487 lines
18 KiB
Text
487 lines
18 KiB
Text
-- authors: Floris van Doorn, Egbert Rijke
|
||
|
||
import hit.colimit types.fin homotopy.chain_complex .move_to_lib
|
||
open seq_colim pointed algebra eq is_trunc nat is_equiv equiv sigma sigma.ops chain_complex
|
||
|
||
namespace seq_colim
|
||
|
||
definition pseq_colim [constructor] {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) : Type* :=
|
||
pointed.MK (seq_colim f) (@sι _ _ 0 pt)
|
||
|
||
definition inclusion_pt [constructor] {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) (n : ℕ)
|
||
: inclusion f (Point (X n)) = Point (pseq_colim f) :=
|
||
begin
|
||
induction n with n p,
|
||
reflexivity,
|
||
exact (ap (sι f) (respect_pt _))⁻¹ᵖ ⬝ !glue ⬝ p
|
||
end
|
||
|
||
definition pinclusion [constructor] {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) (n : ℕ)
|
||
: X n →* pseq_colim f :=
|
||
pmap.mk (inclusion f) (inclusion_pt f n)
|
||
|
||
definition seq_diagram [reducible] (A : ℕ → Type) : Type := Π⦃n⦄, A n → A (succ n)
|
||
definition pseq_diagram [reducible] (A : ℕ → Type*) : Type := Π⦃n⦄, A n →* A (succ n)
|
||
|
||
structure Seq_diagram : Type :=
|
||
(carrier : ℕ → Type)
|
||
(struct : seq_diagram carrier)
|
||
|
||
definition is_equiseq [reducible] {A : ℕ → Type} (f : seq_diagram A) : Type :=
|
||
forall (n : ℕ), is_equiv (@f n)
|
||
|
||
structure Equi_seq : Type :=
|
||
(carrier : ℕ → Type)
|
||
(maps : seq_diagram carrier)
|
||
(prop : is_equiseq maps)
|
||
|
||
protected abbreviation Mk [constructor] := Seq_diagram.mk
|
||
attribute Seq_diagram.carrier [coercion]
|
||
attribute Seq_diagram.struct [coercion]
|
||
|
||
variables {A : ℕ → Type} (f : seq_diagram A)
|
||
include f
|
||
|
||
definition rep0 [reducible] (k : ℕ) : A 0 → A k :=
|
||
begin
|
||
intro a,
|
||
induction k with k x,
|
||
exact a,
|
||
exact f x
|
||
end
|
||
|
||
definition is_equiv_rep0 [constructor] [H : is_equiseq f] (k : ℕ) :
|
||
is_equiv (rep0 f k) :=
|
||
begin
|
||
induction k with k IH,
|
||
{ apply is_equiv_id},
|
||
{ apply is_equiv_compose (@f _) (rep0 f k)},
|
||
end
|
||
|
||
local attribute is_equiv_rep0 [instance]
|
||
definition rep0_back [reducible] [H : is_equiseq f] (k : ℕ) : A k → A 0 :=
|
||
(rep0 f k)⁻¹
|
||
|
||
section generalized_rep
|
||
variable {n : ℕ}
|
||
|
||
definition rep [reducible] (k : ℕ) (a : A n) : A (n + k) :=
|
||
by induction k with k x; exact a; exact f x
|
||
|
||
definition rep_f (k : ℕ) (a : A n) : pathover A (rep f k (f a)) (succ_add n k) (rep f (succ k) a) :=
|
||
begin
|
||
induction k with k IH,
|
||
{ constructor},
|
||
{ apply pathover_ap, exact apo f IH}
|
||
end
|
||
|
||
definition rep_back [H : is_equiseq f] (k : ℕ) (a : A (n + k)) : A n :=
|
||
begin
|
||
induction k with k g,
|
||
exact a,
|
||
exact g ((@f (n + k))⁻¹ a),
|
||
end
|
||
|
||
definition is_equiv_rep [constructor] [H : is_equiseq f] (k : ℕ) :
|
||
is_equiv (λ (a : A n), rep f k a) :=
|
||
begin
|
||
fapply adjointify,
|
||
{ exact rep_back f k},
|
||
{ induction k with k IH: intro b,
|
||
{ reflexivity},
|
||
unfold rep,
|
||
unfold rep_back,
|
||
fold [rep f k (rep_back f k ((@f (n+k))⁻¹ b))],
|
||
refine ap (@f (n+k)) (IH ((@f (n+k))⁻¹ b)) ⬝ _,
|
||
apply right_inv (@f (n+k))},
|
||
induction k with k IH: intro b,
|
||
exact rfl,
|
||
unfold rep_back,
|
||
unfold rep,
|
||
fold [rep f k b],
|
||
refine _ ⬝ IH b,
|
||
exact ap (rep_back f k) (left_inv (@f (n+k)) (rep f k b))
|
||
end
|
||
|
||
definition rep_rep (k l : ℕ) (a : A n) :
|
||
pathover A (rep f k (rep f l a)) (nat.add_assoc n l k) (rep f (l + k) a) :=
|
||
begin
|
||
induction k with k IH,
|
||
{ constructor},
|
||
{ apply pathover_ap, exact apo f IH}
|
||
end
|
||
|
||
definition f_rep (k : ℕ) (a : A n) : f (rep f k a) = rep f (succ k) a := idp
|
||
end generalized_rep
|
||
|
||
section shift
|
||
|
||
definition shift_diag [unfold_full] : seq_diagram (λn, A (succ n)) :=
|
||
λn a, f a
|
||
|
||
definition kshift_diag [unfold_full] (k : ℕ) : seq_diagram (λn, A (k + n)) :=
|
||
λn a, f a
|
||
|
||
definition kshift_diag' [unfold_full] (k : ℕ) : seq_diagram (λn, A (n + k)) :=
|
||
λn a, transport A (succ_add n k)⁻¹ (f a)
|
||
end shift
|
||
|
||
section constructions
|
||
|
||
omit f
|
||
|
||
definition constant_seq (X : Type) : seq_diagram (λ n, X) :=
|
||
λ n x, x
|
||
|
||
definition seq_diagram_arrow_left [unfold_full] (X : Type) : seq_diagram (λn, X → A n) :=
|
||
λn g x, f (g x)
|
||
|
||
-- inductive finset : ℕ → Type :=
|
||
-- | fin : forall n, finset n → finset (succ n)
|
||
-- | ftop : forall n, finset (succ n)
|
||
|
||
definition seq_diagram_fin : seq_diagram fin :=
|
||
λn, fin.lift_succ
|
||
|
||
definition id0_seq (x y : A 0) : ℕ → Type :=
|
||
λ k, rep0 f k x = rep0 f k y
|
||
|
||
definition id0_seq_diagram (x y : A 0) : seq_diagram (id0_seq f x y) :=
|
||
λ (k : ℕ) (p : rep0 f k x = rep0 f k y), ap (@f k) p
|
||
|
||
definition id_seq (n : ℕ) (x y : A n) : ℕ → Type :=
|
||
λ k, rep f k x = rep f k y
|
||
|
||
definition id_seq_diagram (n : ℕ) (x y : A n) : seq_diagram (id_seq f n x y) :=
|
||
λ (k : ℕ) (p : rep f k x = rep f k y), ap (@f (n + k)) p
|
||
|
||
end constructions
|
||
|
||
section over
|
||
|
||
variable {A}
|
||
variable (P : Π⦃n⦄, A n → Type)
|
||
|
||
definition seq_diagram_over : Type := Π⦃n⦄ {a : A n}, P a → P (f a)
|
||
|
||
variable (g : seq_diagram_over f P)
|
||
variables {f P}
|
||
|
||
definition seq_diagram_of_over [unfold_full] {n : ℕ} (a : A n) :
|
||
seq_diagram (λk, P (rep f k a)) :=
|
||
λk p, g p
|
||
|
||
definition seq_diagram_sigma [unfold 6] : seq_diagram (λn, Σ(x : A n), P x) :=
|
||
λn v, ⟨f v.1, g v.2⟩
|
||
|
||
variables {n : ℕ} (f P)
|
||
|
||
theorem rep_f_equiv [constructor] (a : A n) (k : ℕ) :
|
||
P (rep f k (f a)) ≃ P (rep f (succ k) a) :=
|
||
equiv_apd011 P (rep_f f k a)
|
||
|
||
theorem rep_rep_equiv [constructor] (a : A n) (k l : ℕ) :
|
||
P (rep f (l + k) a) ≃ P (rep f k (rep f l a)) :=
|
||
(equiv_apd011 P (rep_rep f k l a))⁻¹ᵉ
|
||
|
||
end over
|
||
|
||
omit f
|
||
-- do we need to generalize this to the case where the bottom sequence consists of equivalences?
|
||
definition seq_diagram_pi {X : Type} {A : X → ℕ → Type} (g : Π⦃x n⦄, A x n → A x (succ n)) :
|
||
seq_diagram (λn, Πx, A x n) :=
|
||
λn f x, g (f x)
|
||
|
||
namespace ops
|
||
abbreviation ι [constructor] := @inclusion
|
||
abbreviation pι [constructor] {A} (f) {n} := @pinclusion A f n
|
||
abbreviation pι' [constructor] [parsing_only] := @pinclusion
|
||
abbreviation ι' [constructor] [parsing_only] {A} (f n) := @inclusion A f n
|
||
end ops
|
||
open seq_colim.ops
|
||
|
||
definition rep0_glue (k : ℕ) (a : A 0) : ι f (rep0 f k a) = ι f a :=
|
||
begin
|
||
induction k with k IH,
|
||
{ reflexivity},
|
||
{ exact glue f (rep0 f k a) ⬝ IH}
|
||
end
|
||
|
||
definition shift_up [unfold 3] (x : seq_colim f) : seq_colim (shift_diag f) :=
|
||
begin
|
||
induction x,
|
||
{ exact ι _ (f a)},
|
||
{ exact glue _ (f a)}
|
||
end
|
||
|
||
definition shift_down [unfold 3] (x : seq_colim (shift_diag f)) : seq_colim f :=
|
||
begin
|
||
induction x,
|
||
{ exact ι f a},
|
||
{ exact glue f a}
|
||
end
|
||
|
||
definition shift_equiv [constructor] : seq_colim f ≃ seq_colim (shift_diag f) :=
|
||
equiv.MK (shift_up f)
|
||
(shift_down f)
|
||
abstract begin
|
||
intro x, induction x,
|
||
{ esimp, exact glue _ a},
|
||
{ apply eq_pathover,
|
||
rewrite [▸*, ap_id, ap_compose (shift_up f) (shift_down f), ↑shift_down,
|
||
elim_glue],
|
||
apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹}
|
||
end end
|
||
abstract begin
|
||
intro x, induction x,
|
||
{ exact glue _ a},
|
||
{ apply eq_pathover,
|
||
rewrite [▸*, ap_id, ap_compose (shift_down f) (shift_up f), ↑shift_up,
|
||
elim_glue],
|
||
apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹}
|
||
end end
|
||
|
||
definition pshift_equiv [constructor] {A : ℕ → Type*} (f : Πn, A n →* A (succ n)) :
|
||
pseq_colim f ≃* pseq_colim (λn, f (n+1)) :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ apply shift_equiv },
|
||
{ exact ap (ι _) !respect_pt }
|
||
end
|
||
|
||
section functor
|
||
variable {f}
|
||
variables {A' : ℕ → Type} {f' : seq_diagram A'}
|
||
variables (g : Π⦃n⦄, A n → A' n) (p : Π⦃n⦄ (a : A n), g (f a) = f' (g a))
|
||
include p
|
||
|
||
definition seq_colim_functor [unfold 7] : seq_colim f → seq_colim f' :=
|
||
begin
|
||
intro x, induction x with n a n a,
|
||
{ exact ι f' (g a)},
|
||
{ exact ap (ι f') (p a) ⬝ glue f' (g a)}
|
||
end
|
||
|
||
theorem seq_colim_functor_glue {n : ℕ} (a : A n)
|
||
: ap (seq_colim_functor g p) (glue f a) = ap (ι f') (p a) ⬝ glue f' (g a) :=
|
||
!elim_glue
|
||
|
||
omit p
|
||
|
||
definition is_equiv_seq_colim_functor [constructor] [H : Πn, is_equiv (@g n)]
|
||
: is_equiv (seq_colim_functor @g p) :=
|
||
adjointify _ (seq_colim_functor (λn, (@g _)⁻¹) (λn a, inv_commute' g f f' p a))
|
||
abstract begin
|
||
intro x, induction x,
|
||
{ esimp, exact ap (ι _) (right_inv (@g _) a)},
|
||
{ apply eq_pathover,
|
||
rewrite [ap_id, ap_compose (seq_colim_functor g p) (seq_colim_functor _ _),
|
||
seq_colim_functor_glue _ _ a, ap_con, ▸*,
|
||
seq_colim_functor_glue _ _ ((@g _)⁻¹ a), -ap_compose, ↑[function.compose],
|
||
ap_compose (ι _) (@g _),ap_inv_commute',+ap_con, con.assoc,
|
||
+ap_inv, inv_con_cancel_left, con.assoc, -ap_compose],
|
||
apply whisker_tl, apply move_left_of_top, esimp,
|
||
apply transpose, apply square_of_pathover, apply apd}
|
||
end end
|
||
abstract begin
|
||
intro x, induction x,
|
||
{ esimp, exact ap (ι _) (left_inv (@g _) a)},
|
||
{ apply eq_pathover,
|
||
rewrite [ap_id, ap_compose (seq_colim_functor _ _) (seq_colim_functor _ _),
|
||
seq_colim_functor_glue _ _ a, ap_con,▸*, seq_colim_functor_glue _ _ (g a),
|
||
-ap_compose, ↑[function.compose], ap_compose (ι f) (@g _)⁻¹, inv_commute'_fn,
|
||
+ap_con, con.assoc, con.assoc, +ap_inv, con_inv_cancel_left, -ap_compose],
|
||
apply whisker_tl, apply move_left_of_top, esimp,
|
||
apply transpose, apply square_of_pathover, apply apd}
|
||
end end
|
||
|
||
definition seq_colim_equiv [constructor] (g : Π{n}, A n ≃ A' n)
|
||
(p : Π⦃n⦄ (a : A n), g (f a) = f' (g a)) : seq_colim f ≃ seq_colim f' :=
|
||
equiv.mk _ (is_equiv_seq_colim_functor @g p)
|
||
|
||
definition seq_colim_rec_unc [unfold 4] {P : seq_colim f → Type}
|
||
(v : Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
|
||
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a)
|
||
: Π(x : seq_colim f), P x :=
|
||
by induction v with Pincl Pglue; exact seq_colim.rec f Pincl Pglue
|
||
|
||
definition is_equiv_seq_colim_rec (P : seq_colim f → Type) :
|
||
is_equiv (seq_colim_rec_unc :
|
||
(Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
|
||
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a)
|
||
→ (Π (aa : seq_colim f), P aa)) :=
|
||
begin
|
||
fapply adjointify,
|
||
{ intro s, exact ⟨λn a, s (ι f a), λn a, apd s (glue f a)⟩},
|
||
{ intro s, apply eq_of_homotopy, intro x, induction x,
|
||
{ reflexivity},
|
||
{ apply eq_pathover_dep, esimp, apply hdeg_squareover, apply rec_glue}},
|
||
{ intro v, induction v with Pincl Pglue, fapply ap (sigma.mk _),
|
||
apply eq_of_homotopy2, intros n a, apply rec_glue},
|
||
end
|
||
|
||
/- universal property -/
|
||
definition equiv_seq_colim_rec (P : seq_colim f → Type) :
|
||
(Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
|
||
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) ≃ (Π (aa : seq_colim f), P aa) :=
|
||
equiv.mk _ !is_equiv_seq_colim_rec
|
||
end functor
|
||
|
||
definition pseq_colim_pequiv [constructor] {A A' : ℕ → Type*} {f : Π{n}, A n →* A (n+1)}
|
||
{f' : Π{n}, A' n →* A' (n+1)} (g : Π{n}, A n ≃* A' n)
|
||
(p : Π⦃n⦄, g ∘* f ~ f' ∘* g) : pseq_colim @f ≃* pseq_colim @f' :=
|
||
pequiv_of_equiv (seq_colim_equiv @g p) (ap (ι _) (respect_pt g))
|
||
|
||
definition seq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Π⦃n⦄, A n → A (n+1)}
|
||
(p : Π⦃n⦄ (a : A n), f a = f' a) : seq_colim f ≃ seq_colim f' :=
|
||
seq_colim_equiv (λn, erfl) p
|
||
|
||
definition pseq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Π{n}, A n →* A (n+1)}
|
||
(p : Π⦃n⦄, f ~ f') : pseq_colim @f ≃* pseq_colim @f' :=
|
||
pseq_colim_pequiv (λn, pequiv.rfl) p
|
||
|
||
definition pseq_colim.elim [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)}
|
||
(g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~ g n) : pseq_colim @f →* B :=
|
||
begin
|
||
fapply pmap.mk,
|
||
{ intro x, induction x with n a n a,
|
||
{ exact g n a },
|
||
{ exact p n a }},
|
||
{ esimp, apply respect_pt }
|
||
end
|
||
|
||
definition prep0 [constructor] {A : ℕ → Type*} (f : pseq_diagram A) (k : ℕ) : A 0 →* A k :=
|
||
pmap.mk (rep0 (λn x, f x) k)
|
||
begin induction k with k p, reflexivity, exact ap (@f k) p ⬝ !respect_pt end
|
||
|
||
definition respect_pt_prep0_succ {A : ℕ → Type*} (f : pseq_diagram A) (k : ℕ)
|
||
: respect_pt (prep0 f (succ k)) = ap (@f k) (respect_pt (prep0 f k)) ⬝ respect_pt (@f k) :=
|
||
by reflexivity
|
||
|
||
theorem prep0_succ_lemma {A : ℕ → Type*} (f : pseq_diagram A) (n : ℕ)
|
||
(p : rep0 (λn x, f x) n pt = rep0 (λn x, f x) n pt)
|
||
(q : prep0 f n (Point (A 0)) = Point (A n))
|
||
: loop_equiv_eq_closed (ap (@f n) q ⬝ respect_pt (@f n))
|
||
(ap (@f n) p) = Ω→(@f n) (loop_equiv_eq_closed q p) :=
|
||
by rewrite [▸*, con_inv, ↑ap1_gen, +ap_con, ap_inv, +con.assoc]
|
||
|
||
definition succ_add_tr_rep {n : ℕ} (k : ℕ) (x : A n)
|
||
: transport A (succ_add n k) (rep f k (f x)) = rep f (succ k) x :=
|
||
begin
|
||
induction k with k p,
|
||
reflexivity,
|
||
exact tr_ap A succ (succ_add n k) _ ⬝ (fn_tr_eq_tr_fn (succ_add n k) f _)⁻¹ ⬝ ap (@f _) p,
|
||
end
|
||
|
||
definition succ_add_tr_rep_succ {n : ℕ} (k : ℕ) (x : A n)
|
||
: succ_add_tr_rep f (succ k) x = tr_ap A succ (succ_add n k) _ ⬝
|
||
(fn_tr_eq_tr_fn (succ_add n k) f _)⁻¹ ⬝ ap (@f _) (succ_add_tr_rep f k x) :=
|
||
by reflexivity
|
||
|
||
definition code_glue_equiv [constructor] {n : ℕ} (k : ℕ) (x y : A n)
|
||
: rep f k (f x) = rep f k (f y) ≃ rep f (succ k) x = rep f (succ k) y :=
|
||
begin
|
||
refine eq_equiv_fn_eq_of_equiv (equiv_ap A (succ_add n k)) _ _ ⬝e _,
|
||
apply eq_equiv_eq_closed,
|
||
exact succ_add_tr_rep f k x,
|
||
exact succ_add_tr_rep f k y
|
||
end
|
||
|
||
theorem code_glue_equiv_ap {n : ℕ} {k : ℕ} {x y : A n} (p : rep f k (f x) = rep f k (f y))
|
||
: code_glue_equiv f (succ k) x y (ap (@f _) p) = ap (@f _) (code_glue_equiv f k x y p) :=
|
||
begin
|
||
rewrite [▸*, +ap_con, ap_inv, +succ_add_tr_rep_succ, con_inv, inv_con_inv_right, +con.assoc],
|
||
apply whisker_left,
|
||
rewrite [- +con.assoc], apply whisker_right, rewrite [- +ap_compose'],
|
||
note s := (eq_top_of_square (natural_square_tr
|
||
(λx, fn_tr_eq_tr_fn (succ_add n k) f x ⬝ (tr_ap A succ (succ_add n k) (f x))⁻¹) p))⁻¹ᵖ,
|
||
rewrite [inv_con_inv_right at s, -con.assoc at s], exact s
|
||
end
|
||
|
||
section
|
||
parameters {X : ℕ → Type} (g : seq_diagram X) (x : X 0)
|
||
|
||
definition rep_eq_diag ⦃n : ℕ⦄ (y : X n) : seq_diagram (λk, rep g k (rep0 g n x) = rep g k y) :=
|
||
proof λk, ap (@g (n + k)) qed
|
||
|
||
definition code_incl ⦃n : ℕ⦄ (y : X n) : Type :=
|
||
seq_colim (rep_eq_diag y)
|
||
|
||
definition code [unfold 4] : seq_colim g → Type :=
|
||
seq_colim.elim_type g code_incl
|
||
begin
|
||
intro n y,
|
||
refine _ ⬝e !shift_equiv⁻¹ᵉ,
|
||
fapply seq_colim_equiv,
|
||
{ intro k, exact code_glue_equiv g k (rep0 g n x) y },
|
||
{ intro k p, exact code_glue_equiv_ap g p }
|
||
end
|
||
|
||
definition encode [unfold 5] (y : seq_colim g) (p : ι g x = y) : code y :=
|
||
transport code p (ι' _ 0 idp)
|
||
|
||
definition decode [unfold 4] (y : seq_colim g) (c : code y) : ι g x = y :=
|
||
begin
|
||
induction y,
|
||
{ esimp at c, exact sorry },
|
||
{ exact sorry }
|
||
end
|
||
|
||
definition decode_encode (y : seq_colim g) (p : ι g x = y) : decode y (encode y p) = p :=
|
||
sorry
|
||
|
||
definition encode_decode (y : seq_colim g) (c : code y) : encode y (decode y c) = c :=
|
||
sorry
|
||
|
||
definition seq_colim_eq_equiv_code [constructor] (y : seq_colim g) : (ι g x = y) ≃ code y :=
|
||
equiv.MK (encode y) (decode y) (encode_decode y) (decode_encode y)
|
||
|
||
definition seq_colim_eq {n : ℕ} (y : X n) : (ι g x = ι g y) ≃ seq_colim (rep_eq_diag y) :=
|
||
proof seq_colim_eq_equiv_code (ι g y) qed
|
||
|
||
end
|
||
|
||
definition rep0_eq_diag {X : ℕ → Type} (f : seq_diagram X) (x y : X 0)
|
||
: seq_diagram (λk, rep0 f k x = rep0 f k y) :=
|
||
proof λk, ap (@f (k)) qed
|
||
|
||
definition seq_colim_eq0 {X : ℕ → Type} (f : seq_diagram X) (x y : X 0) :
|
||
(ι f x = ι f y) ≃ seq_colim (rep0_eq_diag f x y) :=
|
||
begin
|
||
refine !seq_colim_eq ⬝e _,
|
||
fapply seq_colim_equiv,
|
||
{ intro n, exact sorry},
|
||
{ intro n p, exact sorry }
|
||
end
|
||
|
||
|
||
definition pseq_colim_loop {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) :
|
||
Ω (pseq_colim f) ≃* pseq_colim (λn, Ω→(f n)) :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ refine !seq_colim_eq0 ⬝e _,
|
||
fapply seq_colim_equiv,
|
||
{ intro n, exact loop_equiv_eq_closed (respect_pt (prep0 f n)) },
|
||
{ intro n p, apply prep0_succ_lemma }},
|
||
{ exact sorry }
|
||
end
|
||
|
||
-- open succ_str
|
||
-- definition pseq_colim_succ_str_change_index' {N : succ_str} {B : N → Type*} (n : N) (m : ℕ)
|
||
-- (h : Πn, B n →* B (S n)) :
|
||
-- pseq_colim (λk, h (n +' (m + succ k))) ≃* pseq_colim (λk, h (S n +' (m + k))) :=
|
||
-- sorry
|
||
|
||
-- definition pseq_colim_succ_str_change_index {N : succ_str} {B : ℕ → N → Type*} (n : N)
|
||
-- (h : Π(k : ℕ) n, B k n →* B k (S n)) :
|
||
-- pseq_colim (λk, h k (n +' succ k)) ≃* pseq_colim (λk, h k (S n +' k)) :=
|
||
-- sorry
|
||
|
||
-- definition pseq_colim_index_eq_general {N : succ_str} (B : N → Type*) (f g : ℕ → N) (p : f ~ g)
|
||
-- (pf : Πn, S (f n) = f (n+1)) (pg : Πn, S (g n) = g (n+1)) (h : Πn, B n →* B (S n)) :
|
||
-- @pseq_colim (λn, B (f n)) (λn, ptransport B (pf n) ∘* h (f n)) ≃*
|
||
-- @pseq_colim (λn, B (g n)) (λn, ptransport B (pg n) ∘* h (g n)) :=
|
||
-- sorry
|
||
|
||
|
||
end seq_colim
|