is_equiv (seq_colim_functor @g p) :=
adjointify _ (seq_colim_functor (λn, (@g _)⁻¹) (λn a, inv_commute' g f f' p a))
abstract begin
intro x, induction x,
{ esimp, exact ap (ι _) (right_inv (@g _) a)},
{ apply eq_pathover,
rewrite [ap_id, ap_compose (seq_colim_functor g p) (seq_colim_functor _ _),
seq_colim_functor_glue _ _ a, ap_con, ▸*,
seq_colim_functor_glue _ _ ((@g _)⁻¹ a), -ap_compose, ↑[function.compose],
ap_compose (ι _) (@g _),ap_inv_commute',+ap_con, con.assoc,
+ap_inv, inv_con_cancel_left, con.assoc, -ap_compose],
apply whisker_tl, apply move_left_of_top, esimp,
apply transpose, apply square_of_pathover, apply apd}
end end
abstract begin
intro x, induction x,
{ esimp, exact ap (ι _) (left_inv (@g _) a)},
{ apply eq_pathover,
rewrite [ap_id, ap_compose (seq_colim_functor _ _) (seq_colim_functor _ _),
seq_colim_functor_glue _ _ a, ap_con,▸*, seq_colim_functor_glue _ _ (g a),
-ap_compose, ↑[function.compose], ap_compose (ι f) (@g _)⁻¹, inv_commute'_fn,
+ap_con, con.assoc, con.assoc, +ap_inv, con_inv_cancel_left, -ap_compose],
apply whisker_tl, apply move_left_of_top, esimp,
apply transpose, apply square_of_pathover, apply apd}
end end
definition seq_colim_equiv [constructor] (g : Π{n}, A n ≃ A' n)
(p : Π⦃n⦄ (a : A n), g (f a) = f' (g a)) : seq_colim f ≃ seq_colim f' :=
equiv.mk _ (is_equiv_seq_colim_functor @g p)
definition seq_colim_rec_unc [unfold 4] {P : seq_colim f → Type}
(v : Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a)
: Π(x : seq_colim f), P x :=
by induction v with Pincl Pglue; exact seq_colim.rec f Pincl Pglue
definition is_equiv_seq_colim_rec (P : seq_colim f → Type) :
is_equiv (seq_colim_rec_unc :
(Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a)
→ (Π (aa : seq_colim f), P aa)) :=
begin
fapply adjointify,
{ intro s, exact ⟨λn a, s (ι f a), λn a, apd s (glue f a)⟩},
{ intro s, apply eq_of_homotopy, intro x, induction x,
{ reflexivity},
{ apply eq_pathover_dep, esimp, apply hdeg_squareover, apply rec_glue}},
{ intro v, induction v with Pincl Pglue, fapply ap (sigma.mk _),
apply eq_of_homotopy2, intros n a, apply rec_glue},
end
/- universal property -/
definition equiv_seq_colim_rec (P : seq_colim f → Type) :
(Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) ≃ (Π (aa : seq_colim f), P aa) :=
equiv.mk _ !is_equiv_seq_colim_rec
end functor
definition pseq_colim_pequiv [constructor] {A A' : → Type*} {f : Π{n}, A n →* A (n+1)}
{f' : Π{n}, A' n →* A' (n+1)} (g : Π{n}, A n ≃* A' n)
(p : Π⦃n⦄, g ∘* f ~ f' ∘* g) : pseq_colim @f ≃* pseq_colim @f' :=
pequiv_of_equiv (seq_colim_equiv @g p) (ap (ι _) (respect_pt g))
definition seq_colim_equiv_constant [constructor] {A : → Type*} {f f' : Π⦃n⦄, A n → A (n+1)}
(p : Π⦃n⦄ (a : A n), f a = f' a) : seq_colim f ≃ seq_colim f' :=
seq_colim_equiv (λn, erfl) p
definition pseq_colim_equiv_constant [constructor] {A : → Type*} {f f' : Π{n}, A n →* A (n+1)}
(p : Π⦃n⦄, f ~ f') : pseq_colim @f ≃* pseq_colim @f' :=
pseq_colim_pequiv (λn, pequiv.rfl) p
definition pseq_colim.elim [constructor] {A : → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)}
(g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~ g n) : pseq_colim @f →* B :=
begin
fapply pmap.mk,
{ intro x, induction x with n a n a,
{ exact g n a },
{ exact p n a }},
{ esimp, apply respect_pt }
end
definition prep0 [constructor] {A : → Type*} (f : pseq_diagram A) (k : ) : A 0 →* A k :=
pmap.mk (rep0 (λn x, f x) k)
begin induction k with k p, reflexivity, exact ap (@f k) p ⬝ !respect_pt end
definition respect_pt_prep0_succ {A : → Type*} (f : pseq_diagram A) (k : )
: respect_pt (prep0 f (succ k)) = ap (@f k) (respect_pt (prep0 f k)) ⬝ respect_pt (@f k) :=
by reflexivity
theorem prep0_succ_lemma {A : → Type*} (f : pseq_diagram A) (n : )
(p : rep0 (λn x, f x) n pt = rep0 (λn x, f x) n pt)
(q : prep0 f n (Point (A 0)) = Point (A n))
: loop_equiv_eq_closed (ap (@f n) q ⬝ respect_pt (@f n))
(ap (@f n) p) = Ω→(@f n) (loop_equiv_eq_closed q p) :=
by rewrite [▸*, con_inv, ↑ap1_gen, +ap_con, ap_inv, +con.assoc]
definition succ_add_tr_rep {n : } (k : ) (x : A n)
: transport A (succ_add n k) (rep f k (f x)) = rep f (succ k) x :=
begin
induction k with k p,
reflexivity,
exact tr_ap A succ (succ_add n k) _ ⬝ (fn_tr_eq_tr_fn (succ_add n k) f _)⁻¹ ⬝ ap (@f _) p,
end
definition succ_add_tr_rep_succ {n : } (k : ) (x : A n)
: succ_add_tr_rep f (succ k) x = tr_ap A succ (succ_add n k) _ ⬝
(fn_tr_eq_tr_fn (succ_add n k) f _)⁻¹ ⬝ ap (@f _) (succ_add_tr_rep f k x) :=
by reflexivity
definition code_glue_equiv [constructor] {n : } (k : ) (x y : A n)
: rep f k (f x) = rep f k (f y) ≃ rep f (succ k) x = rep f (succ k) y :=
begin
refine eq_equiv_fn_eq_of_equiv (equiv_ap A (succ_add n k)) _ _ ⬝e _,
apply eq_equiv_eq_closed,
exact succ_add_tr_rep f k x,
exact succ_add_tr_rep f k y
end
theorem code_glue_equiv_ap {n : } {k : } {x y : A n} (p : rep f k (f x) = rep f k (f y))
: code_glue_equiv f (succ k) x y (ap (@f _) p) = ap (@f _) (code_glue_equiv f k x y p) :=
begin
rewrite [▸*, +ap_con, ap_inv, +succ_add_tr_rep_succ, con_inv, inv_con_inv_right, +con.assoc],
apply whisker_left,
rewrite [- +con.assoc], apply whisker_right, rewrite [- +ap_compose'],
note s := (eq_top_of_square (natural_square_tr
(λx, fn_tr_eq_tr_fn (succ_add n k) f x ⬝ (tr_ap A succ (succ_add n k) (f x))⁻¹) p))⁻¹ᵖ,
rewrite [inv_con_inv_right at s, -con.assoc at s], exact s
end
section
parameters {X : → Type} (g : seq_diagram X) (x : X 0)
definition rep_eq_diag ⦃n : ℕ⦄ (y : X n) : seq_diagram (λk, rep g k (rep0 g n x) = rep g k y) :=
proof λk, ap (@g (n + k)) qed
definition code_incl ⦃n : ℕ⦄ (y : X n) : Type :=
seq_colim (rep_eq_diag y)
definition code [unfold 4] : seq_colim g → Type :=
seq_colim.elim_type g code_incl
begin
intro n y,
refine _ ⬝e !shift_equiv⁻¹ᵉ,
fapply seq_colim_equiv,
{ intro k, exact code_glue_equiv g k (rep0 g n x) y },
{ intro k p, exact code_glue_equiv_ap g p }
end
definition encode [unfold 5] (y : seq_colim g) (p : ι g x = y) : code y :=
transport code p (ι' _ 0 idp)
definition decode [unfold 4] (y : seq_colim g) (c : code y) : ι g x = y :=
begin
induction y,
{ esimp at c, exact sorry },
{ exact sorry }
end
definition decode_encode (y : seq_colim g) (p : ι g x = y) : decode y (encode y p) = p :=
sorry
definition encode_decode (y : seq_colim g) (c : code y) : encode y (decode y c) = c :=
sorry
definition seq_colim_eq_equiv_code [constructor] (y : seq_colim g) : (ι g x = y) ≃ code y :=
equiv.MK (encode y) (decode y) (encode_decode y) (decode_encode y)
definition seq_colim_eq {n : } (y : X n) : (ι g x = ι g y) ≃ seq_colim (rep_eq_diag y) :=
proof seq_colim_eq_equiv_code (ι g y) qed
end
definition rep0_eq_diag {X : → Type} (f : seq_diagram X) (x y : X 0)
: seq_diagram (λk, rep0 f k x = rep0 f k y) :=
proof λk, ap (@f (k)) qed
definition seq_colim_eq0 {X : → Type} (f : seq_diagram X) (x y : X 0) :
(ι f x = ι f y) ≃ seq_colim (rep0_eq_diag f x y) :=
begin
refine !seq_colim_eq ⬝e _,
fapply seq_colim_equiv,
{ intro n, exact sorry},
{ intro n p, exact sorry }
end
definition pseq_colim_loop {X : → Type*} (f : Πn, X n →* X (n+1)) :
Ω (pseq_colim f) ≃* pseq_colim (λn, Ω→(f n)) :=
begin
fapply pequiv_of_equiv,
{ refine !seq_colim_eq0 ⬝e _,
fapply seq_colim_equiv,
{ intro n, exact loop_equiv_eq_closed (respect_pt (prep0 f n)) },
{ intro n p, apply prep0_succ_lemma }},
{ exact sorry }
end
-- open succ_str
-- definition pseq_colim_succ_str_change_index' {N : succ_str} {B : N → Type*} (n : N) (m : )
-- (h : Πn, B n →* B (S n)) :
-- pseq_colim (λk, h (n +' (m + succ k))) ≃* pseq_colim (λk, h (S n +' (m + k))) :=
-- sorry
-- definition pseq_colim_succ_str_change_index {N : succ_str} {B : → N → Type*} (n : N)
-- (h : Π(k : ) n, B k n →* B k (S n)) :
-- pseq_colim (λk, h k (n +' succ k)) ≃* pseq_colim (λk, h k (S n +' k)) :=
-- sorry
-- definition pseq_colim_index_eq_general {N : succ_str} (B : N → Type*) (f g : → N) (p : f ~ g)
-- (pf : Πn, S (f n) = f (n+1)) (pg : Πn, S (g n) = g (n+1)) (h : Πn, B n →* B (S n)) :
-- @pseq_colim (λn, B (f n)) (λn, ptransport B (pf n) ∘* h (f n)) ≃*
-- @pseq_colim (λn, B (g n)) (λn, ptransport B (pg n) ∘* h (g n)) :=
-- sorry
end seq_colim