Spectral/algebra/free_abelian_group.hlean
2017-07-04 16:11:21 +01:00

233 lines
8.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import algebra.group_theory hit.set_quotient types.list types.sum .free_group
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv trunc_index
group
namespace group
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
variables (X : Type) {Y : Type} [is_set X] [is_set Y] {l l' : list (X ⊎ X)}
/- Free Abelian Group of a set -/
namespace free_ab_group
inductive fcg_rel : list (X ⊎ X) → list (X ⊎ X) → Type :=
| rrefl : Πl, fcg_rel l l
| cancel1 : Πx, fcg_rel [inl x, inr x] []
| cancel2 : Πx, fcg_rel [inr x, inl x] []
| rflip : Πx y, fcg_rel [x, y] [y, x]
| resp_append : Π{l₁ l₂ l₃ l₄}, fcg_rel l₁ l₂ → fcg_rel l₃ l₄ →
fcg_rel (l₁ ++ l₃) (l₂ ++ l₄)
| rtrans : Π{l₁ l₂ l₃}, fcg_rel l₁ l₂ → fcg_rel l₂ l₃ →
fcg_rel l₁ l₃
open fcg_rel
local abbreviation R [reducible] := fcg_rel
attribute fcg_rel.rrefl [refl]
attribute fcg_rel.rtrans [trans]
definition fcg_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥)
local abbreviation FG := fcg_carrier
definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) :=
begin constructor, intro s, apply tr, unfold R end
local attribute is_reflexive_R [instance]
variable {X}
theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') :=
begin
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
{ reflexivity},
{ repeat esimp [map], exact cancel2 x},
{ repeat esimp [map], exact cancel1 x},
{ repeat esimp [map], apply rflip},
{ rewrite [+map_append], exact resp_append IH₁ IH₂},
{ exact rtrans IH₁ IH₂}
end
theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') :=
begin
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
{ reflexivity},
{ repeat esimp [map], exact cancel2 x},
{ repeat esimp [map], exact cancel1 x},
{ repeat esimp [map], apply rflip},
{ rewrite [+reverse_append], exact resp_append IH₂ IH₁},
{ exact rtrans IH₁ IH₂}
end
theorem rel_cons_concat (l s) : R X (s :: l) (concat s l) :=
begin
induction l with t l IH,
{ reflexivity},
{ rewrite [concat_cons], transitivity (t :: s :: l),
{ exact resp_append !rflip !rrefl},
{ exact resp_append (rrefl [t]) IH}}
end
definition fcg_one [constructor] : FG X := class_of []
definition fcg_inv [unfold 3] : FG X → FG X :=
quotient_unary_map (reverse ∘ map sum.flip)
(λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip))
definition fcg_mul [unfold 3 4] : FG X → FG X → FG X :=
quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s))))
section
local notation 1 := fcg_one
local postfix ⁻¹ := fcg_inv
local infix * := fcg_mul
theorem fcg_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
begin
refine set_quotient.rec_prop _ g₁,
refine set_quotient.rec_prop _ g₂,
refine set_quotient.rec_prop _ g₃,
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
exact ap class_of !append.assoc
end
theorem fcg_one_mul (g : FG X) : 1 * g = g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
exact ap class_of !append_nil_left
end
theorem fcg_mul_one (g : FG X) : g * 1 = g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
exact ap class_of !append_nil_right
end
theorem fcg_mul_left_inv (g : FG X) : g⁻¹ * g = 1 :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
apply eq_of_rel, apply tr,
induction g with s l IH,
{ reflexivity},
{ rewrite [▸*, map_cons, reverse_cons, concat_append],
refine rtrans _ IH,
apply resp_append, reflexivity,
change R X ([flip s, s] ++ l) ([] ++ l),
apply resp_append,
induction s, apply cancel2, apply cancel1,
reflexivity}
end
theorem fcg_mul_comm (g h : FG X) : g * h = h * g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
refine set_quotient.rec_prop _ h, clear h, intro h,
apply eq_of_rel, apply tr,
revert h, induction g with s l IH: intro h,
{ rewrite [append_nil_left, append_nil_right]},
{ rewrite [append_cons,-concat_append],
transitivity concat s (l ++ h), apply rel_cons_concat,
rewrite [-append_concat], apply IH}
end
end
end free_ab_group open free_ab_group
variables (X)
definition group_free_ab_group [constructor] : ab_group (fcg_carrier X) :=
ab_group.mk _ fcg_mul fcg_mul_assoc fcg_one fcg_one_mul fcg_mul_one
fcg_inv fcg_mul_left_inv fcg_mul_comm
definition free_ab_group [constructor] : AbGroup :=
AbGroup.mk _ (group_free_ab_group X)
/- The universal property of the free commutative group -/
variables {X A}
definition free_ab_group_inclusion [constructor] (x : X) : free_ab_group X :=
class_of [inl x]
theorem fgh_helper_respect_fcg_rel (f : X → A) (r : fcg_rel X l l')
: Π(g : A), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' :=
begin
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g,
{ reflexivity},
{ unfold [foldl], apply mul_inv_cancel_right},
{ unfold [foldl], apply inv_mul_cancel_right},
{ unfold [foldl, fgh_helper], apply mul.right_comm},
{ rewrite [+foldl_append, IH₁, IH₂]},
{ exact !IH₁ ⬝ !IH₂}
end
definition free_ab_group_elim [constructor] (f : X → A) : free_ab_group X →g A :=
begin
fapply homomorphism.mk,
{ intro g, refine set_quotient.elim _ _ g,
{ intro l, exact foldl (fgh_helper f) 1 l},
{ intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r,
exact fgh_helper_respect_fcg_rel f r 1}},
{ refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l',
esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul}
end
definition fn_of_free_ab_group_elim [unfold_full] (φ : free_ab_group X →g A) : X → A :=
φ ∘ free_ab_group_inclusion
definition free_ab_group_elim_unique [constructor] (f : X → A) (k : free_ab_group X →g A)
(H : k ∘ free_ab_group_inclusion ~ f) : k ~ free_ab_group_elim f :=
begin
refine set_quotient.rec_prop _, intro l, esimp,
induction l with s l IH,
{ esimp [foldl], exact to_respect_one k},
{ rewrite [foldl_cons, fgh_helper_mul],
refine to_respect_mul k (class_of [s]) (class_of l) ⬝ _,
rewrite [IH], apply ap (λx, x * _), induction s: rewrite [▸*, one_mul, -H a],
apply to_respect_inv }
end
variables (X A)
definition free_ab_group_elim_equiv_fn [constructor] : (free_ab_group X →g A) ≃ (X → A) :=
begin
fapply equiv.MK,
{ exact fn_of_free_ab_group_elim},
{ exact free_ab_group_elim},
{ intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul},
{ intro k, symmetry, apply homomorphism_eq, apply free_ab_group_elim_unique,
reflexivity }
end
definition free_ab_group_functor (f : X → Y) : free_ab_group X →g free_ab_group Y :=
free_ab_group_elim (free_ab_group_inclusion ∘ f)
-- set_option pp.all true
-- definition free_ab_group.rec {P : free_ab_group X → Type} [H : Πg, is_prop (P g)]
-- (h₁ : Πx, P (free_ab_group_inclusion x))
-- (h₂ : P 0)
-- (h₃ : Πg h, P g → P h → P (g * h))
-- (h₄ : Πg, P g → P g⁻¹) :
-- Πg, P g :=
-- begin
-- refine @set_quotient.rec_prop _ _ _ H _,
-- refine @set_quotient.rec_prop _ _ _ (λx, !H) _,
-- esimp, intro l, induction l with s l ih,
-- exact h₂,
-- induction s with v v,
-- induction v with i y,
-- exact h₃ _ _ (h₁ i y) ih,
-- induction v with i y,
-- refine h₃ (gqg_map _ _ (class_of [inr ⟨i, y⟩])) _ _ ih,
-- refine transport P _ (h₁ i y⁻¹),
-- refine _ ⬝ !mul_one,
-- refine _ ⬝ ap (mul _) (to_respect_one (dirsum_incl i)),
-- apply gqg_eq_of_rel',
-- apply tr, esimp,
-- refine transport dirsum_rel _ (dirsum_rel.rmk i y⁻¹ y),
-- rewrite [mul.left_inv, mul.assoc],
-- apply ap (mul _),
-- refine _ ⬝ (mul_inv (class_of [inr ⟨i, y⟩]) (ι ⟨i, 1⟩))⁻¹ᵖ,
-- refine ap011 mul _ _,
-- end
end group