00e01fd2a6
also develop library for equality reasoning on pointed homotopies. Also do the renamings like homomorphism -> is_mul_hom
1017 lines
39 KiB
Text
1017 lines
39 KiB
Text
-- definitions, theorems and attributes which should be moved to files in the HoTT library
|
||
|
||
import homotopy.sphere2 homotopy.cofiber homotopy.wedge
|
||
|
||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||
is_trunc function sphere
|
||
|
||
attribute equiv_unit_of_is_contr [constructor]
|
||
attribute pwedge pushout.symm pushout.equiv pushout.is_equiv_functor [constructor]
|
||
attribute is_succ_add_right is_succ_add_left is_succ_bit0 [constructor]
|
||
attribute pushout.functor [unfold 16]
|
||
attribute pushout.transpose [unfold 6]
|
||
attribute ap_eq_apd10 [unfold 5]
|
||
attribute eq_equiv_eq_symm [constructor]
|
||
|
||
|
||
namespace eq
|
||
|
||
protected definition homotopy.rfl [reducible] [unfold_full] {A B : Type} {f : A → B} : f ~ f :=
|
||
homotopy.refl f
|
||
|
||
definition compose_id {A B : Type} (f : A → B) : f ∘ id ~ f :=
|
||
by reflexivity
|
||
|
||
definition id_compose {A B : Type} (f : A → B) : id ∘ f ~ f :=
|
||
by reflexivity
|
||
|
||
-- move
|
||
definition ap_eq_ap011 {A B C X : Type} (f : A → B → C) (g : X → A) (h : X → B) {x x' : X}
|
||
(p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) :=
|
||
by induction p; reflexivity
|
||
|
||
definition ap_is_weakly_constant {A B : Type} {f : A → B}
|
||
(h : is_weakly_constant f) {a a' : A} (p : a = a') : ap f p = (h a a)⁻¹ ⬝ h a a' :=
|
||
by induction p; exact !con.left_inv⁻¹
|
||
|
||
definition ap_is_constant_idp {A B : Type} {f : A → B} {b : B} (p : Πa, f a = b) {a : A} (q : a = a)
|
||
(r : q = idp) : ap_is_constant p q = ap02 f r ⬝ (con.right_inv (p a))⁻¹ :=
|
||
by cases r; exact !idp_con⁻¹
|
||
|
||
definition con_right_inv_natural {A : Type} {a a' : A} {p p' : a = a'} (q : p = p') :
|
||
con.right_inv p = q ◾ q⁻² ⬝ con.right_inv p' :=
|
||
by induction q; induction p; reflexivity
|
||
|
||
definition whisker_right_ap {A B : Type} {a a' : A}{b₁ b₂ b₃ : B} (q : b₂ = b₃) (f : A → b₁ = b₂)
|
||
(p : a = a') : whisker_right q (ap f p) = ap (λa, f a ⬝ q) p :=
|
||
by induction p; reflexivity
|
||
|
||
end eq open eq
|
||
|
||
namespace cofiber
|
||
|
||
-- replace the one in homotopy.cofiber, which has an superfluous argument
|
||
protected theorem elim_glue' {A B : Type} {f : A → B} {P : Type} (Pbase : P) (Pcod : B → P)
|
||
(Pglue : Π (x : A), Pbase = Pcod (f x)) (a : A)
|
||
: ap (cofiber.elim Pbase Pcod Pglue) (cofiber.glue a) = Pglue a :=
|
||
!pushout.elim_glue
|
||
|
||
end cofiber
|
||
|
||
namespace wedge
|
||
open pushout unit
|
||
protected definition glue (A B : Type*) : inl pt = inr pt :> wedge A B :=
|
||
pushout.glue ⋆
|
||
|
||
end wedge
|
||
|
||
namespace pointed
|
||
|
||
definition phomotopy_of_eq_idp {A B : Type*} (f : A →* B) : phomotopy_of_eq idp = phomotopy.refl f :=
|
||
idp
|
||
|
||
definition to_fun_pequiv_trans {X Y Z : Type*} (f : X ≃* Y) (g :Y ≃* Z) : f ⬝e* g ~ g ∘ f :=
|
||
λx, idp
|
||
|
||
-- replace pcompose2 with this
|
||
definition pcompose2' {A B C : Type*} {g g' : B →* C} {f f' : A →* B} (q : g ~* g') (p : f ~* f') :
|
||
g ∘* f ~* g' ∘* f' :=
|
||
pwhisker_right f q ⬝* pwhisker_left g' p
|
||
|
||
infixr ` ◾*' `:80 := pcompose2'
|
||
|
||
definition phomotopy_of_homotopy {X Y : Type*} {f g : X →* Y} (h : f ~ g) [is_set Y] : f ~* g :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ exact h },
|
||
{ apply is_set.elim }
|
||
end
|
||
|
||
-- /- the pointed type of (unpointed) dependent maps -/
|
||
-- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* :=
|
||
-- pointed.mk' (Πa, P a)
|
||
|
||
-- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) :=
|
||
-- pequiv_of_equiv eq_equiv_homotopy rfl
|
||
|
||
-- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a)
|
||
-- : pupi P ≃* pupi Q :=
|
||
-- pequiv_of_equiv (pi_equiv_pi_right g)
|
||
-- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
|
||
|
||
/-
|
||
Squares of pointed homotopies
|
||
|
||
We treat expressions of the form
|
||
k ∘* f ~* g ∘* h
|
||
as squares, where f is the top, g is the bottom, h is the left face and k is the right face.
|
||
Then the following are operations on squares
|
||
-/
|
||
|
||
definition psquare {A B C D : Type*} (f : A →* B) (g : C →* D) (h : A ≃* C) (k : B ≃* D) : Type :=
|
||
k ∘* f ~* g ∘* h
|
||
|
||
definition phcompose {A B C D B' D' : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D}
|
||
{f' : B →* B'} {g' : D →* D'} {k' : B' →* D'} (p : k ∘* f ~* g ∘* h)
|
||
(q : k' ∘* f' ~* g' ∘* k) : k' ∘* (f' ∘* f) ~* (g' ∘* g) ∘* h :=
|
||
!passoc⁻¹* ⬝* pwhisker_right f q ⬝* !passoc ⬝* pwhisker_left g' p ⬝* !passoc⁻¹*
|
||
|
||
definition pvcompose {A B C D C' D' : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D}
|
||
{g' : C' →* D'} {h' : C →* C'} {k' : D →* D'} (p : k ∘* f ~* g ∘* h)
|
||
(q : k' ∘* g ~* g' ∘* h') : (k' ∘* k) ∘* f ~* g' ∘* (h' ∘* h) :=
|
||
(phcompose p⁻¹* q⁻¹*)⁻¹*
|
||
|
||
definition phinverse {A B C D : Type*} {f : A ≃* B} {g : C ≃* D} {h : A →* C} {k : B →* D}
|
||
(p : k ∘* f ~* g ∘* h) : h ∘* f⁻¹ᵉ* ~* g⁻¹ᵉ* ∘* k :=
|
||
!pid_pcompose⁻¹* ⬝* pwhisker_right _ (pleft_inv g)⁻¹* ⬝* !passoc ⬝*
|
||
pwhisker_left _
|
||
(!passoc⁻¹* ⬝* pwhisker_right _ p⁻¹* ⬝* !passoc ⬝* pwhisker_left _ !pright_inv ⬝* !pcompose_pid)
|
||
|
||
definition pvinverse {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A ≃* C} {k : B ≃* D}
|
||
(p : k ∘* f ~* g ∘* h) : k⁻¹ᵉ* ∘* g ~* f ∘* h⁻¹ᵉ* :=
|
||
(phinverse p⁻¹*)⁻¹*
|
||
|
||
infix ` ⬝h* `:73 := phcompose
|
||
infix ` ⬝v* `:73 := pvcompose
|
||
postfix `⁻¹ʰ*`:(max+1) := phinverse
|
||
postfix `⁻¹ᵛ*`:(max+1) := pvinverse
|
||
|
||
definition ap1_psquare {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D}
|
||
(p : k ∘* f ~* g ∘* h) : Ω→ k ∘* Ω→ f ~* Ω→ g ∘* Ω→ h :=
|
||
!ap1_pcompose⁻¹* ⬝* ap1_phomotopy p ⬝* !ap1_pcompose
|
||
|
||
definition apn_psquare (n : ℕ) {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D}
|
||
(p : k ∘* f ~* g ∘* h) : Ω→[n] k ∘* Ω→[n] f ~* Ω→[n] g ∘* Ω→[n] h :=
|
||
!apn_pcompose⁻¹* ⬝* apn_phomotopy n p ⬝* !apn_pcompose
|
||
|
||
definition ptrunc_functor_psquare (n : ℕ₋₂) {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A →* C}
|
||
{k : B →* D} (p : k ∘* f ~* g ∘* h) :
|
||
ptrunc_functor n k ∘* ptrunc_functor n f ~* ptrunc_functor n g ∘* ptrunc_functor n h :=
|
||
!ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose
|
||
|
||
definition homotopy_group_homomorphism_psquare (n : ℕ) [H : is_succ n] {A B C D : Type*}
|
||
{f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D} (p : k ∘* f ~* g ∘* h) :
|
||
π→g[n] k ∘ π→g[n] f ~ π→g[n] g ∘ π→g[n] h :=
|
||
begin
|
||
induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p))
|
||
end
|
||
|
||
definition htyhcompose {A B C D B' D' : Type} {f : A → B} {g : C → D} {h : A → C} {k : B → D}
|
||
{f' : B → B'} {g' : D → D'} {k' : B' → D'} (p : k ∘ f ~ g ∘ h)
|
||
(q : k' ∘ f' ~ g' ∘ k) : k' ∘ (f' ∘ f) ~ (g' ∘ g) ∘ h :=
|
||
λa, q (f a) ⬝ ap g' (p a)
|
||
|
||
definition htyhinverse {A B C D : Type} {f : A ≃ B} {g : C ≃ D} {h : A → C} {k : B → D}
|
||
(p : k ∘ f ~ g ∘ h) : h ∘ f⁻¹ᵉ ~ g⁻¹ᵉ ∘ k :=
|
||
λb, eq_inv_of_eq ((p (f⁻¹ᵉ b))⁻¹ ⬝ ap k (to_right_inv f b))
|
||
|
||
definition phomotopy_of_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
|
||
phomotopy_of_eq (eq_of_phomotopy p) = p :=
|
||
to_right_inv (pmap_eq_equiv f g) p
|
||
|
||
definition ap_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) :
|
||
ap (λf : A →* B, f a) (eq_of_phomotopy p) = p a :=
|
||
ap010 to_homotopy (phomotopy_of_eq_of_phomotopy p) a
|
||
|
||
definition phomotopy_rec_on_eq [recursor] {A B : Type*} {f g : A →* B}
|
||
{Q : (f ~* g) → Type} (p : f ~* g) (H : Π(q : f = g), Q (phomotopy_of_eq q)) : Q p :=
|
||
phomotopy_of_eq_of_phomotopy p ▸ H (eq_of_phomotopy p)
|
||
|
||
definition phomotopy_rec_on_idp [recursor] {A B : Type*} {f : A →* B}
|
||
{Q : Π{g}, (f ~* g) → Type} {g : A →* B} (p : f ~* g) (H : Q (phomotopy.refl f)) : Q p :=
|
||
begin
|
||
induction p using phomotopy_rec_on_eq,
|
||
induction q, exact H
|
||
end
|
||
|
||
definition phomotopy_rec_on_eq_phomotopy_of_eq {A B : Type*} {f g: A →* B}
|
||
{Q : (f ~* g) → Type} (p : f = g) (H : Π(q : f = g), Q (phomotopy_of_eq q)) :
|
||
phomotopy_rec_on_eq (phomotopy_of_eq p) H = H p :=
|
||
begin
|
||
unfold phomotopy_rec_on_eq,
|
||
refine ap (λp, p ▸ _) !adj ⬝ _,
|
||
refine !tr_compose⁻¹ ⬝ _,
|
||
apply apdt
|
||
end
|
||
|
||
definition phomotopy_rec_on_idp_refl {A B : Type*} (f : A →* B)
|
||
{Q : Π{g}, (f ~* g) → Type} (H : Q (phomotopy.refl f)) :
|
||
phomotopy_rec_on_idp phomotopy.rfl H = H :=
|
||
!phomotopy_rec_on_eq_phomotopy_of_eq
|
||
|
||
definition phomotopy_eq_equiv {A B : Type*} {f g : A →* B} (h k : f ~* g) :
|
||
(h = k) ≃ Σ(p : to_homotopy h ~ to_homotopy k),
|
||
whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h :=
|
||
calc
|
||
h = k ≃ phomotopy.sigma_char _ _ h = phomotopy.sigma_char _ _ k
|
||
: eq_equiv_fn_eq (phomotopy.sigma_char f g) h k
|
||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||
pathover (λp, p pt ⬝ respect_pt g = respect_pt f) (to_homotopy_pt h) p (to_homotopy_pt k)
|
||
: sigma_eq_equiv _ _
|
||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||
to_homotopy_pt h = ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k
|
||
: sigma_equiv_sigma_right (λp, eq_pathover_equiv_Fl p (to_homotopy_pt h) (to_homotopy_pt k))
|
||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||
ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k = to_homotopy_pt h
|
||
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||
whisker_right (respect_pt g) (apd10 p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
|
||
: sigma_equiv_sigma_right (λp, equiv_eq_closed_left _ (whisker_right _ !whisker_right_ap⁻¹))
|
||
... ≃ Σ(p : to_homotopy h ~ to_homotopy k),
|
||
whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
|
||
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
||
|
||
definition phomotopy_eq {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k)
|
||
(q : whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h) : h = k :=
|
||
to_inv (phomotopy_eq_equiv h k) ⟨p, q⟩
|
||
|
||
definition phomotopy_eq' {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k)
|
||
(q : square (to_homotopy_pt h) (to_homotopy_pt k) (whisker_right (respect_pt g) (p pt)) idp) : h = k :=
|
||
phomotopy_eq p (eq_of_square q)⁻¹
|
||
|
||
definition eq_of_phomotopy_refl {X Y : Type*} (f : X →* Y) :
|
||
eq_of_phomotopy (phomotopy.refl f) = idpath f :=
|
||
begin
|
||
apply to_inv_eq_of_eq, reflexivity
|
||
end
|
||
|
||
definition pwhisker_left_refl {A B C : Type*} (g : B →* C) (f : A →* B) :
|
||
pwhisker_left g (phomotopy.refl f) = phomotopy.refl (g ∘* f) :=
|
||
begin
|
||
induction A with A a₀, induction B with B b₀, induction C with C c₀,
|
||
induction f with f f₀, induction g with g g₀,
|
||
esimp at *, induction g₀, induction f₀, reflexivity
|
||
end
|
||
|
||
definition pwhisker_right_refl {A B C : Type*} (f : A →* B) (g : B →* C) :
|
||
pwhisker_right f (phomotopy.refl g) = phomotopy.refl (g ∘* f) :=
|
||
begin
|
||
induction A with A a₀, induction B with B b₀, induction C with C c₀,
|
||
induction f with f f₀, induction g with g g₀,
|
||
esimp at *, induction g₀, induction f₀, reflexivity
|
||
end
|
||
|
||
definition trans_refl {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* phomotopy.refl g = p :=
|
||
begin
|
||
induction A with A a₀, induction B with B b₀,
|
||
induction f with f f₀, induction g with g g₀, induction p with p p₀,
|
||
esimp at *, induction g₀, induction p₀,
|
||
reflexivity
|
||
end
|
||
|
||
definition refl_trans {A B : Type*} {f g : A →* B} (p : f ~* g) : phomotopy.refl f ⬝* p = p :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
induction A with A a₀, induction B with B b₀,
|
||
induction f with f f₀, esimp at *, induction f₀,
|
||
reflexivity
|
||
end
|
||
|
||
definition trans_assoc {A B : Type*} {f g h i : A →* B} (p : f ~* g) (q : g ~* h)
|
||
(r : h ~* i) : p ⬝* q ⬝* r = p ⬝* (q ⬝* r) :=
|
||
begin
|
||
induction r using phomotopy_rec_on_idp,
|
||
induction q using phomotopy_rec_on_idp,
|
||
induction p using phomotopy_rec_on_idp,
|
||
induction A with A a₀, induction B with B b₀,
|
||
induction f with f f₀, esimp at *, induction f₀,
|
||
reflexivity
|
||
end
|
||
|
||
definition trans2 {A B : Type*} {f g h : A →* B} {p p' : f ~* g} {q q' : g ~* h}
|
||
(r : p = p') (s : q = q') : p ⬝* q = p' ⬝* q' :=
|
||
ap011 phomotopy.trans r s
|
||
|
||
infixl ` ◾** `:80 := pointed.trans2
|
||
|
||
definition phwhisker_left {A B : Type*} {f g h : A →* B} (p : f ~* g) {q q' : g ~* h}
|
||
(s : q = q') : p ⬝* q = p ⬝* q' :=
|
||
idp ◾** s
|
||
|
||
definition phwhisker_right {A B : Type*} {f g h : A →* B} {p p' : f ~* g} (q : g ~* h)
|
||
(r : p = p') : p ⬝* q = p' ⬝* q :=
|
||
r ◾** idp
|
||
|
||
definition phomotopy_of_eq_con {A B : Type*} {f g h : A →* B} (p : f = g) (q : g = h) :
|
||
phomotopy_of_eq (p ⬝ q) = phomotopy_of_eq p ⬝* phomotopy_of_eq q :=
|
||
begin induction q, induction p, exact !trans_refl⁻¹ end
|
||
|
||
definition pcompose_eq_of_phomotopy {A B C : Type*} (g : B →* C) {f f' : A →* B} (H : f ~* f') :
|
||
ap (λf, g ∘* f) (eq_of_phomotopy H) = eq_of_phomotopy (pwhisker_left g H) :=
|
||
begin
|
||
induction H using phomotopy_rec_on_idp,
|
||
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
|
||
exact !pwhisker_left_refl⁻¹
|
||
end
|
||
|
||
definition respect_pt_pcompose {A B C : Type*} (g : B →* C) (f : A →* B)
|
||
: respect_pt (g ∘* f) = ap g (respect_pt f) ⬝ respect_pt g :=
|
||
idp
|
||
|
||
definition phomotopy_mk_ppmap [constructor] {A B C : Type*} {f g : A →* ppmap B C} (p : Πa, f a ~* g a)
|
||
(q : p pt ⬝* phomotopy_of_eq (respect_pt g) = phomotopy_of_eq (respect_pt f))
|
||
: f ~* g :=
|
||
begin
|
||
apply phomotopy.mk (λa, eq_of_phomotopy (p a)),
|
||
apply eq_of_fn_eq_fn (pmap_eq_equiv _ _), esimp [pmap_eq_equiv],
|
||
refine !phomotopy_of_eq_con ⬝ _,
|
||
refine ap (λx, x ⬝* _) !phomotopy_of_eq_of_phomotopy ⬝ q,
|
||
end
|
||
|
||
definition pcompose_pconst_pcompose {A B C D : Type*} (h : C →* D) (g : B →* C) :
|
||
pcompose_pconst (h ∘* g) =
|
||
passoc h g (pconst A B) ⬝* (pwhisker_left h (pcompose_pconst g) ⬝* pcompose_pconst h) :=
|
||
begin
|
||
fapply phomotopy_eq,
|
||
{ intro a, exact !idp_con⁻¹ },
|
||
{ induction h with h h₀, induction g with g g₀, induction D with D d₀, induction C with C c₀,
|
||
esimp at *, induction g₀, induction h₀, reflexivity }
|
||
end
|
||
|
||
definition ppcompose_left_pcompose [constructor] {A B C D : Type*} (h : C →* D) (g : B →* C) :
|
||
@ppcompose_left A _ _ (h ∘* g) ~* ppcompose_left h ∘* ppcompose_left g :=
|
||
begin
|
||
fapply phomotopy_mk_ppmap,
|
||
{ exact passoc h g },
|
||
{ esimp,
|
||
refine ap (λx, _ ⬝* x) (!phomotopy_of_eq_con ⬝ ap011 phomotopy.trans
|
||
(ap phomotopy_of_eq !pcompose_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy)
|
||
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
|
||
exact (pcompose_pconst_pcompose h g)⁻¹ }
|
||
end
|
||
|
||
definition pcompose_pconst_phomotopy {A B C : Type*} {f f' : B →* C} (p : f ~* f') :
|
||
pwhisker_right (pconst A B) p ⬝* pcompose_pconst f' = pcompose_pconst f :=
|
||
begin
|
||
fapply phomotopy_eq,
|
||
{ intro a, exact to_homotopy_pt p },
|
||
{ induction p using phomotopy_rec_on_idp, induction C with C c₀, induction f with f f₀,
|
||
esimp at *, induction f₀, reflexivity }
|
||
end
|
||
|
||
definition ppcompose_left_phomotopy [constructor] {A B C : Type*} {g g' : B →* C} (p : g ~* g') :
|
||
@ppcompose_left A _ _ g ~* ppcompose_left g' :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
reflexivity
|
||
end
|
||
/- a more explicit proof of ppcompose_left_phomotopy, which might be useful if we need to prove properties about it
|
||
-/
|
||
-- fapply phomotopy_mk_ppmap,
|
||
-- { intro f, exact pwhisker_right f p },
|
||
-- { refine ap (λx, _ ⬝* x) !phomotopy_of_eq_of_phomotopy ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
|
||
-- exact pcompose_pconst_phomotopy p }
|
||
|
||
definition ppcompose_left_phomotopy_refl {A B C : Type*} (g : B →* C) :
|
||
ppcompose_left_phomotopy (phomotopy.refl g) = phomotopy.refl (@ppcompose_left A _ _ g) :=
|
||
!phomotopy_rec_on_idp_refl
|
||
|
||
end pointed open pointed
|
||
|
||
namespace trunc
|
||
|
||
-- TODO: redefine loopn_ptrunc_pequiv
|
||
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) :
|
||
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
|
||
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
|
||
begin
|
||
revert n, induction k with k IH: intro n,
|
||
{ reflexivity },
|
||
{ exact sorry }
|
||
end
|
||
|
||
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
|
||
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id }
|
||
end
|
||
|
||
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
|
||
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
|
||
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ apply idp_con }
|
||
end
|
||
|
||
end trunc
|
||
|
||
namespace is_equiv
|
||
|
||
definition inv_homotopy_inv {A B : Type} {f g : A → B} [is_equiv f] [is_equiv g] (p : f ~ g)
|
||
: f⁻¹ ~ g⁻¹ :=
|
||
λb, (left_inv g (f⁻¹ b))⁻¹ ⬝ ap g⁻¹ ((p (f⁻¹ b))⁻¹ ⬝ right_inv f b)
|
||
|
||
definition to_inv_homotopy_to_inv {A B : Type} {f g : A ≃ B} (p : f ~ g) : f⁻¹ᵉ ~ g⁻¹ᵉ :=
|
||
inv_homotopy_inv p
|
||
|
||
end is_equiv
|
||
|
||
namespace prod
|
||
|
||
definition pprod_functor [constructor] {A B C D : Type*} (f : A →* C) (g : B →* D) : A ×* B →* C ×* D :=
|
||
pmap.mk (prod_functor f g) (prod_eq (respect_pt f) (respect_pt g))
|
||
|
||
open prod.ops
|
||
definition prod_pathover_equiv {A : Type} {B C : A → Type} {a a' : A} (p : a = a')
|
||
(x : B a × C a) (x' : B a' × C a') : x =[p] x' ≃ x.1 =[p] x'.1 × x.2 =[p] x'.2 :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro q, induction q, constructor: constructor },
|
||
{ intro v, induction v with q r, exact prod_pathover _ _ _ q r },
|
||
{ intro v, induction v with q r, induction x with b c, induction x' with b' c',
|
||
esimp at *, induction q, refine idp_rec_on r _, reflexivity },
|
||
{ intro q, induction q, induction x with b c, reflexivity }
|
||
end
|
||
|
||
end prod open prod
|
||
|
||
namespace sigma
|
||
|
||
-- set_option pp.notation false
|
||
-- set_option pp.binder_types true
|
||
|
||
open sigma.ops
|
||
definition pathover_pr1 [unfold 9] {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
||
{a a' : A} {p : a = a'} {x : Σb, C a b} {x' : Σb', C a' b'}
|
||
(q : x =[p] x') : x.1 =[p] x'.1 :=
|
||
begin induction q, constructor end
|
||
|
||
definition is_prop_elimo_self {A : Type} (B : A → Type) {a : A} (b : B a) {H : is_prop (B a)} :
|
||
@is_prop.elimo A B a a idp b b H = idpo :=
|
||
!is_prop.elim
|
||
|
||
definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} (C : Πa, B a → Type)
|
||
{a a' : A} (p : a = a') (x : Σb, C a b) (x' : Σb', C a' b')
|
||
[Πa b, is_prop (C a b)] : x =[p] x' ≃ x.1 =[p] x'.1 :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ exact pathover_pr1 },
|
||
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
|
||
apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
||
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
|
||
have c = c', from !is_prop.elim, induction this,
|
||
rewrite [▸*, is_prop_elimo_self (C a) c] },
|
||
{ intro q, induction q, induction x with b c, rewrite [▸*, is_prop_elimo_self (C a) c] }
|
||
end
|
||
|
||
definition sigma_ua {A B : Type} (C : A ≃ B → Type) :
|
||
(Σ(p : A = B), C (equiv_of_eq p)) ≃ Σ(e : A ≃ B), C e :=
|
||
sigma_equiv_sigma_left' !eq_equiv_equiv
|
||
|
||
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
||
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
|
||
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
|
||
-- begin
|
||
-- fapply equiv.MK,
|
||
-- { exact pathover_pr1 },
|
||
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
||
-- { intro q, induction q,
|
||
-- have c = c', from !is_prop.elim, induction this,
|
||
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
|
||
-- { esimp, generalize ⟨b, c⟩, intro x q, }
|
||
-- end
|
||
--rexact @(ap pathover_pr1) _ idpo _,
|
||
|
||
end sigma open sigma
|
||
|
||
namespace group
|
||
open is_trunc
|
||
|
||
definition to_fun_isomorphism_trans {G H K : Group} (φ : G ≃g H) (ψ : H ≃g K) :
|
||
φ ⬝g ψ ~ ψ ∘ φ :=
|
||
by reflexivity
|
||
|
||
definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G :=
|
||
begin
|
||
fapply phomotopy_of_homotopy, reflexivity
|
||
end
|
||
|
||
definition pmap_of_homomorphism_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H)
|
||
: pmap_of_homomorphism (ψ ∘g φ) ~* pmap_of_homomorphism ψ ∘* pmap_of_homomorphism φ :=
|
||
begin
|
||
fapply phomotopy_of_homotopy, reflexivity
|
||
end
|
||
|
||
definition pmap_of_homomorphism_phomotopy {G H : Group} {φ ψ : G →g H} (H : φ ~ ψ)
|
||
: pmap_of_homomorphism φ ~* pmap_of_homomorphism ψ :=
|
||
begin
|
||
fapply phomotopy_of_homotopy, exact H
|
||
end
|
||
|
||
definition pequiv_of_isomorphism_trans {G₁ G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₂) :
|
||
pequiv_of_isomorphism (φ ⬝g ψ) ~* pequiv_of_isomorphism ψ ∘* pequiv_of_isomorphism φ :=
|
||
begin
|
||
apply phomotopy_of_homotopy, reflexivity
|
||
end
|
||
|
||
definition isomorphism_eq {G H : Group} {φ ψ : G ≃g H} (p : φ ~ ψ) : φ = ψ :=
|
||
begin
|
||
induction φ with φ φe, induction ψ with ψ ψe,
|
||
exact apd011 isomorphism.mk (homomorphism_eq p) !is_prop.elimo
|
||
end
|
||
|
||
definition is_set_isomorphism [instance] (G H : Group) : is_set (G ≃g H) :=
|
||
begin
|
||
have H : G ≃g H ≃ Σ(f : G →g H), is_equiv f,
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro φ, induction φ, constructor, assumption },
|
||
{ intro v, induction v, constructor, assumption },
|
||
{ intro v, induction v, reflexivity },
|
||
{ intro φ, induction φ, reflexivity }
|
||
end,
|
||
apply is_trunc_equiv_closed_rev, exact H
|
||
end
|
||
|
||
|
||
-- definition is_equiv_isomorphism
|
||
|
||
|
||
-- some extra instances for type class inference
|
||
-- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G))
|
||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
-- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' _
|
||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
-- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
end group open group
|
||
|
||
|
||
namespace pointed -- move to types.pointed
|
||
|
||
-- definition pmap_eq_equiv {X Y : Type*} (f g : X →* Y) : (f = g) ≃ (f ~* g) :=
|
||
-- begin
|
||
-- refine eq_equiv_fn_eq_of_equiv (@pmap.sigma_char X Y) f g ⬝e _,
|
||
-- refine !sigma_eq_equiv ⬝e _,
|
||
-- refine _ ⬝e (phomotopy.sigma_char f g)⁻¹ᵉ,
|
||
-- fapply sigma_equiv_sigma,
|
||
-- { esimp, apply eq_equiv_homotopy },
|
||
-- { induction g with g gp, induction Y with Y y0, esimp, intro p, induction p, esimp at *,
|
||
-- refine !pathover_idp ⬝e _, refine _ ⬝e !eq_equiv_eq_symm,
|
||
-- apply equiv_eq_closed_right, exact !idp_con⁻¹ }
|
||
-- end
|
||
|
||
definition pmap_eq_idp {X Y : Type*} (f : X →* Y) :
|
||
pmap_eq (λx, idpath (f x)) !idp_con⁻¹ = idpath f :=
|
||
ap (λx, eq_of_phomotopy (phomotopy.mk _ x)) !inv_inv ⬝ eq_of_phomotopy_refl f
|
||
|
||
definition pfunext [constructor] (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ fapply equiv.MK: esimp,
|
||
{ intro f, fapply pmap_eq,
|
||
{ intro x, exact f x },
|
||
{ exact (respect_pt f)⁻¹ }},
|
||
{ intro p, fapply pmap.mk,
|
||
{ intro x, exact ap010 pmap.to_fun p x },
|
||
{ note z := apd respect_pt p,
|
||
note z2 := square_of_pathover z,
|
||
refine eq_of_hdeg_square z2 ⬝ !ap_constant }},
|
||
{ intro p, exact sorry },
|
||
{ intro p, exact sorry }},
|
||
{ apply pmap_eq_idp}
|
||
end
|
||
|
||
end pointed open pointed
|
||
|
||
namespace eq
|
||
|
||
infix ` ⬝hty `:75 := homotopy.trans
|
||
postfix `⁻¹ʰᵗʸ`:(max+1) := homotopy.symm
|
||
|
||
definition hassoc {A B C D : Type} (h : C → D) (g : B → C) (f : A → B) : (h ∘ g) ∘ f ~ h ∘ (g ∘ f) :=
|
||
λa, idp
|
||
|
||
-- to algebra.homotopy_group
|
||
definition homotopy_group_homomorphism_pcompose (n : ℕ) [H : is_succ n] {A B C : Type*} (g : B →* C)
|
||
(f : A →* B) : π→g[n] (g ∘* f) ~ π→g[n] g ∘ π→g[n] f :=
|
||
begin
|
||
induction H with n, exact to_homotopy (homotopy_group_functor_compose (succ n) g f)
|
||
end
|
||
|
||
definition apn_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
||
Ω→[n] f⁻¹ᵉ* ~* (loopn_pequiv_loopn n f)⁻¹ᵉ* :=
|
||
begin
|
||
refine !to_pinv_pequiv_MK2⁻¹*
|
||
end
|
||
|
||
-- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
||
-- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ :=
|
||
-- begin
|
||
-- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _,
|
||
-- -- intro x, esimp,
|
||
-- end
|
||
|
||
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
|
||
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
|
||
-- idp
|
||
|
||
end eq open eq
|
||
|
||
namespace fiber
|
||
|
||
|
||
definition ap1_ppoint_phomotopy {A B : Type*} (f : A →* B)
|
||
: Ω→ (ppoint f) ∘* pfiber_loop_space f ~* ppoint (Ω→ f) :=
|
||
begin
|
||
exact sorry
|
||
end
|
||
|
||
definition pfiber_equiv_of_square_ppoint {A B C D : Type*} {f : A →* B} {g : C →* D}
|
||
(h : A ≃* C) (k : B ≃* D) (s : k ∘* f ~* g ∘* h)
|
||
: ppoint g ∘* pfiber_equiv_of_square h k s ~* h ∘* ppoint f :=
|
||
sorry
|
||
|
||
end fiber
|
||
|
||
namespace is_trunc
|
||
|
||
definition center' {A : Type} (H : is_contr A) : A := center A
|
||
|
||
end is_trunc
|
||
|
||
namespace is_conn
|
||
|
||
open unit trunc_index nat is_trunc pointed.ops
|
||
|
||
definition is_contr_of_trivial_homotopy' (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn -1 A]
|
||
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
|
||
begin
|
||
assert aa : trunc -1 A,
|
||
{ apply center },
|
||
assert H3 : is_conn 0 A,
|
||
{ induction aa with a, exact H 0 a },
|
||
exact is_contr_of_trivial_homotopy n A H
|
||
end
|
||
|
||
-- don't make is_prop_is_trunc an instance
|
||
definition is_trunc_succ_is_trunc [instance] (n m : ℕ₋₂) (A : Type) : is_trunc (n.+1) (is_trunc m A) :=
|
||
is_trunc_of_le _ !minus_one_le_succ
|
||
|
||
definition is_conn_of_trivial_homotopy (n : ℕ₋₂) (m : ℕ) (A : Type) [is_trunc n A] [is_conn 0 A]
|
||
(H : Π(k : ℕ) a, k ≤ m → is_contr (π[k] (pointed.MK A a))) : is_conn m A :=
|
||
begin
|
||
apply is_contr_of_trivial_homotopy_nat m (trunc m A),
|
||
intro k a H2,
|
||
induction a with a,
|
||
apply is_trunc_equiv_closed_rev,
|
||
exact equiv_of_pequiv (homotopy_group_trunc_of_le (pointed.MK A a) _ _ H2),
|
||
exact H k a H2
|
||
end
|
||
|
||
definition is_conn_of_trivial_homotopy_pointed (n : ℕ₋₂) (m : ℕ) (A : Type*) [is_trunc n A]
|
||
(H : Π(k : ℕ), k ≤ m → is_contr (π[k] A)) : is_conn m A :=
|
||
begin
|
||
have is_conn 0 A, proof H 0 !zero_le qed,
|
||
apply is_conn_of_trivial_homotopy n m A,
|
||
intro k a H2, revert a, apply is_conn.elim -1,
|
||
cases A with A a, exact H k H2
|
||
end
|
||
|
||
end is_conn
|
||
|
||
namespace circle
|
||
|
||
|
||
/-
|
||
Suppose for `f, g : A -> B` I prove a homotopy `H : f ~ g` by induction on the element in `A`.
|
||
And suppose `p : a = a'` is a path constructor in `A`.
|
||
Then `natural_square_tr H p` has type `square (H a) (H a') (ap f p) (ap g p)` and is equal
|
||
to the square which defined H on the path constructor
|
||
-/
|
||
|
||
definition natural_square_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base)
|
||
(q : square p p (ap f loop) (ap g loop))
|
||
: natural_square (circle.rec p (eq_pathover q)) loop = q :=
|
||
begin
|
||
-- refine !natural_square_eq ⬝ _,
|
||
refine ap square_of_pathover !rec_loop ⬝ _,
|
||
exact to_right_inv !eq_pathover_equiv_square q
|
||
end
|
||
|
||
|
||
end circle
|
||
|
||
namespace susp
|
||
|
||
definition psusp_functor_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
|
||
psusp_functor f ~* psusp_functor g :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover, apply hdeg_square, esimp, refine !elim_merid ⬝ _ ⬝ !elim_merid⁻¹ᵖ,
|
||
exact ap merid (p a), }},
|
||
{ reflexivity },
|
||
end
|
||
|
||
definition psusp_functor_pid (A : Type*) : psusp_functor (pid A) ~* pid (psusp A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover_id_right, apply hdeg_square, apply elim_merid }},
|
||
{ reflexivity },
|
||
end
|
||
|
||
definition psusp_functor_pcompose {A B C : Type*} (g : B →* C) (f : A →* B) :
|
||
psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover, apply hdeg_square, esimp,
|
||
refine !elim_merid ⬝ _ ⬝ (ap_compose (psusp_functor g) _ _)⁻¹ᵖ,
|
||
refine _ ⬝ ap02 _ !elim_merid⁻¹, exact !elim_merid⁻¹ }},
|
||
{ reflexivity },
|
||
end
|
||
|
||
definition psusp_elim_psusp_functor {A B C : Type*} (g : B →* Ω C) (f : A →* B) :
|
||
psusp.elim g ∘* psusp_functor f ~* psusp.elim (g ∘* f) :=
|
||
begin
|
||
refine !passoc ⬝* _, exact pwhisker_left _ !psusp_functor_pcompose⁻¹*
|
||
end
|
||
|
||
definition psusp_elim_phomotopy {A B : Type*} {f g : A →* Ω B} (p : f ~* g) : psusp.elim f ~* psusp.elim g :=
|
||
pwhisker_left _ (psusp_functor_phomotopy p)
|
||
|
||
definition psusp_elim_natural {X Y Z : Type*} (g : Y →* Z) (f : X →* Ω Y)
|
||
: g ∘* psusp.elim f ~* psusp.elim (Ω→ g ∘* f) :=
|
||
begin
|
||
refine _ ⬝* pwhisker_left _ !psusp_functor_pcompose⁻¹*,
|
||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
||
exact pwhisker_right _ !loop_psusp_counit_natural
|
||
end
|
||
|
||
end susp
|
||
|
||
namespace category
|
||
|
||
-- replace precategory_group with precategory_Group (the former has a universe error)
|
||
definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group :=
|
||
begin
|
||
fapply precategory.mk,
|
||
{ exact λG H, G →g H },
|
||
{ exact _ },
|
||
{ exact λG H K ψ φ, ψ ∘g φ },
|
||
{ exact λG, gid G },
|
||
{ intros, apply homomorphism_eq, esimp },
|
||
{ intros, apply homomorphism_eq, esimp },
|
||
{ intros, apply homomorphism_eq, esimp }
|
||
end
|
||
|
||
|
||
definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup :=
|
||
begin
|
||
fapply precategory.mk,
|
||
{ exact λG H, G →g H },
|
||
{ exact _ },
|
||
{ exact λG H K ψ φ, ψ ∘g φ },
|
||
{ exact λG, gid G },
|
||
{ intros, apply homomorphism_eq, esimp },
|
||
{ intros, apply homomorphism_eq, esimp },
|
||
{ intros, apply homomorphism_eq, esimp }
|
||
end
|
||
open iso
|
||
definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) :
|
||
is_iso φ :=
|
||
begin
|
||
fconstructor,
|
||
{ exact (isomorphism.mk φ H)⁻¹ᵍ },
|
||
{ apply homomorphism_eq, rexact left_inv φ },
|
||
{ apply homomorphism_eq, rexact right_inv φ }
|
||
end
|
||
|
||
definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) :
|
||
is_equiv (group_fun φ) :=
|
||
begin
|
||
fapply adjointify,
|
||
{ exact group_fun φ⁻¹ʰ },
|
||
{ note p := right_inverse φ, exact ap010 group_fun p },
|
||
{ note p := left_inverse φ, exact ap010 group_fun p }
|
||
end
|
||
|
||
definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ },
|
||
{ intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ },
|
||
{ intro v, induction v with φ φe, apply isomorphism_eq, reflexivity },
|
||
{ intro φ, induction φ with φ φi, apply iso_eq, reflexivity }
|
||
end
|
||
|
||
definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} :=
|
||
begin
|
||
induction v with m v, induction v with i o,
|
||
fapply trunctype.mk,
|
||
{ exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) ×
|
||
(Πa, m (i a) a = o) },
|
||
{ apply is_trunc_of_imp_is_trunc, intro v, induction v with H v,
|
||
have is_prop (Πa, m a o = a), from _,
|
||
have is_prop (Πa, m o a = a), from _,
|
||
have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _,
|
||
have is_prop (Πa, m (i a) a = o), from _,
|
||
apply is_trunc_prod }
|
||
end
|
||
|
||
definition Group.sigma_char2.{u} : Group.{u} ≃
|
||
Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro G, refine ⟨G, _⟩, induction G with G g, induction g with m s ma o om mo i mi,
|
||
repeat (fconstructor; do 2 try assumption), },
|
||
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
|
||
repeat induction v with x v, constructor, fconstructor, repeat assumption },
|
||
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
|
||
repeat induction v with x v, reflexivity },
|
||
{ intro v, repeat induction v with x v, reflexivity },
|
||
end
|
||
open is_trunc
|
||
|
||
section
|
||
local attribute group.to_has_mul group.to_has_inv [coercion]
|
||
|
||
theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) :
|
||
@inv A G ~ @inv A H :=
|
||
begin
|
||
have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g,
|
||
from λg, !mul_inv_cancel_right⁻¹,
|
||
cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4,
|
||
cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4,
|
||
change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p,
|
||
calc
|
||
Gi g = Hm (Hm (Gi g) g) (Hi g) : foo
|
||
... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p'
|
||
... = Hm G1 (Hi g) : by rewrite Gh4
|
||
... = Gm G1 (Hi g) : by rewrite p'
|
||
... = Hi g : Gh2
|
||
end
|
||
|
||
theorem one_eq_of_mul_eq {A : Type} (G H : group A)
|
||
(p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) :
|
||
@one A (group.to_has_one G) = @one A (group.to_has_one H) :=
|
||
begin
|
||
cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4,
|
||
cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4,
|
||
exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1,
|
||
end
|
||
end
|
||
|
||
open prod.ops
|
||
definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A}
|
||
(H : Group_props (m, (i, o))) : group A :=
|
||
⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1,
|
||
mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄
|
||
|
||
theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A}
|
||
(H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) :
|
||
(m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') :=
|
||
begin
|
||
have is_set A, from pr1 H,
|
||
apply equiv_of_is_prop,
|
||
{ intro p, exact apd100 (eq_pr1 p)},
|
||
{ intro p, apply prod_eq (eq_of_homotopy2 p),
|
||
apply prod_eq: esimp [Group_props] at *; esimp,
|
||
{ apply eq_of_homotopy,
|
||
exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p },
|
||
{ exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }}
|
||
end
|
||
|
||
open sigma.ops
|
||
|
||
theorem Group_eq_equiv_lemma {G H : Group}
|
||
(p : (Group.sigma_char2 G).1 = (Group.sigma_char2 H).1) :
|
||
((Group.sigma_char2 G).2 =[p] (Group.sigma_char2 H).2) ≃
|
||
(is_mul_hom (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) :=
|
||
begin
|
||
refine !sigma_pathover_equiv_of_is_prop ⬝e _,
|
||
induction G with G g, induction H with H h,
|
||
esimp [Group.sigma_char2] at p, induction p,
|
||
refine !pathover_idp ⬝e _,
|
||
induction g with m s ma o om mo i mi, induction h with μ σ μa ε εμ με ι μι,
|
||
exact Group_eq_equiv_lemma2 (Group.sigma_char2 (Group.mk G (group.mk m s ma o om mo i mi))).2.2
|
||
(Group.sigma_char2 (Group.mk G (group.mk μ σ μa ε εμ με ι μι))).2.2
|
||
end
|
||
|
||
definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_mul_hom e :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ },
|
||
{ intro v, induction v with e p, exact isomorphism_of_equiv e p },
|
||
{ intro v, induction v with e p, induction e, reflexivity },
|
||
{ intro φ, induction φ with φ H, induction φ, reflexivity },
|
||
end
|
||
|
||
definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) :=
|
||
begin
|
||
refine (eq_equiv_fn_eq_of_equiv Group.sigma_char2 G H) ⬝e _,
|
||
refine !sigma_eq_equiv ⬝e _,
|
||
refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _,
|
||
transitivity (Σ(e : (Group.sigma_char2 G).1 ≃ (Group.sigma_char2 H).1),
|
||
@is_mul_hom _ _ _ _ (to_fun e)), apply sigma_ua,
|
||
exact !isomorphism.sigma_char⁻¹ᵉ
|
||
end
|
||
|
||
definition to_fun_Group_eq_equiv {G H : Group} (p : G = H)
|
||
: Group_eq_equiv G H p ~ isomorphism_of_eq p :=
|
||
begin
|
||
induction p, reflexivity
|
||
end
|
||
|
||
definition Group_eq2 {G H : Group} {p q : G = H}
|
||
(r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q :=
|
||
begin
|
||
apply eq_of_fn_eq_fn (Group_eq_equiv G H),
|
||
apply isomorphism_eq,
|
||
intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹,
|
||
end
|
||
|
||
definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ :=
|
||
Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ
|
||
|
||
definition category_Group.{u} : category Group.{u} :=
|
||
category.mk precategory_Group
|
||
begin
|
||
intro G H,
|
||
apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H),
|
||
intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity
|
||
end
|
||
|
||
definition category_AbGroup : category AbGroup :=
|
||
category.mk precategory_AbGroup sorry
|
||
|
||
definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group
|
||
definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup
|
||
|
||
end category
|
||
|
||
namespace sphere
|
||
|
||
-- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S* n →* S* m) :
|
||
-- f ~* pconst (S* n) (S* m) :=
|
||
-- begin
|
||
-- assert H : is_contr (Ω[n] (S* m)),
|
||
-- { apply homotopy_group_sphere_le, },
|
||
-- apply phomotopy_of_eq,
|
||
-- apply eq_of_fn_eq_fn !psphere_pmap_pequiv,
|
||
-- apply @is_prop.elim
|
||
-- end
|
||
|
||
end sphere
|
||
|
||
definition image_pathover {A B : Type} (f : A → B) {x y : B} (p : x = y) (u : image f x) (v : image f y) : u =[p] v :=
|
||
begin
|
||
apply is_prop.elimo
|
||
end
|
||
|
||
section injective_surjective
|
||
open trunc fiber image
|
||
|
||
variables {A B C : Type} [is_set A] [is_set B] [is_set C] (f : A → B) (g : B → C) (h : A → C) (H : g ∘ f ~ h)
|
||
include H
|
||
|
||
definition is_embedding_factor : is_embedding h → is_embedding f :=
|
||
begin
|
||
induction H using homotopy.rec_on_idp,
|
||
intro E,
|
||
fapply is_embedding_of_is_injective,
|
||
intro x y p,
|
||
fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p)
|
||
end
|
||
|
||
definition is_surjective_factor : is_surjective h → is_surjective g :=
|
||
begin
|
||
induction H using homotopy.rec_on_idp,
|
||
intro S,
|
||
intro c,
|
||
note p := S c,
|
||
induction p,
|
||
apply tr,
|
||
fapply fiber.mk,
|
||
exact f a,
|
||
exact p
|
||
end
|
||
|
||
end injective_surjective
|