246 lines
11 KiB
Text
246 lines
11 KiB
Text
/- equalities between pointed homotopies and other facts about pointed types/functions/homotopies -/
|
||
|
||
-- Author: Floris van Doorn
|
||
|
||
import types.pointed2 .move_to_lib
|
||
|
||
open pointed eq equiv function is_equiv unit is_trunc trunc nat algebra sigma group lift option
|
||
|
||
namespace pointed
|
||
|
||
-- /- the pointed type of (unpointed) dependent maps -/
|
||
-- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* :=
|
||
-- pointed.mk' (Πa, P a)
|
||
|
||
-- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) :=
|
||
-- pequiv_of_equiv eq_equiv_homotopy rfl
|
||
|
||
-- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a)
|
||
-- : pupi P ≃* pupi Q :=
|
||
-- pequiv_of_equiv (pi_equiv_pi_right g)
|
||
-- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
|
||
|
||
|
||
-- definition pmap_eq_equiv {X Y : Type*} (f g : X →* Y) : (f = g) ≃ (f ~* g) :=
|
||
-- begin
|
||
-- refine eq_equiv_fn_eq_of_equiv (@pmap.sigma_char X Y) f g ⬝e _,
|
||
-- refine !sigma_eq_equiv ⬝e _,
|
||
-- refine _ ⬝e (phomotopy.sigma_char f g)⁻¹ᵉ,
|
||
-- fapply sigma_equiv_sigma,
|
||
-- { esimp, apply eq_equiv_homotopy },
|
||
-- { induction g with g gp, induction Y with Y y0, esimp, intro p, induction p, esimp at *,
|
||
-- refine !pathover_idp ⬝e _, refine _ ⬝e !eq_equiv_eq_symm,
|
||
-- apply equiv_eq_closed_right, exact !idp_con⁻¹ }
|
||
-- end
|
||
|
||
definition pmap_eq_idp {X Y : Type*} (f : X →* Y) :
|
||
pmap_eq (λx, idpath (f x)) !idp_con⁻¹ = idpath f :=
|
||
ap (λx, eq_of_phomotopy (phomotopy.mk _ x)) !inv_inv ⬝ eq_of_phomotopy_refl f
|
||
|
||
definition pfunext (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) :=
|
||
(loop_ppmap_commute X Y)⁻¹ᵉ*
|
||
|
||
definition loop_phomotopy [constructor] {A B : Type*} (f : A →* B) : Type* :=
|
||
pointed.MK (f ~* f) phomotopy.rfl
|
||
|
||
definition ppcompose_left_loop_phomotopy [constructor] {A B C : Type*} (g : B →* C) {f : A →* B}
|
||
{h : A →* C} (p : g ∘* f ~* h) : loop_phomotopy f →* loop_phomotopy h :=
|
||
pmap.mk (λq, p⁻¹* ⬝* pwhisker_left g q ⬝* p)
|
||
(idp ◾** !pwhisker_left_refl ◾** idp ⬝ !trans_refl ◾** idp ⬝ !trans_left_inv)
|
||
|
||
definition ppcompose_left_loop_phomotopy' [constructor] {A B C : Type*} (g : B →* C) (f : A →* B)
|
||
: loop_phomotopy f →* loop_phomotopy (g ∘* f) :=
|
||
pmap.mk (λq, pwhisker_left g q) !pwhisker_left_refl
|
||
|
||
definition loop_ppmap_pequiv' [constructor] (A B : Type*) :
|
||
Ω(ppmap A B) ≃* loop_phomotopy (pconst A B) :=
|
||
pequiv_of_equiv (pmap_eq_equiv _ _) idp
|
||
|
||
definition ppmap_loop_pequiv' [constructor] (A B : Type*) :
|
||
loop_phomotopy (pconst A B) ≃* ppmap A (Ω B) :=
|
||
pequiv_of_equiv (!phomotopy.sigma_char ⬝e !pmap.sigma_char⁻¹ᵉ) idp
|
||
|
||
definition loop_ppmap_pequiv [constructor] (A B : Type*) : Ω(ppmap A B) ≃* ppmap A (Ω B) :=
|
||
loop_ppmap_pequiv' A B ⬝e* ppmap_loop_pequiv' A B
|
||
|
||
definition loop_ppmap_pequiv'_natural_right' {X X' : Type} (x₀ : X) (A : Type*) (f : X → X') :
|
||
psquare (loop_ppmap_pequiv' A _) (loop_ppmap_pequiv' A _)
|
||
(Ω→ (ppcompose_left (pmap_of_map f x₀)))
|
||
(ppcompose_left_loop_phomotopy' (pmap_of_map f x₀) !pconst) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ esimp, intro p,
|
||
refine _ ⬝ ap011 (λx y, phomotopy_of_eq (ap1_gen _ x y _))
|
||
proof !eq_of_phomotopy_refl⁻¹ qed proof !eq_of_phomotopy_refl⁻¹ qed,
|
||
refine _ ⬝ ap phomotopy_of_eq !ap1_gen_idp_left⁻¹,
|
||
exact !phomotopy_of_eq_pcompose_left⁻¹ },
|
||
{ refine _ ⬝ !idp_con⁻¹, exact sorry }
|
||
end
|
||
|
||
definition loop_ppmap_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||
psquare (loop_ppmap_pequiv' A X) (loop_ppmap_pequiv' A X')
|
||
(Ω→ (ppcompose_left f)) (ppcompose_left_loop_phomotopy f !pcompose_pconst) :=
|
||
begin
|
||
induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀,
|
||
apply psquare_of_phomotopy,
|
||
exact sorry
|
||
end
|
||
|
||
definition ppmap_loop_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||
psquare (ppmap_loop_pequiv' A X) (ppmap_loop_pequiv' A X')
|
||
(ppcompose_left_loop_phomotopy f !pcompose_pconst) (ppcompose_left (Ω→ f)) :=
|
||
begin
|
||
exact sorry
|
||
end
|
||
|
||
definition loop_pmap_commute_natural_right_direct {X X' : Type*} (A : Type*) (f : X →* X') :
|
||
psquare (loop_ppmap_pequiv A X) (loop_ppmap_pequiv A X')
|
||
(Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) :=
|
||
begin
|
||
induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀,
|
||
-- refine _ ⬝* _ ◾* _, rotate 4,
|
||
fapply phomotopy.mk,
|
||
{ intro p, esimp, esimp [pmap_eq_equiv, pcompose_pconst], exact sorry },
|
||
{ exact sorry }
|
||
end
|
||
|
||
definition loop_pmap_commute_natural_left {A A' : Type*} (X : Type*) (f : A' →* A) :
|
||
psquare (loop_ppmap_commute A X) (loop_ppmap_commute A' X)
|
||
(Ω→ (ppcompose_right f)) (ppcompose_right f) :=
|
||
sorry
|
||
|
||
definition loop_pmap_commute_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||
psquare (loop_ppmap_commute A X) (loop_ppmap_commute A X')
|
||
(Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) :=
|
||
loop_ppmap_pequiv'_natural_right A f ⬝h* ppmap_loop_pequiv'_natural_right A f
|
||
|
||
/-
|
||
Do we want to use a structure of homotopies between pointed homotopies? Or are equalities fine?
|
||
If we set up things more generally, we could define this as
|
||
"pointed homotopies between the dependent pointed maps p and q"
|
||
-/
|
||
structure phomotopy2 {A B : Type*} {f g : A →* B} (p q : f ~* g) : Type :=
|
||
(homotopy_eq : p ~ q)
|
||
(homotopy_pt_eq : whisker_right (respect_pt g) (homotopy_eq pt) ⬝ to_homotopy_pt q =
|
||
to_homotopy_pt p)
|
||
|
||
/- this sets it up more generally, for illustrative purposes -/
|
||
structure ppi' (A : Type*) (P : A → Type) (p : P pt) :=
|
||
(to_fun : Π a : A, P a)
|
||
(resp_pt : to_fun (Point A) = p)
|
||
attribute ppi'.to_fun [coercion]
|
||
definition ppi_homotopy' {A : Type*} {P : A → Type} {x : P pt} (f g : ppi' A P x) : Type :=
|
||
ppi' A (λa, f a = g a) (ppi'.resp_pt f ⬝ (ppi'.resp_pt g)⁻¹)
|
||
definition ppi_homotopy2' {A : Type*} {P : A → Type} {x : P pt} {f g : ppi' A P x}
|
||
(p q : ppi_homotopy' f g) : Type :=
|
||
ppi_homotopy' p q
|
||
|
||
-- infix ` ~*2 `:50 := phomotopy2
|
||
|
||
-- variables {A B : Type*} {f g : A →* B} (p q : f ~* g)
|
||
|
||
-- definition phomotopy_eq_equiv_phomotopy2 : p = q ≃ p ~*2 q :=
|
||
-- sorry
|
||
|
||
/- Homotopy between a function and its eta expansion -/
|
||
|
||
definition pmap_eta {X Y : Type*} (f : X →* Y) : f ~* pmap.mk f (pmap.resp_pt f) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
reflexivity,
|
||
esimp, exact !idp_con
|
||
end
|
||
|
||
-- this should replace pnatural_square
|
||
definition pnatural_square2 {A B : Type} (X : B → Type*) (Y : B → Type*) {f g : A → B}
|
||
(h : Πa, X (f a) →* Y (g a)) {a a' : A} (p : a = a') :
|
||
h a' ∘* ptransport X (ap f p) ~* ptransport Y (ap g p) ∘* h a :=
|
||
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
|
||
|
||
definition ptransport_ap {A B : Type} (X : B → Type*) (f : A → B) {a a' : A} (p : a = a') :
|
||
ptransport X (ap f p) ~* ptransport (X ∘ f) p :=
|
||
by induction p; reflexivity
|
||
|
||
definition ptransport_constant (A : Type) (B : Type*) {a a' : A} (p : a = a') :
|
||
ptransport (λ(a : A), B) p ~* pid B :=
|
||
by induction p; reflexivity
|
||
|
||
definition ptransport_natural {A : Type} (X : A → Type*) (Y : A → Type*)
|
||
(h : Πa, X a →* Y a) {a a' : A} (p : a = a') :
|
||
h a' ∘* ptransport X p ~* ptransport Y p ∘* h a :=
|
||
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
|
||
|
||
section psquare
|
||
variables {A A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
||
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
||
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
||
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
||
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
||
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
||
|
||
definition ptranspose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ :=
|
||
p⁻¹*
|
||
|
||
definition hsquare_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||
p
|
||
|
||
definition homotopy_group_functor_hsquare (n : ℕ) (h : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (π→[n] f₁₀) (π→[n] f₁₂)
|
||
(π→[n] f₀₁) (π→[n] f₂₁) :=
|
||
sorry
|
||
|
||
end psquare
|
||
|
||
definition ap1_pequiv_ap {A : Type} (B : A → Type*) {a a' : A} (p : a = a') :
|
||
Ω→ (pequiv_ap B p) ~* pequiv_ap (Ω ∘ B) p :=
|
||
begin induction p, apply ap1_pid end
|
||
|
||
definition pequiv_ap_natural {A : Type} (B C : A → Type*) {a a' : A} (p : a = a')
|
||
(f : Πa, B a →* C a) :
|
||
psquare (pequiv_ap B p) (pequiv_ap C p) (f a) (f a') :=
|
||
begin induction p, exact phrfl end
|
||
|
||
definition is_contr_loop (A : Type*) [is_set A] : is_contr (Ω A) :=
|
||
is_contr.mk idp (λa, !is_prop.elim)
|
||
|
||
definition is_contr_loop_of_is_contr {A : Type*} (H : is_contr A) : is_contr (Ω A) :=
|
||
is_contr_loop A
|
||
|
||
definition is_contr_punit [instance] : is_contr punit :=
|
||
is_contr_unit
|
||
|
||
definition pequiv_of_is_contr (A B : Type*) (HA : is_contr A) (HB : is_contr B) : A ≃* B :=
|
||
pequiv_punit_of_is_contr A _ ⬝e* (pequiv_punit_of_is_contr B _)⁻¹ᵉ*
|
||
|
||
definition loop_pequiv_punit_of_is_set (X : Type*) [is_set X] : Ω X ≃* punit :=
|
||
pequiv_punit_of_is_contr _ (is_contr_loop X)
|
||
|
||
definition loop_punit : Ω punit ≃* punit :=
|
||
loop_pequiv_punit_of_is_set punit
|
||
|
||
definition phomotopy_of_is_contr_cod [constructor] {X Y : Type*} (f g : X →* Y) [is_contr Y] :
|
||
f ~* g :=
|
||
phomotopy.mk (λa, !eq_of_is_contr) !eq_of_is_contr
|
||
|
||
definition phomotopy_of_is_contr_dom [constructor] {X Y : Type*} (f g : X →* Y) [is_contr X] :
|
||
f ~* g :=
|
||
phomotopy.mk (λa, ap f !is_prop.elim ⬝ respect_pt f ⬝ (respect_pt g)⁻¹ ⬝ ap g !is_prop.elim)
|
||
begin rewrite [▸*, is_prop_elim_self, +ap_idp, idp_con, con_idp, inv_con_cancel_right] end
|
||
|
||
definition add_point_over [unfold 3] {A : Type} (B : A → Type*) : A₊ → Type*
|
||
| (some a) := B a
|
||
| none := plift punit
|
||
|
||
definition phomotopy_group_plift_punit.{u} (n : ℕ) [H : is_at_least_two n] :
|
||
πag[n] (plift.{0 u} punit) ≃g trivial_ab_group_lift.{u} :=
|
||
begin
|
||
induction H with n,
|
||
have H : 0 <[ℕ] n+2, from !zero_lt_succ,
|
||
have is_set unit, from _,
|
||
have is_trunc (trunc_index.of_nat 0) punit, from this,
|
||
exact isomorphism_of_is_contr (@trivial_homotopy_group_of_is_trunc _ _ _ !is_trunc_lift H)
|
||
!is_trunc_lift
|
||
end
|
||
|
||
|
||
end pointed
|