12f23c0dbe
Also develop more group theory for InfGroups
2238 lines
92 KiB
Text
2238 lines
92 KiB
Text
-- definitions, theorems and attributes which should be moved to files in the HoTT library
|
||
|
||
import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2 algebra.graph algebra.category.functor.equivalence
|
||
|
||
open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc pi group
|
||
is_trunc function unit prod bool
|
||
|
||
attribute pType.sigma_char sigma_pi_equiv_pi_sigma sigma.coind_unc [constructor]
|
||
attribute ap1_gen [unfold 8 9 10]
|
||
attribute ap010 [unfold 7]
|
||
attribute tro_invo_tro [unfold 9] -- TODO: move
|
||
-- TODO: homotopy_of_eq and apd10 should be the same
|
||
-- TODO: there is also apd10_eq_of_homotopy in both pi and eq(?)
|
||
universe variable u
|
||
|
||
|
||
namespace algebra
|
||
|
||
variables {A : Type} [add_ab_inf_group A]
|
||
definition add_sub_cancel_middle (a b : A) : a + (b - a) = b :=
|
||
!add.comm ⬝ !sub_add_cancel
|
||
|
||
end algebra
|
||
|
||
namespace eq
|
||
|
||
-- this should maybe replace whisker_left_idp and whisker_left_idp_con
|
||
definition whisker_left_idp_square {A : Type} {a a' : A} {p q : a = a'} (r : p = q) :
|
||
square (whisker_left idp r) r (idp_con p) (idp_con q) :=
|
||
begin induction r, exact hrfl end
|
||
|
||
definition ap_con_idp_left {A B : Type} (f : A → B) {a a' : A} (p : a = a') :
|
||
square (ap_con f idp p) idp (ap02 f (idp_con p)) (idp_con (ap f p)) :=
|
||
begin induction p, exact ids end
|
||
|
||
definition pathover_tr_pathover_idp_of_eq {A : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} {p : a = a'}
|
||
(q : b =[p] b') :
|
||
pathover_tr p b ⬝o pathover_idp_of_eq (tr_eq_of_pathover q) = q :=
|
||
begin induction q; reflexivity end
|
||
|
||
-- rename pathover_of_tr_eq_idp
|
||
definition pathover_of_tr_eq_idp' {A : Type} {B : A → Type} {a a₂ : A} (p : a = a₂) (b : B a) :
|
||
pathover_of_tr_eq idp = pathover_tr p b :=
|
||
by induction p; constructor
|
||
|
||
definition homotopy.symm_symm {A : Type} {P : A → Type} {f g : Πx, P x} (H : f ~ g) :
|
||
H⁻¹ʰᵗʸ⁻¹ʰᵗʸ = H :=
|
||
begin apply eq_of_homotopy, intro x, apply inv_inv end
|
||
|
||
definition apd10_prepostcompose_nondep {A B C D : Type} (h : C → D) {g g' : B → C} (p : g = g')
|
||
(f : A → B) (a : A) : apd10 (ap (λg a, h (g (f a))) p) a = ap h (apd10 p (f a)) :=
|
||
begin induction p, reflexivity end
|
||
|
||
definition apd10_prepostcompose {A B : Type} {C : B → Type} {D : A → Type}
|
||
(f : A → B) (h : Πa, C (f a) → D a) {g g' : Πb, C b}
|
||
(p : g = g') (a : A) :
|
||
apd10 (ap (λg a, h a (g (f a))) p) a = ap (h a) (apd10 p (f a)) :=
|
||
begin induction p, reflexivity end
|
||
|
||
definition eq.rec_to {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₀ = a₁ → Type}
|
||
{a₁ : A} (p₀ : a₀ = a₁) (H : P p₀) ⦃a₂ : A⦄ (p : a₀ = a₂) : P p :=
|
||
begin
|
||
induction p₀, induction p, exact H
|
||
end
|
||
|
||
definition eq.rec_to2 {A : Type} {P : Π⦃a₀ a₁⦄, a₀ = a₁ → Type}
|
||
{a₀ a₀' a₁' : A} (p' : a₀' = a₁') (p₀ : a₀ = a₀') (H : P p') ⦃a₁ : A⦄ (p : a₀ = a₁) : P p :=
|
||
begin
|
||
induction p₀, induction p', induction p, exact H
|
||
end
|
||
|
||
definition eq.rec_right_inv {A : Type} (f : A ≃ A) {P : Π⦃a₀ a₁⦄, f a₀ = a₁ → Type}
|
||
(H : Πa, P (right_inv f a)) ⦃a₀ a₁ : A⦄ (p : f a₀ = a₁) : P p :=
|
||
begin
|
||
revert a₀ p, refine equiv_rect f⁻¹ᵉ _ _,
|
||
intro a₀ p, exact eq.rec_to (right_inv f a₀) (H a₀) p,
|
||
end
|
||
|
||
definition eq.rec_equiv {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
|
||
(H : P (idpath (f a₀))) ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||
begin
|
||
assert qr : Σ(q : a₀ = a₁), ap f q = p,
|
||
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
|
||
cases qr with q r, apply transport P r, induction q, exact H
|
||
end
|
||
|
||
definition eq.rec_equiv_symm {A B : Type} {a₁ : A} (f : A ≃ B) {P : Π{a₀}, f a₀ = f a₁ → Type}
|
||
(H : P (idpath (f a₁))) ⦃a₀ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||
begin
|
||
assert qr : Σ(q : a₀ = a₁), ap f q = p,
|
||
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
|
||
cases qr with q r, apply transport P r, induction q, exact H
|
||
end
|
||
|
||
definition eq.rec_equiv_to_same {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
|
||
⦃a₁' : A⦄ (p' : f a₀ = f a₁') (H : P p') ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||
begin
|
||
revert a₁' p' H a₁ p,
|
||
refine eq.rec_equiv f _,
|
||
exact eq.rec_equiv f
|
||
end
|
||
|
||
definition eq.rec_equiv_to {A A' B : Type} {a₀ : A} (f : A ≃ B) (g : A' ≃ B)
|
||
{P : Π{a₁}, f a₀ = g a₁ → Type}
|
||
⦃a₁' : A'⦄ (p' : f a₀ = g a₁') (H : P p') ⦃a₁ : A'⦄ (p : f a₀ = g a₁) : P p :=
|
||
begin
|
||
assert qr : Σ(q : g⁻¹ (f a₀) = a₁), (right_inv g (f a₀))⁻¹ ⬝ ap g q = p,
|
||
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p),
|
||
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
|
||
assert q'r' : Σ(q' : g⁻¹ (f a₀) = a₁'), (right_inv g (f a₀))⁻¹ ⬝ ap g q' = p',
|
||
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p'),
|
||
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
|
||
induction qr with q r, induction q'r' with q' r',
|
||
induction q, induction q',
|
||
induction r, induction r',
|
||
exact H
|
||
end
|
||
|
||
definition eq.rec_grading {A A' B : Type} {a : A} (f : A ≃ B) (g : A' ≃ B)
|
||
{P : Π{b}, f a = b → Type}
|
||
{a' : A'} (p' : f a = g a') (H : P p') ⦃b : B⦄ (p : f a = b) : P p :=
|
||
begin
|
||
revert b p, refine equiv_rect g _ _,
|
||
exact eq.rec_equiv_to f g p' H
|
||
end
|
||
|
||
definition eq.rec_grading_unbased {A B B' C : Type} (f : A ≃ B) (g : B ≃ C) (h : B' ≃ C)
|
||
{P : Π{b c}, g b = c → Type}
|
||
{a' : A} {b' : B'} (p' : g (f a') = h b') (H : P p') ⦃b : B⦄ ⦃c : C⦄ (q : f a' = b)
|
||
(p : g b = c) : P p :=
|
||
begin
|
||
induction q, exact eq.rec_grading (f ⬝e g) h p' H p
|
||
end
|
||
|
||
-- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
||
-- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ :=
|
||
-- begin
|
||
-- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _,
|
||
-- -- intro x, esimp,
|
||
-- end
|
||
|
||
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
|
||
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
|
||
-- idp
|
||
|
||
lemma homotopy_group_isomorphism_of_ptrunc_pequiv {A B : Type*}
|
||
(n k : ℕ) (H : n+1 ≤[ℕ] k) (f : ptrunc k A ≃* ptrunc k B) : πg[n+1] A ≃g πg[n+1] B :=
|
||
(ghomotopy_group_ptrunc_of_le H A)⁻¹ᵍ ⬝g
|
||
homotopy_group_isomorphism_of_pequiv n f ⬝g
|
||
ghomotopy_group_ptrunc_of_le H B
|
||
|
||
definition fundamental_group_isomorphism {X : Type*} {G : Group}
|
||
(e : Ω X ≃ G) (hom_e : Πp q, e (p ⬝ q) = e p * e q) : π₁ X ≃g G :=
|
||
isomorphism_of_equiv (trunc_equiv_trunc 0 e ⬝e (trunc_equiv 0 G))
|
||
begin intro p q, induction p with p, induction q with q, exact hom_e p q end
|
||
|
||
definition equiv_pathover2 {A : Type} {a a' : A} (p : a = a')
|
||
{B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a')
|
||
(r : to_fun f =[p] to_fun g) : f =[p] g :=
|
||
begin
|
||
fapply pathover_of_fn_pathover_fn,
|
||
{ intro a, apply equiv.sigma_char },
|
||
{ apply sigma_pathover _ _ _ r, apply is_prop.elimo }
|
||
end
|
||
|
||
definition equiv_pathover_inv {A : Type} {a a' : A} (p : a = a')
|
||
{B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a')
|
||
(r : to_inv f =[p] to_inv g) : f =[p] g :=
|
||
begin
|
||
/- this proof is a bit weird, but it works -/
|
||
apply equiv_pathover2,
|
||
change f⁻¹ᶠ⁻¹ᶠ =[p] g⁻¹ᶠ⁻¹ᶠ,
|
||
apply apo (λ(a: A) (h : C a ≃ B a), h⁻¹ᶠ),
|
||
apply equiv_pathover2,
|
||
exact r
|
||
end
|
||
|
||
definition transport_lemma {A : Type} {C : A → Type} {g₁ : A → A}
|
||
{x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) :
|
||
transport C (ap g₁ p)⁻¹ (f (transport C p z)) = f z :=
|
||
by induction p; reflexivity
|
||
|
||
definition transport_lemma2 {A : Type} {C : A → Type} {g₁ : A → A}
|
||
{x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) :
|
||
transport C (ap g₁ p) (f z) = f (transport C p z) :=
|
||
by induction p; reflexivity
|
||
|
||
definition eq_of_pathover_apo {A C : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'}
|
||
{p : a = a'} (g : Πa, B a → C) (q : b =[p] b') :
|
||
eq_of_pathover (apo g q) = apd011 g p q :=
|
||
by induction q; reflexivity
|
||
|
||
definition apd02 [unfold 8] {A : Type} {B : A → Type} (f : Πa, B a) {a a' : A} {p q : a = a'}
|
||
(r : p = q) : change_path r (apd f p) = apd f q :=
|
||
by induction r; reflexivity
|
||
|
||
definition pathover_ap_cono {A A' : Type} {a₁ a₂ a₃ : A}
|
||
{p₁ : a₁ = a₂} {p₂ : a₂ = a₃} (B' : A' → Type) (f : A → A')
|
||
{b₁ : B' (f a₁)} {b₂ : B' (f a₂)} {b₃ : B' (f a₃)}
|
||
(q₁ : b₁ =[p₁] b₂) (q₂ : b₂ =[p₂] b₃) :
|
||
pathover_ap B' f (q₁ ⬝o q₂) =
|
||
change_path !ap_con⁻¹ (pathover_ap B' f q₁ ⬝o pathover_ap B' f q₂) :=
|
||
by induction q₁; induction q₂; reflexivity
|
||
|
||
definition concato_eq_eq {A : Type} {B : A → Type} {a₁ a₂ : A} {p₁ : a₁ = a₂}
|
||
{b₁ : B a₁} {b₂ b₂' : B a₂} (r : b₁ =[p₁] b₂) (q : b₂ = b₂') :
|
||
r ⬝op q = r ⬝o pathover_idp_of_eq q :=
|
||
by induction q; reflexivity
|
||
|
||
definition ap_apd0111 {A₁ A₂ A₃ : Type} {B : A₁ → Type} {C : Π⦃a⦄, B a → Type} {a a₂ : A₁}
|
||
{b : B a} {b₂ : B a₂} {c : C b} {c₂ : C b₂}
|
||
(g : A₂ → A₃) (f : Πa b, C b → A₂) (Ha : a = a₂) (Hb : b =[Ha] b₂)
|
||
(Hc : c =[apd011 C Ha Hb] c₂) :
|
||
ap g (apd0111 f Ha Hb Hc) = apd0111 (λa b c, (g (f a b c))) Ha Hb Hc :=
|
||
by induction Hb; induction Hc using idp_rec_on; reflexivity
|
||
|
||
section squareover
|
||
|
||
variables {A A' : Type} {B : A → Type}
|
||
{a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ : A}
|
||
/-a₀₀-/ {p₁₀ : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/
|
||
{p₀₁ : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂}
|
||
/-a₀₂-/ {p₁₂ : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/
|
||
{p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄}
|
||
/-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/
|
||
{s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁}
|
||
{s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃}
|
||
|
||
{b : B a}
|
||
{b₀₀ : B a₀₀} {b₂₀ : B a₂₀} {b₄₀ : B a₄₀}
|
||
{b₀₂ : B a₀₂} {b₂₂ : B a₂₂} {b₄₂ : B a₄₂}
|
||
{b₀₄ : B a₀₄} {b₂₄ : B a₂₄} {b₄₄ : B a₄₄}
|
||
/-b₀₀-/ {q₁₀ : b₀₀ =[p₁₀] b₂₀} /-b₂₀-/ {q₃₀ : b₂₀ =[p₃₀] b₄₀} /-b₄₀-/
|
||
/-b₀₂-/ {q₁₂ : b₀₂ =[p₁₂] b₂₂} /-b₂₂-/ {q₃₂ : b₂₂ =[p₃₂] b₄₂} /-b₄₂-/
|
||
/-b₀₄-/ {q₁₄ : b₀₄ =[p₁₄] b₂₄} /-b₂₄-/ {q₃₄ : b₂₄ =[p₃₄] b₄₄} /-b₄₄-/
|
||
{q₀₁ : b₀₀ =[p₀₁] b₀₂} /-t₁₁-/ {q₂₁ : b₂₀ =[p₂₁] b₂₂} /-t₃₁-/ {q₄₁ : b₄₀ =[p₄₁] b₄₂}
|
||
{q₀₃ : b₀₂ =[p₀₃] b₀₄} /-t₁₃-/ {q₂₃ : b₂₂ =[p₂₃] b₂₄} /-t₃₃-/ {q₄₃ : b₄₂ =[p₄₃] b₄₄}
|
||
|
||
definition move_right_of_top_over {p : a₀₀ = a} {p' : a = a₂₀}
|
||
{s : square p p₁₂ p₀₁ (p' ⬝ p₂₁)} {q : b₀₀ =[p] b} {q' : b =[p'] b₂₀}
|
||
(t : squareover B (move_top_of_right s) (q ⬝o q') q₁₂ q₀₁ q₂₁) :
|
||
squareover B s q q₁₂ q₀₁ (q' ⬝o q₂₁) :=
|
||
begin induction q', induction q, induction q₂₁, exact t end
|
||
|
||
/- TODO: replace the version in the library by this -/
|
||
definition hconcato_pathover' {p : a₂₀ = a₂₂} {sp : p = p₂₁} {s : square p₁₀ p₁₂ p₀₁ p}
|
||
{q : b₂₀ =[p] b₂₂} (t₁₁ : squareover B (s ⬝hp sp) q₁₀ q₁₂ q₀₁ q₂₁)
|
||
(r : change_path sp q = q₂₁) : squareover B s q₁₀ q₁₂ q₀₁ q :=
|
||
by induction sp; induction r; exact t₁₁
|
||
|
||
variables (s₁₁ q₀₁ q₁₀ q₂₁ q₁₂)
|
||
definition squareover_fill_t : Σ (q : b₀₀ =[p₁₀] b₂₀), squareover B s₁₁ q q₁₂ q₀₁ q₂₁ :=
|
||
begin
|
||
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₂₁ using idp_rec_on,
|
||
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
|
||
end
|
||
|
||
definition squareover_fill_b : Σ (q : b₀₂ =[p₁₂] b₂₂), squareover B s₁₁ q₁₀ q q₀₁ q₂₁ :=
|
||
begin
|
||
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₂₁ using idp_rec_on,
|
||
induction q₁₀ using idp_rec_on, exact ⟨idpo, idso⟩
|
||
end
|
||
|
||
definition squareover_fill_l : Σ (q : b₀₀ =[p₀₁] b₀₂), squareover B s₁₁ q₁₀ q₁₂ q q₂₁ :=
|
||
begin
|
||
induction s₁₁, induction q₁₀ using idp_rec_on, induction q₂₁ using idp_rec_on,
|
||
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
|
||
end
|
||
|
||
definition squareover_fill_r : Σ (q : b₂₀ =[p₂₁] b₂₂) , squareover B s₁₁ q₁₀ q₁₂ q₀₁ q :=
|
||
begin
|
||
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₁₀ using idp_rec_on,
|
||
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
|
||
end
|
||
|
||
|
||
end squareover
|
||
|
||
/- move this to types.eq, and replace the proof there -/
|
||
section
|
||
parameters {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a))
|
||
(c₀ : code a₀)
|
||
include H c₀
|
||
protected definition encode2 {a : A} (q : a₀ = a) : code a :=
|
||
transport code q c₀
|
||
|
||
protected definition decode2' {a : A} (c : code a) : a₀ = a :=
|
||
have ⟨a₀, c₀⟩ = ⟨a, c⟩ :> Σa, code a, from !is_prop.elim,
|
||
this..1
|
||
|
||
protected definition decode2 {a : A} (c : code a) : a₀ = a :=
|
||
(decode2' c₀)⁻¹ ⬝ decode2' c
|
||
|
||
open sigma.ops
|
||
definition total_space_method2 (a : A) : (a₀ = a) ≃ code a :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ exact encode2 },
|
||
{ exact decode2 },
|
||
{ intro c, unfold [encode2, decode2, decode2'],
|
||
rewrite [is_prop_elim_self, ▸*, idp_con],
|
||
apply tr_eq_of_pathover, apply eq_pr2 },
|
||
{ intro q, induction q, esimp, apply con.left_inv, },
|
||
end
|
||
end
|
||
|
||
definition total_space_method2_refl {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a))
|
||
(c₀ : code a₀) : total_space_method2 a₀ code H c₀ a₀ idp = c₀ :=
|
||
begin
|
||
reflexivity
|
||
end
|
||
|
||
section hsquare
|
||
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
|
||
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
|
||
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
|
||
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
|
||
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
|
||
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
|
||
|
||
definition trunc_functor_hsquare (n : ℕ₋₂) (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
hsquare (trunc_functor n f₁₀) (trunc_functor n f₁₂)
|
||
(trunc_functor n f₀₁) (trunc_functor n f₂₁) :=
|
||
λa, !trunc_functor_compose⁻¹ ⬝ trunc_functor_homotopy n h a ⬝ !trunc_functor_compose
|
||
|
||
attribute hhconcat hvconcat [unfold_full]
|
||
|
||
definition rfl_hhconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyh q ~ q :=
|
||
homotopy.rfl
|
||
|
||
definition hhconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyh homotopy.rfl ~ q :=
|
||
λx, !idp_con ⬝ ap_id (q x)
|
||
|
||
definition rfl_hvconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyv q ~ q :=
|
||
λx, !idp_con
|
||
|
||
definition hvconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyv homotopy.rfl ~ q :=
|
||
λx, !ap_id
|
||
|
||
end hsquare
|
||
definition homotopy_group_succ_in_natural (n : ℕ) {A B : Type*} (f : A →* B) :
|
||
hsquare (homotopy_group_succ_in A n) (homotopy_group_succ_in B n) (π→[n+1] f) (π→[n] (Ω→ f)) :=
|
||
trunc_functor_hsquare _ (loopn_succ_in_natural n f)⁻¹*
|
||
|
||
definition homotopy2.refl {A} {B : A → Type} {C : Π⦃a⦄, B a → Type} (f : Πa (b : B a), C b) :
|
||
f ~2 f :=
|
||
λa b, idp
|
||
|
||
definition homotopy2.rfl [refl] {A} {B : A → Type} {C : Π⦃a⦄, B a → Type}
|
||
{f : Πa (b : B a), C b} : f ~2 f :=
|
||
λa b, idp
|
||
|
||
definition homotopy3.refl {A} {B : A → Type} {C : Πa, B a → Type}
|
||
{D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} (f : Πa b (c : C a b), D c) : f ~3 f :=
|
||
λa b c, idp
|
||
|
||
definition homotopy3.rfl {A} {B : A → Type} {C : Πa, B a → Type}
|
||
{D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} {f : Πa b (c : C a b), D c} : f ~3 f :=
|
||
λa b c, idp
|
||
|
||
definition eq_tr_of_pathover_con_tr_eq_of_pathover {A : Type} {B : A → Type}
|
||
{a₁ a₂ : A} (p : a₁ = a₂) {b₁ : B a₁} {b₂ : B a₂} (q : b₁ =[p] b₂) :
|
||
eq_tr_of_pathover q ⬝ tr_eq_of_pathover q⁻¹ᵒ = idp :=
|
||
by induction q; reflexivity
|
||
|
||
end eq open eq
|
||
|
||
namespace nat
|
||
|
||
protected definition rec_down (P : ℕ → Type) (s : ℕ) (H0 : P s) (Hs : Πn, P (n+1) → P n) : P 0 :=
|
||
begin
|
||
induction s with s IH,
|
||
{ exact H0 },
|
||
{ exact IH (Hs s H0) }
|
||
end
|
||
|
||
definition rec_down_le (P : ℕ → Type) (s : ℕ) (H0 : Πn, s ≤ n → P n) (Hs : Πn, P (n+1) → P n)
|
||
: Πn, P n :=
|
||
begin
|
||
induction s with s IH: intro n,
|
||
{ exact H0 n (zero_le n) },
|
||
{ apply IH, intro n' H, induction H with n' H IH2, apply Hs, exact H0 _ !le.refl,
|
||
exact H0 _ (succ_le_succ H) }
|
||
end
|
||
|
||
definition rec_down_le_univ {P : ℕ → Type} {s : ℕ} {H0 : Π⦃n⦄, s ≤ n → P n}
|
||
{Hs : Π⦃n⦄, P (n+1) → P n} (Q : Π⦃n⦄, P n → P (n + 1) → Type)
|
||
(HQ0 : Πn (H : s ≤ n), Q (H0 H) (H0 (le.step H))) (HQs : Πn (p : P (n+1)), Q (Hs p) p) :
|
||
Πn, Q (rec_down_le P s H0 Hs n) (rec_down_le P s H0 Hs (n + 1)) :=
|
||
begin
|
||
induction s with s IH: intro n,
|
||
{ apply HQ0 },
|
||
{ apply IH, intro n' H, induction H with n' H IH2,
|
||
{ esimp, apply HQs },
|
||
{ apply HQ0 }}
|
||
end
|
||
|
||
definition rec_down_le_beta_ge (P : ℕ → Type) (s : ℕ) (H0 : Πn, s ≤ n → P n)
|
||
(Hs : Πn, P (n+1) → P n) (n : ℕ) (Hn : s ≤ n) : rec_down_le P s H0 Hs n = H0 n Hn :=
|
||
begin
|
||
revert n Hn, induction s with s IH: intro n Hn,
|
||
{ exact ap (H0 n) !is_prop.elim },
|
||
{ have Hn' : s ≤ n, from le.trans !self_le_succ Hn,
|
||
refine IH _ _ Hn' ⬝ _,
|
||
induction Hn' with n Hn' IH',
|
||
{ exfalso, exact not_succ_le_self Hn },
|
||
{ exact ap (H0 (succ n)) !is_prop.elim }}
|
||
end
|
||
|
||
definition rec_down_le_beta_lt (P : ℕ → Type) (s : ℕ) (H0 : Πn, s ≤ n → P n)
|
||
(Hs : Πn, P (n+1) → P n) (n : ℕ) (Hn : n < s) :
|
||
rec_down_le P s H0 Hs n = Hs n (rec_down_le P s H0 Hs (n+1)) :=
|
||
begin
|
||
revert n Hn, induction s with s IH: intro n Hn,
|
||
{ exfalso, exact not_succ_le_zero n Hn },
|
||
{ have Hn' : n ≤ s, from le_of_succ_le_succ Hn,
|
||
--esimp [rec_down_le],
|
||
exact sorry
|
||
-- induction Hn' with s Hn IH,
|
||
-- { },
|
||
-- { }
|
||
}
|
||
end
|
||
|
||
/- this generalizes iterate_commute -/
|
||
definition iterate_hsquare {A B : Type} {f : A → A} {g : B → B}
|
||
(h : A → B) (p : hsquare f g h h) (n : ℕ) : hsquare (f^[n]) (g^[n]) h h :=
|
||
begin
|
||
induction n with n q,
|
||
exact homotopy.rfl,
|
||
exact q ⬝htyh p
|
||
end
|
||
|
||
definition iterate_equiv2 {A : Type} {C : A → Type} (f : A → A) (h : Πa, C a ≃ C (f a))
|
||
(k : ℕ) (a : A) : C a ≃ C (f^[k] a) :=
|
||
begin induction k with k IH, reflexivity, exact IH ⬝e h (f^[k] a) end
|
||
|
||
|
||
|
||
/- replace proof of le_of_succ_le by this -/
|
||
definition le_step_left {n m : ℕ} (H : succ n ≤ m) : n ≤ m :=
|
||
by induction H with H m H'; exact le_succ n; exact le.step H'
|
||
|
||
/- TODO: make proof of le_succ_of_le simpler -/
|
||
|
||
definition nat.add_le_add_left2 {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m :=
|
||
by induction H with m H H₂; reflexivity; exact le.step H₂
|
||
|
||
end nat
|
||
|
||
|
||
namespace trunc_index
|
||
open is_conn nat trunc is_trunc
|
||
lemma minus_two_add_plus_two (n : ℕ₋₂) : -2+2+n = n :=
|
||
by induction n with n p; reflexivity; exact ap succ p
|
||
|
||
protected definition of_nat_monotone {n k : ℕ} : n ≤ k → of_nat n ≤ of_nat k :=
|
||
begin
|
||
intro H, induction H with k H K,
|
||
{ apply le.tr_refl },
|
||
{ apply le.step K }
|
||
end
|
||
|
||
lemma add_plus_two_comm (n k : ℕ₋₂) : n +2+ k = k +2+ n :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact minus_two_add_plus_two k },
|
||
{ exact !succ_add_plus_two ⬝ ap succ IH}
|
||
end
|
||
|
||
lemma sub_one_add_plus_two_sub_one (n m : ℕ) : n.-1 +2+ m.-1 = of_nat (n + m) :=
|
||
begin
|
||
induction m with m IH,
|
||
{ reflexivity },
|
||
{ exact ap succ IH }
|
||
end
|
||
|
||
end trunc_index
|
||
|
||
namespace int
|
||
|
||
private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n :=
|
||
le.intro (
|
||
calc n + 1 + -[1+ k] + k
|
||
= n + 1 + (-(k + 1)) + k : by reflexivity
|
||
... = n + 1 + (- 1 - k) + k : by krewrite (neg_add_rev k 1)
|
||
... = n + 1 + (- 1 - k + k) : add.assoc
|
||
... = n + 1 + (- 1 + -k + k) : by reflexivity
|
||
... = n + 1 + (- 1 + (-k + k)) : add.assoc
|
||
... = n + 1 + (- 1 + 0) : add.left_inv
|
||
... = n + (1 + (- 1 + 0)) : add.assoc
|
||
... = n : int.add_zero)
|
||
|
||
private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k :=
|
||
le.intro (
|
||
calc -[1+ n] + 1 + k + n
|
||
= - (n + 1) + 1 + k + n : by reflexivity
|
||
... = -n - 1 + 1 + k + n : by rewrite (neg_add n 1)
|
||
... = -n + (- 1 + 1) + k + n : by krewrite (int.add_assoc (-n) (- 1) 1)
|
||
... = -n + 0 + k + n : add.left_inv 1
|
||
... = -n + k + n : int.add_zero
|
||
... = k + -n + n : int.add_comm
|
||
... = k + (-n + n) : int.add_assoc
|
||
... = k + 0 : add.left_inv n
|
||
... = k : int.add_zero)
|
||
|
||
open trunc_index
|
||
/-
|
||
The function from integers to truncation indices which sends
|
||
positive numbers to themselves, and negative numbers to negative
|
||
2. In particular -1 is sent to -2, but since we only work with
|
||
pointed types, that doesn't matter for us -/
|
||
definition maxm2 [unfold 1] : ℤ → ℕ₋₂ :=
|
||
λ n, int.cases_on n trunc_index.of_nat (λk, -2)
|
||
|
||
-- we also need the max -1 - function
|
||
definition maxm1 [unfold 1] : ℤ → ℕ₋₂ :=
|
||
λ n, int.cases_on n trunc_index.of_nat (λk, -1)
|
||
|
||
definition maxm2_le_maxm1 (n : ℤ) : maxm2 n ≤ maxm1 n :=
|
||
begin
|
||
induction n with n n,
|
||
{ exact le.tr_refl n },
|
||
{ exact minus_two_le -1 }
|
||
end
|
||
|
||
-- the is maxm1 minus 1
|
||
definition maxm1m1 [unfold 1] : ℤ → ℕ₋₂ :=
|
||
λ n, int.cases_on n (λ k, k.-1) (λ k, -2)
|
||
|
||
definition maxm1_eq_succ (n : ℤ) : maxm1 n = (maxm1m1 n).+1 :=
|
||
begin
|
||
induction n with n n,
|
||
{ reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition maxm2_le_maxm0 (n : ℤ) : maxm2 n ≤ max0 n :=
|
||
begin
|
||
induction n with n n,
|
||
{ exact le.tr_refl n },
|
||
{ exact minus_two_le 0 }
|
||
end
|
||
|
||
definition max0_le_of_le {n : ℤ} {m : ℕ} (H : n ≤ of_nat m)
|
||
: nat.le (max0 n) m :=
|
||
begin
|
||
induction n with n n,
|
||
{ exact le_of_of_nat_le_of_nat H },
|
||
{ exact nat.zero_le m }
|
||
end
|
||
|
||
definition not_neg_succ_le_of_nat {n m : ℕ} : ¬m ≤ -[1+n] :=
|
||
by cases m: exact id
|
||
|
||
definition maxm2_monotone {n m : ℤ} (H : n ≤ m) : maxm2 n ≤ maxm2 m :=
|
||
begin
|
||
induction n with n n,
|
||
{ induction m with m m,
|
||
{ apply of_nat_le_of_nat, exact le_of_of_nat_le_of_nat H },
|
||
{ exfalso, exact not_neg_succ_le_of_nat H }},
|
||
{ apply minus_two_le }
|
||
end
|
||
|
||
definition sub_nat_le (n : ℤ) (m : ℕ) : n - m ≤ n :=
|
||
le.intro !sub_add_cancel
|
||
|
||
definition sub_nat_lt (n : ℤ) (m : ℕ) : n - m < n + 1 :=
|
||
add_le_add_right (sub_nat_le n m) 1
|
||
|
||
definition sub_one_le (n : ℤ) : n - 1 ≤ n :=
|
||
sub_nat_le n 1
|
||
|
||
definition le_add_nat (n : ℤ) (m : ℕ) : n ≤ n + m :=
|
||
le.intro rfl
|
||
|
||
definition le_add_one (n : ℤ) : n ≤ n + 1:=
|
||
le_add_nat n 1
|
||
|
||
open trunc_index
|
||
|
||
definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) :=
|
||
begin
|
||
rewrite [-(maxm1_eq_succ n)],
|
||
induction n with n n,
|
||
{ induction k with k k,
|
||
{ induction k with k IH,
|
||
{ apply le.tr_refl },
|
||
{ exact succ_le_succ IH } },
|
||
{ exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₁)
|
||
(maxm2_le_maxm1 n) } },
|
||
{ krewrite (add_plus_two_comm -1 (maxm1m1 k)),
|
||
rewrite [-(maxm1_eq_succ k)],
|
||
exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₂)
|
||
(maxm2_le_maxm1 k) }
|
||
end
|
||
|
||
end int open int
|
||
|
||
namespace pmap
|
||
|
||
/- rename: pmap_eta in namespace pointed -/
|
||
definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f :=
|
||
begin induction f, reflexivity end
|
||
|
||
end pmap
|
||
|
||
namespace lift
|
||
|
||
definition is_trunc_plift [instance] [priority 1450] (A : Type*) (n : ℕ₋₂)
|
||
[H : is_trunc n A] : is_trunc n (plift A) :=
|
||
is_trunc_lift A n
|
||
|
||
definition lift_functor2 {A B C : Type} (f : A → B → C) (x : lift A) (y : lift B) : lift C :=
|
||
up (f (down x) (down y))
|
||
|
||
end lift
|
||
|
||
-- definition ppi_eq_equiv_internal : (k = l) ≃ (k ~* l) :=
|
||
-- calc (k = l) ≃ ppi.sigma_char P p₀ k = ppi.sigma_char P p₀ l
|
||
-- : eq_equiv_fn_eq (ppi.sigma_char P p₀) k l
|
||
-- ... ≃ Σ(p : k = l),
|
||
-- pathover (λh, h pt = p₀) (respect_pt k) p (respect_pt l)
|
||
-- : sigma_eq_equiv _ _
|
||
-- ... ≃ Σ(p : k = l),
|
||
-- respect_pt k = ap (λh, h pt) p ⬝ respect_pt l
|
||
-- : sigma_equiv_sigma_right
|
||
-- (λp, eq_pathover_equiv_Fl p (respect_pt k) (respect_pt l))
|
||
-- ... ≃ Σ(p : k = l),
|
||
-- respect_pt k = apd10 p pt ⬝ respect_pt l
|
||
-- : sigma_equiv_sigma_right
|
||
-- (λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)))
|
||
-- ... ≃ Σ(p : k ~ l), respect_pt k = p pt ⬝ respect_pt l
|
||
-- : sigma_equiv_sigma_left' eq_equiv_homotopy
|
||
-- ... ≃ Σ(p : k ~ l), p pt ⬝ respect_pt l = respect_pt k
|
||
-- : sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||
-- ... ≃ (k ~* l) : phomotopy.sigma_char k l
|
||
|
||
namespace pointed
|
||
/- move to pointed -/
|
||
open sigma.ops
|
||
definition pType.sigma_char' [constructor] : pType.{u} ≃ Σ(X : Type.{u}), X :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro X, exact ⟨X, pt⟩ },
|
||
{ intro X, exact pointed.MK X.1 X.2 },
|
||
{ intro x, induction x with X x, reflexivity },
|
||
{ intro x, induction x with X x, reflexivity },
|
||
end
|
||
|
||
definition ap_equiv_eq {X Y : Type} {e e' : X ≃ Y} (p : e ~ e') (x : X) :
|
||
ap (λ(e : X ≃ Y), e x) (equiv_eq p) = p x :=
|
||
begin
|
||
cases e with e He, cases e' with e' He', esimp at *, esimp [equiv_eq],
|
||
refine homotopy.rec_on' p _, intro q, induction q, esimp [equiv_eq', equiv_mk_eq],
|
||
assert H : He = He', apply is_prop.elim, induction H, rewrite [is_prop_elimo_self]
|
||
end
|
||
|
||
definition pequiv.sigma_char_equiv [constructor] (X Y : Type*) :
|
||
(X ≃* Y) ≃ Σ(e : X ≃ Y), e pt = pt :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro e, exact ⟨equiv_of_pequiv e, respect_pt e⟩ },
|
||
{ intro e, exact pequiv_of_equiv e.1 e.2 },
|
||
{ intro e, induction e with e p, fapply sigma_eq,
|
||
apply equiv_eq, reflexivity, esimp,
|
||
apply eq_pathover_constant_right, esimp,
|
||
refine _ ⬝ph vrfl,
|
||
apply ap_equiv_eq },
|
||
{ intro e, apply pequiv_eq, fapply phomotopy.mk, intro x, reflexivity,
|
||
refine !idp_con ⬝ _, reflexivity },
|
||
end
|
||
|
||
definition pequiv.sigma_char_pmap [constructor] (X Y : Type*) :
|
||
(X ≃* Y) ≃ Σ(f : X →* Y), is_equiv f :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro e, exact ⟨ pequiv.to_pmap e , pequiv.to_is_equiv e ⟩ },
|
||
{ intro w, exact pequiv_of_pmap w.1 w.2 },
|
||
{ intro w, induction w with f p, fapply sigma_eq,
|
||
{ reflexivity }, { apply is_prop.elimo } },
|
||
{ intro e, apply pequiv_eq, fapply phomotopy.mk,
|
||
{ intro x, reflexivity },
|
||
{ refine !idp_con ⬝ _, reflexivity } }
|
||
end
|
||
|
||
definition pType_eq_equiv (X Y : Type*) : (X = Y) ≃ (X ≃* Y) :=
|
||
begin
|
||
refine eq_equiv_fn_eq pType.sigma_char' X Y ⬝e !sigma_eq_equiv ⬝e _, esimp,
|
||
transitivity Σ(p : X = Y), cast p pt = pt,
|
||
apply sigma_equiv_sigma_right, intro p, apply pathover_equiv_tr_eq,
|
||
transitivity Σ(e : X ≃ Y), e pt = pt,
|
||
refine sigma_equiv_sigma (eq_equiv_equiv X Y) (λp, equiv.rfl),
|
||
exact (pequiv.sigma_char_equiv X Y)⁻¹ᵉ
|
||
end
|
||
|
||
end pointed open pointed
|
||
|
||
namespace trunc
|
||
open trunc_index sigma.ops
|
||
|
||
definition ptrunctype.sigma_char [constructor] (n : ℕ₋₂) :
|
||
n-Type* ≃ Σ(X : Type*), is_trunc n X :=
|
||
equiv.MK (λX, ⟨ptrunctype.to_pType X, _⟩)
|
||
(λX, ptrunctype.mk (carrier X.1) X.2 pt)
|
||
begin intro X, induction X with X HX, induction X, reflexivity end
|
||
begin intro X, induction X, reflexivity end
|
||
|
||
definition is_embedding_ptrunctype_to_pType (n : ℕ₋₂) : is_embedding (@ptrunctype.to_pType n) :=
|
||
begin
|
||
intro X Y, fapply is_equiv_of_equiv_of_homotopy,
|
||
{ exact eq_equiv_fn_eq (ptrunctype.sigma_char n) _ _ ⬝e subtype_eq_equiv _ _ },
|
||
intro p, induction p, reflexivity
|
||
end
|
||
|
||
definition ptrunctype_eq_equiv {n : ℕ₋₂} (X Y : n-Type*) : (X = Y) ≃ (X ≃* Y) :=
|
||
equiv.mk _ (is_embedding_ptrunctype_to_pType n X Y) ⬝e pType_eq_equiv X Y
|
||
|
||
/- replace trunc_trunc_equiv_left by this -/
|
||
definition trunc_trunc_equiv_left' [constructor] (A : Type) {n m : ℕ₋₂} (H : n ≤ m)
|
||
: trunc n (trunc m A) ≃ trunc n A :=
|
||
begin
|
||
note H2 := is_trunc_of_le (trunc n A) H,
|
||
fapply equiv.MK,
|
||
{ intro x, induction x with x, induction x with x, exact tr x },
|
||
{ exact trunc_functor n tr },
|
||
{ intro x, induction x with x, reflexivity},
|
||
{ intro x, induction x with x, induction x with x, reflexivity}
|
||
end
|
||
|
||
definition is_equiv_ptrunc_functor_ptr [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m)
|
||
: is_equiv (ptrunc_functor n (ptr m A)) :=
|
||
to_is_equiv (trunc_trunc_equiv_left' A H)⁻¹ᵉ
|
||
|
||
definition Prop_eq {P Q : Prop} (H : P ↔ Q) : P = Q :=
|
||
tua (equiv_of_is_prop (iff.mp H) (iff.mpr H))
|
||
|
||
definition trunc_index_equiv_nat [constructor] : ℕ₋₂ ≃ ℕ :=
|
||
equiv.MK add_two sub_two add_two_sub_two sub_two_add_two
|
||
|
||
definition is_set_trunc_index [instance] : is_set ℕ₋₂ :=
|
||
is_trunc_equiv_closed_rev 0 trunc_index_equiv_nat
|
||
|
||
definition is_contr_ptrunc_minus_one (A : Type*) : is_contr (ptrunc -1 A) :=
|
||
is_contr_of_inhabited_prop pt
|
||
|
||
-- TODO: redefine loopn_ptrunc_pequiv
|
||
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) :
|
||
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
|
||
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
|
||
begin
|
||
revert n, induction k with k IH: intro n,
|
||
{ reflexivity },
|
||
{ exact sorry }
|
||
end
|
||
|
||
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
|
||
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id }
|
||
end
|
||
|
||
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
|
||
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
|
||
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ apply idp_con }
|
||
end
|
||
|
||
definition ptrunc_elim_ptr_phomotopy_pid (n : ℕ₋₂) (A : Type*):
|
||
ptrunc.elim n (ptr n A) ~* pid (ptrunc n A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ apply idp_con }
|
||
end
|
||
|
||
definition is_trunc_ptrunc_of_is_trunc [instance] [priority 500] (A : Type*)
|
||
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (ptrunc m A) :=
|
||
is_trunc_trunc_of_is_trunc A n m
|
||
|
||
definition ptrunc_pequiv_ptrunc_of_is_trunc {n m k : ℕ₋₂} {A : Type*}
|
||
(H1 : n ≤ m) (H2 : n ≤ k) (H : is_trunc n A) : ptrunc m A ≃* ptrunc k A :=
|
||
have is_trunc m A, from is_trunc_of_le A H1,
|
||
have is_trunc k A, from is_trunc_of_le A H2,
|
||
pequiv.MK (ptrunc.elim _ (ptr k A)) (ptrunc.elim _ (ptr m A))
|
||
abstract begin
|
||
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
|
||
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
|
||
end end
|
||
abstract begin
|
||
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
|
||
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
|
||
end end
|
||
|
||
definition ptrunc_change_index {k l : ℕ₋₂} (p : k = l) (X : Type*)
|
||
: ptrunc k X ≃* ptrunc l X :=
|
||
pequiv_ap (λ n, ptrunc n X) p
|
||
|
||
definition ptrunc_functor_le {k l : ℕ₋₂} (p : l ≤ k) (X : Type*)
|
||
: ptrunc k X →* ptrunc l X :=
|
||
have is_trunc k (ptrunc l X), from is_trunc_of_le _ p,
|
||
ptrunc.elim _ (ptr l X)
|
||
|
||
definition trunc_index.pred [unfold 1] (n : ℕ₋₂) : ℕ₋₂ :=
|
||
begin cases n with n, exact -2, exact n end
|
||
|
||
/- A more general version of ptrunc_elim_phomotopy, where the proofs of truncatedness might be different -/
|
||
definition ptrunc_elim_phomotopy2 [constructor] (k : ℕ₋₂) {A B : Type*} {f g : A →* B} (H₁ : is_trunc k B)
|
||
(H₂ : is_trunc k B) (p : f ~* g) : @ptrunc.elim k A B H₁ f ~* @ptrunc.elim k A B H₂ g :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x with a, exact p a },
|
||
{ exact to_homotopy_pt p }
|
||
end
|
||
|
||
definition pmap_ptrunc_equiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] :
|
||
(ptrunc n A →* B) ≃ (A →* B) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro g, exact g ∘* ptr n A },
|
||
{ exact ptrunc.elim n },
|
||
{ intro f, apply eq_of_phomotopy, apply ptrunc_elim_ptr },
|
||
{ intro g, apply eq_of_phomotopy,
|
||
exact ptrunc_elim_pcompose n g (ptr n A) ⬝* pwhisker_left g (ptrunc_elim_ptr_phomotopy_pid n A) ⬝*
|
||
pcompose_pid g }
|
||
end
|
||
|
||
definition pmap_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] :
|
||
ppmap (ptrunc n A) B ≃* ppmap A B :=
|
||
pequiv_of_equiv (pmap_ptrunc_equiv n A B) (eq_of_phomotopy (pconst_pcompose (ptr n A)))
|
||
|
||
definition loopn_ptrunc_pequiv_nat (n : ℕ) (k : ℕ) (A : Type*) :
|
||
Ω[k] (ptrunc (n+k) A) ≃* ptrunc n (Ω[k] A) :=
|
||
loopn_pequiv_loopn k (ptrunc_change_index (of_nat_add_of_nat n k)⁻¹ A) ⬝e* loopn_ptrunc_pequiv n k A
|
||
|
||
end trunc open trunc
|
||
|
||
namespace is_trunc
|
||
|
||
open trunc_index is_conn
|
||
|
||
lemma is_trunc_loopn_nat (m n : ℕ) (A : Type*) [H : is_trunc (n + m) A] :
|
||
is_trunc n (Ω[m] A) :=
|
||
@is_trunc_loopn n m A (transport (λk, is_trunc k _) (of_nat_add_of_nat n m)⁻¹ H)
|
||
|
||
lemma is_trunc_loop_nat (n : ℕ) (A : Type*) [H : is_trunc (n + 1) A] :
|
||
is_trunc n (Ω A) :=
|
||
is_trunc_loop A n
|
||
|
||
definition is_trunc_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_trunc n A) : is_trunc m A :=
|
||
transport (λk, is_trunc k A) p H
|
||
|
||
definition is_trunc_succ_succ_of_is_trunc_loop (n : ℕ₋₂) (A : Type*) (H : is_trunc (n.+1) (Ω A))
|
||
(H2 : is_conn 0 A) : is_trunc (n.+2) A :=
|
||
begin
|
||
apply is_trunc_succ_of_is_trunc_loop, apply minus_one_le_succ,
|
||
refine is_conn.elim -1 _ _, exact H
|
||
end
|
||
|
||
lemma is_trunc_of_is_trunc_loopn (m n : ℕ) (A : Type*) (H : is_trunc n (Ω[m] A))
|
||
(H2 : is_conn (m.-1) A) : is_trunc (m + n) A :=
|
||
begin
|
||
revert A H H2; induction m with m IH: intro A H H2,
|
||
{ rewrite [nat.zero_add], exact H },
|
||
rewrite [succ_add],
|
||
apply is_trunc_succ_succ_of_is_trunc_loop,
|
||
{ apply IH,
|
||
{ apply is_trunc_equiv_closed _ !loopn_succ_in },
|
||
apply is_conn_loop },
|
||
exact is_conn_of_le _ (zero_le_of_nat m)
|
||
end
|
||
|
||
lemma is_trunc_of_is_set_loopn (m : ℕ) (A : Type*) (H : is_set (Ω[m] A))
|
||
(H2 : is_conn (m.-1) A) : is_trunc m A :=
|
||
is_trunc_of_is_trunc_loopn m 0 A H H2
|
||
|
||
end is_trunc
|
||
namespace sigma
|
||
open sigma.ops
|
||
|
||
definition sigma_functor2 [constructor] {A₁ A₂ A₃ : Type}
|
||
{B₁ : A₁ → Type} {B₂ : A₂ → Type} {B₃ : A₃ → Type}
|
||
(f : A₁ → A₂ → A₃) (g : Π⦃a₁ a₂⦄, B₁ a₁ → B₂ a₂ → B₃ (f a₁ a₂))
|
||
(x₁ : Σa₁, B₁ a₁) (x₂ : Σa₂, B₂ a₂) : Σa₃, B₃ a₃ :=
|
||
⟨f x₁.1 x₂.1, g x₁.2 x₂.2⟩
|
||
|
||
definition eq.rec_sigma {A : Type} {B : A → Type} {a : A} {b : B a}
|
||
(P : Π⦃a'⦄ {b' : B a'}, ⟨a, b⟩ = ⟨a', b'⟩ → Type)
|
||
(IH : P idp) ⦃a' : A⦄ {b' : B a'} (p : ⟨a, b⟩ = ⟨a', b'⟩) : P p :=
|
||
begin
|
||
apply transport (λp, P p) (to_left_inv !sigma_eq_equiv p),
|
||
generalize !sigma_eq_equiv p, esimp, intro q,
|
||
induction q with q₁ q₂, induction q₂, exact IH
|
||
end
|
||
|
||
definition ap_dpair_eq_dpair_pr {A A' : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} (f : Πa, B a → A') (p : a = a') (q : b =[p] b')
|
||
: ap (λx, f x.1 x.2) (dpair_eq_dpair p q) = apd011 f p q :=
|
||
by induction q; reflexivity
|
||
|
||
definition sigma_eq_equiv_of_is_prop_right [constructor] {A : Type} {B : A → Type} (u v : Σa, B a)
|
||
[H : Π a, is_prop (B a)] : u = v ≃ u.1 = v.1 :=
|
||
!sigma_eq_equiv ⬝e !sigma_equiv_of_is_contr_right
|
||
|
||
definition ap_sigma_pr1 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a))
|
||
(p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..1 = ap f p :=
|
||
by induction p; reflexivity
|
||
|
||
definition ap_sigma_pr2 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a))
|
||
(p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..2 =
|
||
change_path (ap_sigma_pr1 f g p)⁻¹ (pathover_ap C f (apd g p)) :=
|
||
by induction p; reflexivity
|
||
|
||
definition ap_sigma_functor_sigma_eq {A A' : Type} {B : A → Type} {B' : A' → Type}
|
||
{a a' : A} {b : B a} {b' : B a'} (f : A → A') (g : Πa, B a → B' (f a)) (p : a = a') (q : b =[p] b') :
|
||
ap (sigma_functor f g) (sigma_eq p q) = sigma_eq (ap f p) (pathover_ap B' f (apo g q)) :=
|
||
by induction q; reflexivity
|
||
|
||
definition ap_sigma_functor_id_sigma_eq {A : Type} {B B' : A → Type}
|
||
{a a' : A} {b : B a} {b' : B a'} (g : Πa, B a → B' a) (p : a = a') (q : b =[p] b') :
|
||
ap (sigma_functor id g) (sigma_eq p q) = sigma_eq p (apo g q) :=
|
||
by induction q; reflexivity
|
||
|
||
definition sigma_eq_pr2_constant {A B : Type} {a a' : A} {b b' : B} (p : a = a')
|
||
(q : b =[p] b') : ap pr2 (sigma_eq p q) = (eq_of_pathover q) :=
|
||
by induction q; reflexivity
|
||
|
||
definition sigma_eq_pr2_constant2 {A B : Type} {a a' : A} {b b' : B} (p : a = a')
|
||
(q : b = b') : ap pr2 (sigma_eq p (pathover_of_eq p q)) = q :=
|
||
by induction p; induction q; reflexivity
|
||
|
||
definition sigma_eq_concato_eq {A : Type} {B : A → Type} {a a' : A} {b : B a} {b₁ b₂ : B a'}
|
||
(p : a = a') (q : b =[p] b₁) (q' : b₁ = b₂) : sigma_eq p (q ⬝op q') = sigma_eq p q ⬝ ap (dpair a') q' :=
|
||
by induction q'; reflexivity
|
||
|
||
|
||
-- open sigma.ops
|
||
-- definition eq.rec_sigma {A : Type} {B : A → Type} {a₀ : A} {b₀ : B a₀}
|
||
-- {P : Π(a : A) (b : B a), ⟨a₀, b₀⟩ = ⟨a, b⟩ → Type} (H : P a₀ b₀ idp) {a : A} {b : B a}
|
||
-- (p : ⟨a₀, b₀⟩ = ⟨a, b⟩) : P a b p :=
|
||
-- sorry
|
||
|
||
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
||
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
|
||
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
|
||
-- begin
|
||
-- fapply equiv.MK,
|
||
-- { exact pathover_pr1 },
|
||
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
||
-- { intro q, induction q,
|
||
-- have c = c', from !is_prop.elim, induction this,
|
||
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
|
||
-- { esimp, generalize ⟨b, c⟩, intro x q, }
|
||
-- end
|
||
--rexact @(ap pathover_pr1) _ idpo _,
|
||
|
||
definition sigma_functor_compose {A A' A'' : Type} {B : A → Type} {B' : A' → Type}
|
||
{B'' : A'' → Type} {f' : A' → A''} {f : A → A'} (g' : Πa, B' a → B'' (f' a))
|
||
(g : Πa, B a → B' (f a)) (x : Σa, B a) :
|
||
sigma_functor f' g' (sigma_functor f g x) = sigma_functor (f' ∘ f) (λa, g' (f a) ∘ g a) x :=
|
||
begin
|
||
reflexivity
|
||
end
|
||
|
||
definition sigma_functor_homotopy {A A' : Type} {B : A → Type} {B' : A' → Type}
|
||
{f f' : A → A'} {g : Πa, B a → B' (f a)} {g' : Πa, B a → B' (f' a)} (h : f ~ f')
|
||
(k : Πa b, g a b =[h a] g' a b) (x : Σa, B a) : sigma_functor f g x = sigma_functor f' g' x :=
|
||
sigma_eq (h x.1) (k x.1 x.2)
|
||
|
||
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type}
|
||
{B₀₀ : A₀₀ → Type} {B₂₀ : A₂₀ → Type} {B₀₂ : A₀₂ → Type} {B₂₂ : A₂₂ → Type}
|
||
{f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂}
|
||
{g₁₀ : Πa, B₀₀ a → B₂₀ (f₁₀ a)} {g₁₂ : Πa, B₀₂ a → B₂₂ (f₁₂ a)}
|
||
{g₀₁ : Πa, B₀₀ a → B₀₂ (f₀₁ a)} {g₂₁ : Πa, B₂₀ a → B₂₂ (f₂₁ a)}
|
||
|
||
definition sigma_functor_hsquare (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁)
|
||
(k : Πa (b : B₀₀ a), g₂₁ _ (g₁₀ _ b) =[h a] g₁₂ _ (g₀₁ _ b)) :
|
||
hsquare (sigma_functor f₁₀ g₁₀) (sigma_functor f₁₂ g₁₂)
|
||
(sigma_functor f₀₁ g₀₁) (sigma_functor f₂₁ g₂₁) :=
|
||
λx, sigma_functor_compose g₂₁ g₁₀ x ⬝
|
||
sigma_functor_homotopy h k x ⬝
|
||
(sigma_functor_compose g₁₂ g₀₁ x)⁻¹
|
||
|
||
definition sigma_equiv_of_is_embedding_left_fun [constructor] {X Y : Type} {P : Y → Type}
|
||
{f : X → Y} (H : Πy, P y → fiber f y) (v : Σy, P y) : Σx, P (f x) :=
|
||
⟨fiber.point (H v.1 v.2), transport P (point_eq (H v.1 v.2))⁻¹ v.2⟩
|
||
|
||
definition sigma_equiv_of_is_embedding_left_prop [constructor] {X Y : Type} {P : Y → Type}
|
||
(f : X → Y) (Hf : is_embedding f) (HP : Πx, is_prop (P (f x))) (H : Πy, P y → fiber f y) :
|
||
(Σy, P y) ≃ Σx, P (f x) :=
|
||
begin
|
||
apply equiv.MK (sigma_equiv_of_is_embedding_left_fun H) (sigma_functor f (λa, id)),
|
||
{ intro v, induction v with x p, esimp [sigma_equiv_of_is_embedding_left_fun],
|
||
fapply sigma_eq, apply @is_injective_of_is_embedding _ _ f, exact point_eq (H (f x) p),
|
||
apply is_prop.elimo },
|
||
{ intro v, induction v with y p, esimp, fapply sigma_eq, exact point_eq (H y p),
|
||
apply tr_pathover }
|
||
end
|
||
|
||
definition sigma_equiv_of_is_embedding_left_contr [constructor] {X Y : Type} {P : Y → Type}
|
||
(f : X → Y) (Hf : is_embedding f) (HP : Πx, is_contr (P (f x))) (H : Πy, P y → fiber f y) :
|
||
(Σy, P y) ≃ X :=
|
||
sigma_equiv_of_is_embedding_left_prop f Hf _ H ⬝e !sigma_equiv_of_is_contr_right
|
||
|
||
end sigma open sigma
|
||
|
||
namespace group
|
||
|
||
definition isomorphism.MK [constructor] {G H : Group} (φ : G →g H) (ψ : H →g G)
|
||
(p : φ ∘g ψ ~ gid H) (q : ψ ∘g φ ~ gid G) : G ≃g H :=
|
||
isomorphism.mk φ (adjointify φ ψ p q)
|
||
|
||
protected definition homomorphism.sigma_char [constructor]
|
||
(A B : Group) : (A →g B) ≃ Σ(f : A → B), is_mul_hom f :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{intro F, exact ⟨F, _⟩ },
|
||
{intro p, cases p with f H, exact (homomorphism.mk f H) },
|
||
{intro p, cases p, reflexivity },
|
||
{intro F, cases F, reflexivity },
|
||
end
|
||
|
||
definition homomorphism_pathover {A : Type} {a a' : A} (p : a = a')
|
||
{B : A → Group} {C : A → Group} (f : B a →g C a) (g : B a' →g C a')
|
||
(r : homomorphism.φ f =[p] homomorphism.φ g) : f =[p] g :=
|
||
begin
|
||
fapply pathover_of_fn_pathover_fn,
|
||
{ intro a, apply homomorphism.sigma_char },
|
||
{ fapply sigma_pathover, exact r, apply is_prop.elimo }
|
||
end
|
||
|
||
protected definition isomorphism.sigma_char [constructor]
|
||
(A B : Group) : (A ≃g B) ≃ Σ(f : A →g B), is_equiv f :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{intro F, exact ⟨F, _⟩ },
|
||
{intro p, cases p with f H, exact (isomorphism.mk f H) },
|
||
{intro p, cases p, reflexivity },
|
||
{intro F, cases F, reflexivity },
|
||
end
|
||
|
||
definition isomorphism_pathover {A : Type} {a a' : A} (p : a = a')
|
||
{B : A → Group} {C : A → Group} (f : B a ≃g C a) (g : B a' ≃g C a')
|
||
(r : pathover (λa, B a → C a) f p g) : f =[p] g :=
|
||
begin
|
||
fapply pathover_of_fn_pathover_fn,
|
||
{ intro a, apply isomorphism.sigma_char },
|
||
{ fapply sigma_pathover, apply homomorphism_pathover, exact r, apply is_prop.elimo }
|
||
end
|
||
|
||
-- definition is_equiv_isomorphism
|
||
|
||
|
||
-- some extra instances for type class inference
|
||
-- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G))
|
||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
-- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' _
|
||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
-- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
definition pgroup_of_Group (X : Group) : pgroup X :=
|
||
pgroup_of_group _ idp
|
||
|
||
definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b :=
|
||
isomorphism_of_eq (ap F p)
|
||
|
||
definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) :=
|
||
calc (a * b) * (c * d) = a * (b * (c * d)) : by exact mul.assoc a b (c * d)
|
||
... = a * ((b * c) * d) : by exact ap (λ bcd, a * bcd) (mul.assoc b c d)⁻¹
|
||
... = a * ((c * b) * d) : by exact ap (λ bc, a * (bc * d)) (mul.comm b c)
|
||
... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d)
|
||
... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹
|
||
|
||
definition homomorphism_comp_compute {G H K : Group} (g : H →g K) (f : G →g H) (x : G) : (g ∘g f) x = g (f x) :=
|
||
begin
|
||
reflexivity
|
||
end
|
||
|
||
open option
|
||
definition add_point_AbGroup [unfold 3] {X : Type} (G : X → AbGroup) : X₊ → AbGroup
|
||
| (some x) := G x
|
||
| none := trivial_ab_group_lift
|
||
|
||
definition isomorphism_of_is_contr {G H : Group} (hG : is_contr G) (hH : is_contr H) : G ≃g H :=
|
||
trivial_group_of_is_contr G ⬝g (trivial_group_of_is_contr H)⁻¹ᵍ
|
||
|
||
definition trunc_isomorphism_of_equiv {A B : Type} [inf_group A] [inf_group B] (f : A ≃ B)
|
||
(h : is_mul_hom f) : Group.mk (trunc 0 A) (trunc_group A) ≃g Group.mk (trunc 0 B) (trunc_group B) :=
|
||
begin
|
||
apply isomorphism_of_equiv (equiv.mk (trunc_functor 0 f) (is_equiv_trunc_functor 0 f)), intros x x',
|
||
induction x with a, induction x' with a', apply ap tr, exact h a a'
|
||
end
|
||
|
||
/----------------- The following are properties for ∞-groups ----------------/
|
||
|
||
local attribute InfGroup_of_Group [coercion]
|
||
|
||
/- left and right actions -/
|
||
definition is_equiv_mul_right_inf [constructor] {A : InfGroup} (a : A) : is_equiv (λb, b * a) :=
|
||
adjointify _ (λb : A, b * a⁻¹) (λb, !inv_mul_cancel_right) (λb, !mul_inv_cancel_right)
|
||
|
||
definition right_action_inf [constructor] {A : InfGroup} (a : A) : A ≃ A :=
|
||
equiv.mk _ (is_equiv_mul_right_inf a)
|
||
|
||
/- homomorphisms -/
|
||
|
||
structure inf_homomorphism (G₁ G₂ : InfGroup) : Type :=
|
||
(φ : G₁ → G₂)
|
||
(p : is_mul_hom φ)
|
||
|
||
infix ` →∞g `:55 := inf_homomorphism
|
||
|
||
abbreviation inf_group_fun [unfold 3] [coercion] [reducible] := @inf_homomorphism.φ
|
||
definition inf_homomorphism.struct [unfold 3] [instance] [priority 900] {G₁ G₂ : InfGroup}
|
||
(φ : G₁ →∞g G₂) : is_mul_hom φ :=
|
||
inf_homomorphism.p φ
|
||
|
||
definition homomorphism_of_inf_homomorphism [constructor] {G H : Group} (φ : G →∞g H) : G →g H :=
|
||
homomorphism.mk φ (inf_homomorphism.struct φ)
|
||
|
||
definition inf_homomorphism_of_homomorphism [constructor] {G H : Group} (φ : G →g H) : G →∞g H :=
|
||
inf_homomorphism.mk φ (homomorphism.struct φ)
|
||
|
||
variables {G G₁ G₂ G₃ : InfGroup} {g h : G₁} {ψ : G₂ →∞g G₃} {φ₁ φ₂ : G₁ →∞g G₂} (φ : G₁ →∞g G₂)
|
||
|
||
definition to_respect_mul_inf /- φ -/ (g h : G₁) : φ (g * h) = φ g * φ h :=
|
||
respect_mul φ g h
|
||
|
||
theorem to_respect_one_inf /- φ -/ : φ 1 = 1 :=
|
||
have φ 1 * φ 1 = φ 1 * 1, by rewrite [-to_respect_mul_inf φ, +mul_one],
|
||
eq_of_mul_eq_mul_left' this
|
||
|
||
theorem to_respect_inv_inf /- φ -/ (g : G₁) : φ g⁻¹ = (φ g)⁻¹ :=
|
||
have φ (g⁻¹) * φ g = 1, by rewrite [-to_respect_mul_inf φ, mul.left_inv, to_respect_one_inf φ],
|
||
eq_inv_of_mul_eq_one this
|
||
|
||
definition pmap_of_inf_homomorphism [constructor] /- φ -/ : G₁ →* G₂ :=
|
||
pmap.mk φ begin esimp, exact to_respect_one_inf φ end
|
||
|
||
definition inf_homomorphism_change_fun [constructor] {G₁ G₂ : InfGroup}
|
||
(φ : G₁ →∞g G₂) (f : G₁ → G₂) (p : φ ~ f) : G₁ →∞g G₂ :=
|
||
inf_homomorphism.mk f
|
||
(λg h, (p (g * h))⁻¹ ⬝ to_respect_mul_inf φ g h ⬝ ap011 mul (p g) (p h))
|
||
|
||
/- categorical structure of groups + homomorphisms -/
|
||
|
||
definition inf_homomorphism_compose [constructor] [trans] [reducible]
|
||
(ψ : G₂ →∞g G₃) (φ : G₁ →∞g G₂) : G₁ →∞g G₃ :=
|
||
inf_homomorphism.mk (ψ ∘ φ) (is_mul_hom_compose _ _)
|
||
|
||
variable (G)
|
||
definition inf_homomorphism_id [constructor] [refl] : G →∞g G :=
|
||
inf_homomorphism.mk (@id G) (is_mul_hom_id G)
|
||
variable {G}
|
||
|
||
abbreviation inf_gid [constructor] := @inf_homomorphism_id
|
||
infixr ` ∘∞g `:75 := inf_homomorphism_compose
|
||
|
||
structure inf_isomorphism (A B : InfGroup) :=
|
||
(to_hom : A →∞g B)
|
||
(is_equiv_to_hom : is_equiv to_hom)
|
||
|
||
infix ` ≃∞g `:25 := inf_isomorphism
|
||
attribute inf_isomorphism.to_hom [coercion]
|
||
attribute inf_isomorphism.is_equiv_to_hom [instance]
|
||
attribute inf_isomorphism._trans_of_to_hom [unfold 3]
|
||
|
||
definition equiv_of_inf_isomorphism [constructor] (φ : G₁ ≃∞g G₂) : G₁ ≃ G₂ :=
|
||
equiv.mk φ _
|
||
|
||
definition pequiv_of_inf_isomorphism [constructor] (φ : G₁ ≃∞g G₂) :
|
||
G₁ ≃* G₂ :=
|
||
pequiv.mk φ begin esimp, exact _ end begin esimp, exact to_respect_one_inf φ end
|
||
|
||
definition inf_isomorphism_of_equiv [constructor] (φ : G₁ ≃ G₂)
|
||
(p : Πg₁ g₂, φ (g₁ * g₂) = φ g₁ * φ g₂) : G₁ ≃∞g G₂ :=
|
||
inf_isomorphism.mk (inf_homomorphism.mk φ p) !to_is_equiv
|
||
|
||
definition inf_isomorphism_of_eq [constructor] {G₁ G₂ : InfGroup} (φ : G₁ = G₂) : G₁ ≃∞g G₂ :=
|
||
inf_isomorphism_of_equiv (equiv_of_eq (ap InfGroup.carrier φ))
|
||
begin intros, induction φ, reflexivity end
|
||
|
||
definition to_ginv_inf [constructor] (φ : G₁ ≃∞g G₂) : G₂ →∞g G₁ :=
|
||
inf_homomorphism.mk φ⁻¹
|
||
abstract begin
|
||
intro g₁ g₂, apply eq_of_fn_eq_fn' φ,
|
||
rewrite [respect_mul φ, +right_inv φ]
|
||
end end
|
||
|
||
variable (G)
|
||
definition inf_isomorphism.refl [refl] [constructor] : G ≃∞g G :=
|
||
inf_isomorphism.mk !inf_gid !is_equiv_id
|
||
variable {G}
|
||
|
||
definition inf_isomorphism.symm [symm] [constructor] (φ : G₁ ≃∞g G₂) : G₂ ≃∞g G₁ :=
|
||
inf_isomorphism.mk (to_ginv_inf φ) !is_equiv_inv
|
||
|
||
definition inf_isomorphism.trans [trans] [constructor] (φ : G₁ ≃∞g G₂) (ψ : G₂ ≃∞g G₃) : G₁ ≃∞g G₃ :=
|
||
inf_isomorphism.mk (ψ ∘∞g φ) !is_equiv_compose
|
||
|
||
definition inf_isomorphism.eq_trans [trans] [constructor]
|
||
{G₁ G₂ : InfGroup} {G₃ : InfGroup} (φ : G₁ = G₂) (ψ : G₂ ≃∞g G₃) : G₁ ≃∞g G₃ :=
|
||
proof inf_isomorphism.trans (inf_isomorphism_of_eq φ) ψ qed
|
||
|
||
definition inf_isomorphism.trans_eq [trans] [constructor]
|
||
{G₁ : InfGroup} {G₂ G₃ : InfGroup} (φ : G₁ ≃∞g G₂) (ψ : G₂ = G₃) : G₁ ≃∞g G₃ :=
|
||
inf_isomorphism.trans φ (inf_isomorphism_of_eq ψ)
|
||
|
||
postfix `⁻¹ᵍ⁸`:(max + 1) := inf_isomorphism.symm
|
||
infixl ` ⬝∞g `:75 := inf_isomorphism.trans
|
||
infixl ` ⬝∞gp `:75 := inf_isomorphism.trans_eq
|
||
infixl ` ⬝∞pg `:75 := inf_isomorphism.eq_trans
|
||
|
||
definition pmap_of_inf_isomorphism [constructor] (φ : G₁ ≃∞g G₂) : G₁ →* G₂ :=
|
||
pequiv_of_inf_isomorphism φ
|
||
|
||
definition to_fun_inf_isomorphism_trans {G H K : InfGroup} (φ : G ≃∞g H) (ψ : H ≃∞g K) :
|
||
φ ⬝∞g ψ ~ ψ ∘ φ :=
|
||
by reflexivity
|
||
|
||
definition inf_homomorphism_mul [constructor] {G H : AbInfGroup} (φ ψ : G →∞g H) : G →∞g H :=
|
||
inf_homomorphism.mk (λg, φ g * ψ g)
|
||
abstract begin
|
||
intro g g', refine ap011 mul !to_respect_mul_inf !to_respect_mul_inf ⬝ _,
|
||
refine !mul.assoc ⬝ ap (mul _) (!mul.assoc⁻¹ ⬝ ap (λx, x * _) !mul.comm ⬝ !mul.assoc) ⬝
|
||
!mul.assoc⁻¹
|
||
end end
|
||
|
||
definition trivial_inf_homomorphism (A B : InfGroup) : A →∞g B :=
|
||
inf_homomorphism.mk (λa, 1) (λa a', (mul_one 1)⁻¹)
|
||
|
||
/- given an equivalence A ≃ B we can transport a group structure on A to a group structure on B -/
|
||
|
||
section
|
||
|
||
parameters {A B : Type} (f : A ≃ B) [inf_group A]
|
||
|
||
definition inf_group_equiv_mul (b b' : B) : B := f (f⁻¹ᶠ b * f⁻¹ᶠ b')
|
||
|
||
definition inf_group_equiv_one : B := f one
|
||
|
||
definition inf_group_equiv_inv (b : B) : B := f (f⁻¹ᶠ b)⁻¹
|
||
|
||
local infix * := inf_group_equiv_mul
|
||
local postfix ^ := inf_group_equiv_inv
|
||
local notation 1 := inf_group_equiv_one
|
||
|
||
theorem inf_group_equiv_mul_assoc (b₁ b₂ b₃ : B) : (b₁ * b₂) * b₃ = b₁ * (b₂ * b₃) :=
|
||
by rewrite [↑inf_group_equiv_mul, +left_inv f, mul.assoc]
|
||
|
||
theorem inf_group_equiv_one_mul (b : B) : 1 * b = b :=
|
||
by rewrite [↑inf_group_equiv_mul, ↑inf_group_equiv_one, left_inv f, one_mul, right_inv f]
|
||
|
||
theorem inf_group_equiv_mul_one (b : B) : b * 1 = b :=
|
||
by rewrite [↑inf_group_equiv_mul, ↑inf_group_equiv_one, left_inv f, mul_one, right_inv f]
|
||
|
||
theorem inf_group_equiv_mul_left_inv (b : B) : b^ * b = 1 :=
|
||
by rewrite [↑inf_group_equiv_mul, ↑inf_group_equiv_one, ↑inf_group_equiv_inv,
|
||
+left_inv f, mul.left_inv]
|
||
|
||
definition inf_group_equiv_closed : inf_group B :=
|
||
⦃inf_group,
|
||
mul := inf_group_equiv_mul,
|
||
mul_assoc := inf_group_equiv_mul_assoc,
|
||
one := inf_group_equiv_one,
|
||
one_mul := inf_group_equiv_one_mul,
|
||
mul_one := inf_group_equiv_mul_one,
|
||
inv := inf_group_equiv_inv,
|
||
mul_left_inv := inf_group_equiv_mul_left_inv⦄
|
||
|
||
end
|
||
|
||
section
|
||
variables {A B : Type} (f : A ≃ B) [ab_inf_group A]
|
||
definition inf_group_equiv_mul_comm (b b' : B) : inf_group_equiv_mul f b b' = inf_group_equiv_mul f b' b :=
|
||
by rewrite [↑inf_group_equiv_mul, mul.comm]
|
||
|
||
definition ab_inf_group_equiv_closed : ab_inf_group B :=
|
||
⦃ab_inf_group, inf_group_equiv_closed f,
|
||
mul_comm := inf_group_equiv_mul_comm f⦄
|
||
end
|
||
|
||
variable (G)
|
||
|
||
/- the trivial ∞-group -/
|
||
open unit
|
||
definition inf_group_unit [constructor] : inf_group unit :=
|
||
inf_group.mk (λx y, star) (λx y z, idp) star (unit.rec idp) (unit.rec idp) (λx, star) (λx, idp)
|
||
|
||
definition ab_inf_group_unit [constructor] : ab_inf_group unit :=
|
||
⦃ab_inf_group, inf_group_unit, mul_comm := λx y, idp⦄
|
||
|
||
definition trivial_inf_group [constructor] : InfGroup :=
|
||
InfGroup.mk _ inf_group_unit
|
||
|
||
definition AbInfGroup_of_InfGroup (G : InfGroup.{u}) (H : Π x y : G, x * y = y * x) :
|
||
AbInfGroup.{u} :=
|
||
begin
|
||
induction G,
|
||
fapply AbInfGroup.mk,
|
||
assumption,
|
||
exact ⦃ab_inf_group, struct', mul_comm := H⦄
|
||
end
|
||
|
||
definition trivial_ab_inf_group : AbInfGroup.{0} :=
|
||
begin
|
||
fapply AbInfGroup_of_InfGroup trivial_inf_group, intro x y, reflexivity
|
||
end
|
||
|
||
definition trivial_inf_group_of_is_contr [H : is_contr G] : G ≃∞g trivial_inf_group :=
|
||
begin
|
||
fapply inf_isomorphism_of_equiv,
|
||
{ apply equiv_unit_of_is_contr},
|
||
{ intros, reflexivity}
|
||
end
|
||
|
||
definition ab_inf_group_of_is_contr (A : Type) [is_contr A] : ab_inf_group A :=
|
||
have ab_inf_group unit, from ab_inf_group_unit,
|
||
ab_inf_group_equiv_closed (equiv_unit_of_is_contr A)⁻¹ᵉ
|
||
|
||
definition inf_group_of_is_contr (A : Type) [is_contr A] : inf_group A :=
|
||
have ab_inf_group A, from ab_inf_group_of_is_contr A, by apply _
|
||
|
||
definition ab_inf_group_lift_unit : ab_inf_group (lift unit) :=
|
||
ab_inf_group_of_is_contr (lift unit)
|
||
|
||
definition trivial_ab_inf_group_lift : AbInfGroup :=
|
||
AbInfGroup.mk _ ab_inf_group_lift_unit
|
||
|
||
definition from_trivial_ab_inf_group (A : AbInfGroup) : trivial_ab_inf_group →∞g A :=
|
||
trivial_inf_homomorphism trivial_ab_inf_group A
|
||
|
||
definition to_trivial_ab_inf_group (A : AbInfGroup) : A →∞g trivial_ab_inf_group :=
|
||
trivial_inf_homomorphism A trivial_ab_inf_group
|
||
|
||
end group open group
|
||
|
||
namespace fiber
|
||
open pointed sigma sigma.ops
|
||
|
||
definition loopn_pfiber [constructor] {A B : Type*} (n : ℕ) (f : A →* B) :
|
||
Ω[n] (pfiber f) ≃* pfiber (Ω→[n] f) :=
|
||
begin
|
||
induction n with n IH, reflexivity, exact loop_pequiv_loop IH ⬝e* loop_pfiber (Ω→[n] f),
|
||
end
|
||
|
||
definition fiber_eq_pr2 {A B : Type} {f : A → B} {b : B} {x y : fiber f b}
|
||
(p : x = y) : point_eq x = ap f (ap point p) ⬝ point_eq y :=
|
||
begin induction p, exact !idp_con⁻¹ end
|
||
|
||
definition fiber_eq_eta {A B : Type} {f : A → B} {b : B} {x y : fiber f b}
|
||
(p : x = y) : p = fiber_eq (ap point p) (fiber_eq_pr2 p) :=
|
||
begin induction p, induction x with a q, induction q, reflexivity end
|
||
|
||
definition fiber_eq_con {A B : Type} {f : A → B} {b : B} {x y z : fiber f b}
|
||
(p1 : point x = point y) (p2 : point y = point z)
|
||
(q1 : point_eq x = ap f p1 ⬝ point_eq y) (q2 : point_eq y = ap f p2 ⬝ point_eq z) :
|
||
fiber_eq p1 q1 ⬝ fiber_eq p2 q2 =
|
||
fiber_eq (p1 ⬝ p2) (q1 ⬝ whisker_left (ap f p1) q2 ⬝ !con.assoc⁻¹ ⬝
|
||
whisker_right (point_eq z) (ap_con f p1 p2)⁻¹) :=
|
||
begin
|
||
induction x with a₁ r₁, induction y with a₂ r₂, induction z with a₃ r₃, esimp at *,
|
||
induction q2 using eq.rec_symm, induction q1 using eq.rec_symm,
|
||
induction p2, induction p1, induction r₃, reflexivity
|
||
end
|
||
|
||
definition fiber_eq_equiv' [constructor] {A B : Type} {f : A → B} {b : B} (x y : fiber f b)
|
||
: (x = y) ≃ (Σ(p : point x = point y), point_eq x = ap f p ⬝ point_eq y) :=
|
||
@equiv_change_inv _ _ (fiber_eq_equiv x y) (λpq, fiber_eq pq.1 pq.2)
|
||
begin intro pq, cases pq, reflexivity end
|
||
|
||
definition is_contr_pfiber_pid (A : Type*) : is_contr (pfiber (pid A)) :=
|
||
is_contr.mk pt begin intro x, induction x with a p, esimp at p, cases p, reflexivity end
|
||
|
||
definition fiber_functor [constructor] {A A' B B' : Type} {f : A → B} {f' : A' → B'} {b : B} {b' : B'}
|
||
(g : A → A') (h : B → B') (H : hsquare g h f f') (p : h b = b') (x : fiber f b) : fiber f' b' :=
|
||
fiber.mk (g (point x)) (H (point x) ⬝ ap h (point_eq x) ⬝ p)
|
||
|
||
definition pfiber_functor [constructor] {A A' B B' : Type*} {f : A →* B} {f' : A' →* B'}
|
||
(g : A →* A') (h : B →* B') (H : psquare g h f f') : pfiber f →* pfiber f' :=
|
||
pmap.mk (fiber_functor g h H (respect_pt h))
|
||
begin
|
||
fapply fiber_eq,
|
||
exact respect_pt g,
|
||
exact !con.assoc ⬝ to_homotopy_pt H
|
||
end
|
||
|
||
definition ppoint_natural {A A' B B' : Type*} {f : A →* B} {f' : A' →* B'}
|
||
(g : A →* A') (h : B →* B') (H : psquare g h f f') :
|
||
psquare (ppoint f) (ppoint f') (pfiber_functor g h H) g :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, reflexivity },
|
||
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, esimp, apply point_fiber_eq }
|
||
end
|
||
|
||
/- if we need this: do pfiber_functor_pcompose and so on first -/
|
||
-- definition psquare_pfiber_functor [constructor] {A₁ A₂ A₃ A₄ B₁ B₂ B₃ B₄ : Type*}
|
||
-- {f₁ : A₁ →* B₁} {f₂ : A₂ →* B₂} {f₃ : A₃ →* B₃} {f₄ : A₄ →* B₄}
|
||
-- {g₁₂ : A₁ →* A₂} {g₃₄ : A₃ →* A₄} {g₁₃ : A₁ →* A₃} {g₂₄ : A₂ →* A₄}
|
||
-- {h₁₂ : B₁ →* B₂} {h₃₄ : B₃ →* B₄} {h₁₃ : B₁ →* B₃} {h₂₄ : B₂ →* B₄}
|
||
-- (H₁₂ : psquare g₁₂ h₁₂ f₁ f₂) (H₃₄ : psquare g₃₄ h₃₄ f₃ f₄)
|
||
-- (H₁₃ : psquare g₁₃ h₁₃ f₁ f₃) (H₂₄ : psquare g₂₄ h₂₄ f₂ f₄)
|
||
-- (G : psquare g₁₂ g₃₄ g₁₃ g₂₄) (H : psquare h₁₂ h₃₄ h₁₃ h₂₄)
|
||
-- /- pcube H₁₂ H₃₄ H₁₃ H₂₄ G H -/ :
|
||
-- psquare (pfiber_functor g₁₂ h₁₂ H₁₂) (pfiber_functor g₃₄ h₃₄ H₃₄)
|
||
-- (pfiber_functor g₁₃ h₁₃ H₁₃) (pfiber_functor g₂₄ h₂₄ H₂₄) :=
|
||
-- begin
|
||
-- fapply phomotopy.mk,
|
||
-- { intro x, induction x with x p, induction B₁ with B₁ b₁₀, induction f₁ with f₁ f₁₀, esimp at *,
|
||
-- induction p, esimp [fiber_functor], },
|
||
-- { }
|
||
-- end
|
||
|
||
-- TODO: use this in pfiber_pequiv_of_phomotopy
|
||
definition fiber_equiv_of_homotopy {A B : Type} {f g : A → B} (h : f ~ g) (b : B)
|
||
: fiber f b ≃ fiber g b :=
|
||
begin
|
||
refine (fiber.sigma_char f b ⬝e _ ⬝e (fiber.sigma_char g b)⁻¹ᵉ),
|
||
apply sigma_equiv_sigma_right, intros a,
|
||
apply equiv_eq_closed_left, apply h
|
||
end
|
||
|
||
definition fiber_equiv_of_square {A B C D : Type} {b : B} {d : D} {f : A → B} {g : C → D} (h : A ≃ C)
|
||
(k : B ≃ D) (s : k ∘ f ~ g ∘ h) (p : k b = d) : fiber f b ≃ fiber g d :=
|
||
calc fiber f b ≃ fiber (k ∘ f) (k b) : fiber.equiv_postcompose
|
||
... ≃ fiber (k ∘ f) d : transport_fiber_equiv (k ∘ f) p
|
||
... ≃ fiber (g ∘ h) d : fiber_equiv_of_homotopy s d
|
||
... ≃ fiber g d : fiber.equiv_precompose
|
||
|
||
definition fiber_equiv_of_triangle {A B C : Type} {b : B} {f : A → B} {g : C → B} (h : A ≃ C)
|
||
(s : f ~ g ∘ h) : fiber f b ≃ fiber g b :=
|
||
fiber_equiv_of_square h erfl s idp
|
||
|
||
definition is_trunc_fun_id (k : ℕ₋₂) (A : Type) : is_trunc_fun k (@id A) :=
|
||
λa, is_trunc_of_is_contr _ _
|
||
|
||
definition is_conn_fun_id (k : ℕ₋₂) (A : Type) : is_conn_fun k (@id A) :=
|
||
λa, _
|
||
|
||
open sigma.ops is_conn
|
||
definition fiber_compose {A B C : Type} (g : B → C) (f : A → B) (c : C) :
|
||
fiber (g ∘ f) c ≃ Σ(x : fiber g c), fiber f (point x) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro x, exact ⟨fiber.mk (f (point x)) (point_eq x), fiber.mk (point x) idp⟩ },
|
||
{ intro x, exact fiber.mk (point x.2) (ap g (point_eq x.2) ⬝ point_eq x.1) },
|
||
{ intro x, induction x with x₁ x₂, induction x₁ with b p, induction x₂ with a q,
|
||
induction p, esimp at q, induction q, reflexivity },
|
||
{ intro x, induction x with a p, induction p, reflexivity }
|
||
end
|
||
|
||
definition is_trunc_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B}
|
||
(Hg : is_trunc_fun k g) (Hf : is_trunc_fun k f) : is_trunc_fun k (g ∘ f) :=
|
||
λc, is_trunc_equiv_closed_rev k (fiber_compose g f c)
|
||
|
||
definition is_conn_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B}
|
||
(Hg : is_conn_fun k g) (Hf : is_conn_fun k f) : is_conn_fun k (g ∘ f) :=
|
||
λc, is_conn_equiv_closed_rev k (fiber_compose g f c) _
|
||
|
||
end fiber open fiber
|
||
|
||
namespace fin
|
||
|
||
definition lift_succ2 [constructor] ⦃n : ℕ⦄ (x : fin n) : fin (nat.succ n) :=
|
||
fin.mk x (le.step (is_lt x))
|
||
|
||
end fin
|
||
|
||
namespace function
|
||
variables {A B : Type} {f f' : A → B}
|
||
open is_conn sigma.ops
|
||
|
||
definition is_contr_of_is_surjective (f : A → B) (H : is_surjective f) (HA : is_contr A)
|
||
(HB : is_set B) : is_contr B :=
|
||
is_contr.mk (f !center) begin intro b, induction H b, exact ap f !is_prop.elim ⬝ p end
|
||
|
||
definition is_surjective_of_is_contr [constructor] (f : A → B) (a : A) (H : is_contr B) :
|
||
is_surjective f :=
|
||
λb, image.mk a !eq_of_is_contr
|
||
|
||
definition is_contr_of_is_embedding (f : A → B) (H : is_embedding f) (HB : is_prop B)
|
||
(a₀ : A) : is_contr A :=
|
||
is_contr.mk a₀ (λa, is_injective_of_is_embedding (is_prop.elim (f a₀) (f a)))
|
||
|
||
definition merely_constant {A B : Type} (f : A → B) : Type :=
|
||
Σb, Πa, merely (f a = b)
|
||
|
||
definition merely_constant_pmap {A B : Type*} {f : A →* B} (H : merely_constant f) (a : A) :
|
||
merely (f a = pt) :=
|
||
tconcat (tconcat (H.2 a) (tinverse (H.2 pt))) (tr (respect_pt f))
|
||
|
||
definition merely_constant_of_is_conn {A B : Type*} (f : A →* B) [is_conn 0 A] : merely_constant f :=
|
||
⟨pt, is_conn.elim -1 _ (tr (respect_pt f))⟩
|
||
|
||
definition homotopy_group_isomorphism_of_is_embedding (n : ℕ) [H : is_succ n] {A B : Type*}
|
||
(f : A →* B) [H2 : is_embedding f] : πg[n] A ≃g πg[n] B :=
|
||
begin
|
||
apply isomorphism.mk (homotopy_group_homomorphism n f),
|
||
induction H with n,
|
||
apply is_equiv_of_equiv_of_homotopy
|
||
(ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn_of_is_embedding (n+1) f)),
|
||
exact sorry
|
||
end
|
||
|
||
end function open function
|
||
|
||
namespace is_conn
|
||
|
||
open unit trunc_index nat is_trunc pointed.ops sigma.ops prod.ops
|
||
|
||
definition is_conn_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_conn n A) : is_conn m A :=
|
||
transport (λk, is_conn k A) p H
|
||
|
||
-- todo: make trunc_equiv_trunc_of_is_conn_fun a def.
|
||
definition ptrunc_pequiv_ptrunc_of_is_conn_fun {A B : Type*} (n : ℕ₋₂) (f : A →* B)
|
||
[H : is_conn_fun n f] : ptrunc n A ≃* ptrunc n B :=
|
||
pequiv_of_pmap (ptrunc_functor n f) (is_equiv_trunc_functor_of_is_conn_fun n f)
|
||
|
||
definition is_conn_zero {A : Type} (a₀ : trunc 0 A) (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A :=
|
||
is_conn_succ_intro a₀ (λa a', is_conn_minus_one _ (p a a'))
|
||
|
||
definition is_conn_zero_pointed {A : Type*} (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A :=
|
||
is_conn_zero (tr pt) p
|
||
|
||
definition is_conn_zero_pointed' {A : Type*} (p : Πa : A, ∥ a = pt ∥) : is_conn 0 A :=
|
||
is_conn_zero_pointed (λa a', tconcat (p a) (tinverse (p a')))
|
||
|
||
definition is_conn_fiber (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B) [is_conn n A]
|
||
[is_conn (n.+1) B] : is_conn n (fiber f b) :=
|
||
is_conn_equiv_closed_rev _ !fiber.sigma_char _
|
||
|
||
definition is_conn_succ_of_is_conn_loop {n : ℕ₋₂} {A : Type*}
|
||
(H : is_conn 0 A) (H2 : is_conn n (Ω A)) : is_conn (n.+1) A :=
|
||
begin
|
||
apply is_conn_succ_intro, exact tr pt,
|
||
intros a a',
|
||
induction merely_of_minus_one_conn (is_conn_eq -1 a a') with p, induction p,
|
||
induction merely_of_minus_one_conn (is_conn_eq -1 pt a) with p, induction p,
|
||
exact H2
|
||
end
|
||
|
||
definition is_conn_fun_compose {n : ℕ₋₂} {A B C : Type} (g : B → C) (f : A → B)
|
||
(H : is_conn_fun n g) (K : is_conn_fun n f) : is_conn_fun n (g ∘ f) :=
|
||
sorry
|
||
|
||
definition pconntype.sigma_char [constructor] (k : ℕ₋₂) :
|
||
Type*[k] ≃ Σ(X : Type*), is_conn k X :=
|
||
equiv.MK (λX, ⟨pconntype.to_pType X, _⟩)
|
||
(λX, pconntype.mk (carrier X.1) X.2 pt)
|
||
begin intro X, induction X with X HX, induction X, reflexivity end
|
||
begin intro X, induction X, reflexivity end
|
||
|
||
definition is_embedding_pconntype_to_pType (k : ℕ₋₂) : is_embedding (@pconntype.to_pType k) :=
|
||
begin
|
||
intro X Y, fapply is_equiv_of_equiv_of_homotopy,
|
||
{ exact eq_equiv_fn_eq (pconntype.sigma_char k) _ _ ⬝e subtype_eq_equiv _ _ },
|
||
intro p, induction p, reflexivity
|
||
end
|
||
|
||
definition pconntype_eq_equiv {k : ℕ₋₂} (X Y : Type*[k]) : (X = Y) ≃ (X ≃* Y) :=
|
||
equiv.mk _ (is_embedding_pconntype_to_pType k X Y) ⬝e pType_eq_equiv X Y
|
||
|
||
definition pconntype_eq {k : ℕ₋₂} {X Y : Type*[k]} (e : X ≃* Y) : X = Y :=
|
||
(pconntype_eq_equiv X Y)⁻¹ᵉ e
|
||
|
||
definition ptruncconntype.sigma_char [constructor] (n k : ℕ₋₂) :
|
||
n-Type*[k] ≃ Σ(X : Type*), is_trunc n X × is_conn k X :=
|
||
equiv.MK (λX, ⟨ptruncconntype._trans_of_to_pconntype_1 X, (_, _)⟩)
|
||
(λX, ptruncconntype.mk (carrier X.1) X.2.1 pt X.2.2)
|
||
begin intro X, induction X with X HX, induction HX, induction X, reflexivity end
|
||
begin intro X, induction X, reflexivity end
|
||
|
||
definition ptruncconntype.sigma_char_pconntype [constructor] (n k : ℕ₋₂) :
|
||
n-Type*[k] ≃ Σ(X : Type*[k]), is_trunc n X :=
|
||
equiv.MK (λX, ⟨ptruncconntype.to_pconntype X, _⟩)
|
||
(λX, ptruncconntype.mk (pconntype._trans_of_to_pType X.1) X.2 pt _)
|
||
begin intro X, induction X with X HX, induction HX, induction X, reflexivity end
|
||
begin intro X, induction X, reflexivity end
|
||
|
||
definition is_embedding_ptruncconntype_to_pconntype (n k : ℕ₋₂) :
|
||
is_embedding (@ptruncconntype.to_pconntype n k) :=
|
||
begin
|
||
intro X Y, fapply is_equiv_of_equiv_of_homotopy,
|
||
{ exact eq_equiv_fn_eq (ptruncconntype.sigma_char_pconntype n k) _ _ ⬝e subtype_eq_equiv _ _ },
|
||
intro p, induction p, reflexivity
|
||
end
|
||
|
||
definition ptruncconntype_eq_equiv {n k : ℕ₋₂} (X Y : n-Type*[k]) : (X = Y) ≃ (X ≃* Y) :=
|
||
equiv.mk _ (is_embedding_ptruncconntype_to_pconntype n k X Y) ⬝e
|
||
pconntype_eq_equiv X Y
|
||
|
||
/- duplicate -/
|
||
definition ptruncconntype_eq {n k : ℕ₋₂} {X Y : n-Type*[k]} (e : X ≃* Y) : X = Y :=
|
||
(ptruncconntype_eq_equiv X Y)⁻¹ᵉ e
|
||
|
||
definition ptruncconntype_functor [constructor] {n n' k k' : ℕ₋₂} (p : n = n') (q : k = k')
|
||
(X : n-Type*[k]) : n'-Type*[k'] :=
|
||
ptruncconntype.mk X (is_trunc_of_eq p _) pt (is_conn_of_eq q _)
|
||
|
||
definition ptruncconntype_equiv [constructor] {n n' k k' : ℕ₋₂} (p : n = n') (q : k = k') :
|
||
n-Type*[k] ≃ n'-Type*[k'] :=
|
||
equiv.MK (ptruncconntype_functor p q) (ptruncconntype_functor p⁻¹ q⁻¹)
|
||
(λX, ptruncconntype_eq pequiv.rfl) (λX, ptruncconntype_eq pequiv.rfl)
|
||
|
||
-- definition is_conn_pfiber_of_equiv_on_homotopy_groups (n : ℕ) {A B : pType.{u}} (f : A →* B)
|
||
-- [H : is_conn 0 A]
|
||
-- (H1 : Πk, k ≤ n → is_equiv (π→[k] f))
|
||
-- (H2 : is_surjective (π→[succ n] f)) :
|
||
-- is_conn n (pfiber f) :=
|
||
-- _
|
||
|
||
-- definition is_conn_pelim [constructor] {k : ℕ} {X : Type*} (Y : Type*) (H : is_conn k X) :
|
||
-- (X →* connect k Y) ≃ (X →* Y) :=
|
||
|
||
/- the k-connected cover of X, the fiber of the map X → ∥X∥ₖ. -/
|
||
definition connect (k : ℕ) (X : Type*) : Type* :=
|
||
pfiber (ptr k X)
|
||
|
||
definition is_conn_connect (k : ℕ) (X : Type*) : is_conn k (connect k X) :=
|
||
is_conn_fun_tr k X (tr pt)
|
||
|
||
definition connconnect [constructor] (k : ℕ) (X : Type*) : Type*[k] :=
|
||
pconntype.mk (connect k X) (is_conn_connect k X) pt
|
||
|
||
definition connect_intro [constructor] {k : ℕ} {X : Type*} {Y : Type*} (H : is_conn k X)
|
||
(f : X →* Y) : X →* connect k Y :=
|
||
pmap.mk (λx, fiber.mk (f x) (is_conn.elim (k.-1) _ (ap tr (respect_pt f)) x))
|
||
begin
|
||
fapply fiber_eq, exact respect_pt f, apply is_conn.elim_β
|
||
end
|
||
|
||
definition ppoint_connect_intro [constructor] {k : ℕ} {X : Type*} {Y : Type*} (H : is_conn k X)
|
||
(f : X →* Y) : ppoint (ptr k Y) ∘* connect_intro H f ~* f :=
|
||
begin
|
||
induction f with f f₀, induction Y with Y y₀, esimp at (f,f₀), induction f₀,
|
||
fapply phomotopy.mk,
|
||
{ intro x, reflexivity },
|
||
{ symmetry, esimp, apply point_fiber_eq }
|
||
end
|
||
|
||
definition connect_intro_ppoint [constructor] {k : ℕ} {X : Type*} {Y : Type*} (H : is_conn k X)
|
||
(f : X →* connect k Y) : connect_intro H (ppoint (ptr k Y) ∘* f) ~* f :=
|
||
begin
|
||
cases f with f f₀,
|
||
fapply phomotopy.mk,
|
||
{ intro x, fapply fiber_eq, reflexivity,
|
||
refine @is_conn.elim (k.-1) _ _ _ (λx', !is_trunc_eq) _ x,
|
||
refine !is_conn.elim_β ⬝ _,
|
||
refine _ ⬝ !idp_con⁻¹,
|
||
symmetry, refine _ ⬝ !con_idp, exact fiber_eq_pr2 f₀ },
|
||
{ esimp, refine whisker_left _ !fiber_eq_eta ⬝ !fiber_eq_con ⬝ apd011 fiber_eq !idp_con _, esimp,
|
||
apply eq_pathover_constant_left,
|
||
refine whisker_right _ (whisker_right _ (whisker_right _ !is_conn.elim_β)) ⬝pv _,
|
||
esimp [connect], refine _ ⬝vp !con_idp,
|
||
apply move_bot_of_left, refine !idp_con ⬝ !con_idp⁻¹ ⬝ph _,
|
||
refine !con.assoc ⬝ !con.assoc ⬝pv _, apply whisker_tl,
|
||
note r := eq_bot_of_square (transpose (whisker_left_idp_square (fiber_eq_pr2 f₀))⁻¹ᵛ),
|
||
refine !con.assoc⁻¹ ⬝ whisker_right _ r⁻¹ ⬝pv _, clear r,
|
||
apply move_top_of_left,
|
||
refine whisker_right_idp (ap_con tr idp (ap point f₀))⁻¹ᵖ ⬝pv _,
|
||
exact (ap_con_idp_left tr (ap point f₀))⁻¹ʰ }
|
||
end
|
||
|
||
definition connect_intro_equiv [constructor] {k : ℕ} {X : Type*} (Y : Type*) (H : is_conn k X) :
|
||
(X →* connect k Y) ≃ (X →* Y) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f, exact ppoint (ptr k Y) ∘* f },
|
||
{ intro g, exact connect_intro H g },
|
||
{ intro g, apply eq_of_phomotopy, exact ppoint_connect_intro H g },
|
||
{ intro f, apply eq_of_phomotopy, exact connect_intro_ppoint H f }
|
||
end
|
||
|
||
definition connect_intro_pequiv [constructor] {k : ℕ} {X : Type*} (Y : Type*) (H : is_conn k X) :
|
||
ppmap X (connect k Y) ≃* ppmap X Y :=
|
||
pequiv_of_equiv (connect_intro_equiv Y H) (eq_of_phomotopy !pcompose_pconst)
|
||
|
||
definition connect_pequiv {k : ℕ} {X : Type*} (H : is_conn k X) : connect k X ≃* X :=
|
||
@pfiber_pequiv_of_is_contr _ _ (ptr k X) H
|
||
|
||
definition loop_connect (k : ℕ) (X : Type*) : Ω (connect (k+1) X) ≃* connect k (Ω X) :=
|
||
loop_pfiber (ptr (k+1) X) ⬝e*
|
||
pfiber_pequiv_of_square pequiv.rfl (loop_ptrunc_pequiv k X)
|
||
(phomotopy_of_phomotopy_pinv_left (ap1_ptr k X))
|
||
|
||
definition loopn_connect (k : ℕ) (X : Type*) : Ω[k+1] (connect k X) ≃* Ω[k+1] X :=
|
||
loopn_pfiber (k+1) (ptr k X) ⬝e*
|
||
@pfiber_pequiv_of_is_contr _ _ _ (@is_contr_loop_of_is_trunc (k+1) _ !is_trunc_trunc)
|
||
|
||
definition is_conn_of_is_conn_succ_nat (n : ℕ) (A : Type) [is_conn (n+1) A] : is_conn n A :=
|
||
is_conn_of_is_conn_succ n A
|
||
|
||
definition connect_functor (k : ℕ) {X Y : Type*} (f : X →* Y) : connect k X →* connect k Y :=
|
||
pfiber_functor f (ptrunc_functor k f) (ptr_natural k f)⁻¹*
|
||
|
||
definition connect_intro_pequiv_natural {k : ℕ} {X X' : Type*} {Y Y' : Type*} (f : X' →* X)
|
||
(g : Y →* Y') (H : is_conn k X) (H' : is_conn k X') :
|
||
psquare (connect_intro_pequiv Y H) (connect_intro_pequiv Y' H')
|
||
(ppcompose_left (connect_functor k g) ∘* ppcompose_right f)
|
||
(ppcompose_left g ∘* ppcompose_right f) :=
|
||
begin
|
||
refine _ ⬝v* _, exact connect_intro_pequiv Y H',
|
||
{ fapply phomotopy.mk,
|
||
{ intro h, apply eq_of_phomotopy, apply passoc },
|
||
{ xrewrite [▸*, pcompose_right_eq_of_phomotopy, pcompose_left_eq_of_phomotopy,
|
||
-+eq_of_phomotopy_trans],
|
||
apply ap eq_of_phomotopy, apply passoc_pconst_middle }},
|
||
{ fapply phomotopy.mk,
|
||
{ intro h, apply eq_of_phomotopy,
|
||
refine !passoc⁻¹* ⬝* pwhisker_right h (ppoint_natural _ _ _) ⬝* !passoc },
|
||
{ xrewrite [▸*, +pcompose_left_eq_of_phomotopy, -+eq_of_phomotopy_trans],
|
||
apply ap eq_of_phomotopy,
|
||
refine !trans_assoc ⬝ idp ◾** !passoc_pconst_right ⬝ _,
|
||
refine !trans_assoc ⬝ idp ◾** !pcompose_pconst_phomotopy ⬝ _,
|
||
apply symm_trans_eq_of_eq_trans, symmetry, apply passoc_pconst_right }}
|
||
end
|
||
|
||
end is_conn
|
||
|
||
namespace misc
|
||
open is_conn
|
||
|
||
open sigma.ops pointed trunc_index
|
||
|
||
/- this is equivalent to pfiber (A → ∥A∥₀) ≡ connect 0 A -/
|
||
definition component [constructor] (A : Type*) : Type* :=
|
||
pType.mk (Σ(a : A), merely (pt = a)) ⟨pt, tr idp⟩
|
||
|
||
lemma is_conn_component [instance] (A : Type*) : is_conn 0 (component A) :=
|
||
is_conn_zero_pointed'
|
||
begin intro x, induction x with a p, induction p with p, induction p, exact tidp end
|
||
|
||
definition component_incl [constructor] (A : Type*) : component A →* A :=
|
||
pmap.mk pr1 idp
|
||
|
||
definition is_embedding_component_incl [instance] (A : Type*) : is_embedding (component_incl A) :=
|
||
is_embedding_pr1 _
|
||
|
||
definition component_intro [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) :
|
||
A →* component B :=
|
||
begin
|
||
fapply pmap.mk,
|
||
{ intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) },
|
||
exact subtype_eq !respect_pt
|
||
end
|
||
|
||
definition component_functor [constructor] {A B : Type*} (f : A →* B) : component A →* component B :=
|
||
component_intro (f ∘* component_incl A) !merely_constant_of_is_conn
|
||
|
||
-- definition component_elim [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) :
|
||
-- A →* component B :=
|
||
-- begin
|
||
-- fapply pmap.mk,
|
||
-- { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) },
|
||
-- exact subtype_eq !respect_pt
|
||
-- end
|
||
|
||
definition loop_component (A : Type*) : Ω (component A) ≃* Ω A :=
|
||
loop_pequiv_loop_of_is_embedding (component_incl A)
|
||
|
||
lemma loopn_component (n : ℕ) (A : Type*) : Ω[n+1] (component A) ≃* Ω[n+1] A :=
|
||
!loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_component A) ⬝e* !loopn_succ_in⁻¹ᵉ*
|
||
|
||
-- lemma fundamental_group_component (A : Type*) : π₁ (component A) ≃g π₁ A :=
|
||
-- isomorphism_of_equiv (trunc_equiv_trunc 0 (loop_component A)) _
|
||
|
||
lemma homotopy_group_component (n : ℕ) (A : Type*) : πg[n+1] (component A) ≃g πg[n+1] A :=
|
||
homotopy_group_isomorphism_of_is_embedding (n+1) (component_incl A)
|
||
|
||
definition is_trunc_component [instance] (n : ℕ₋₂) (A : Type*) [is_trunc n A] :
|
||
is_trunc n (component A) :=
|
||
begin
|
||
apply @is_trunc_sigma, intro a, cases n with n,
|
||
{ apply is_contr_of_inhabited_prop, exact tr !is_prop.elim },
|
||
{ apply is_trunc_succ_of_is_prop },
|
||
end
|
||
|
||
definition ptrunc_component' (n : ℕ₋₂) (A : Type*) :
|
||
ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) :=
|
||
begin
|
||
fapply pequiv.MK',
|
||
{ exact ptrunc.elim (n.+2) (component_functor !ptr) },
|
||
{ intro x, cases x with x p, induction x with a,
|
||
refine tr ⟨a, _⟩,
|
||
note q := trunc_functor -1 !tr_eq_tr_equiv p,
|
||
exact trunc_trunc_equiv_left _ !minus_one_le_succ q },
|
||
{ exact sorry },
|
||
{ exact sorry }
|
||
end
|
||
|
||
definition ptrunc_component (n : ℕ₋₂) (A : Type*) :
|
||
ptrunc n (component A) ≃* component (ptrunc n A) :=
|
||
begin
|
||
cases n with n, exact sorry,
|
||
cases n with n, exact sorry,
|
||
exact ptrunc_component' n A
|
||
end
|
||
|
||
definition break_into_components (A : Type) : A ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ :=
|
||
calc
|
||
A ≃ Σ(a : A) (x : trunc 0 A), tr a = x :
|
||
by exact (@sigma_equiv_of_is_contr_right _ _ (λa, !is_contr_sigma_eq))⁻¹ᵉ
|
||
... ≃ Σ(x : trunc 0 A) (a : A), tr a = x :
|
||
by apply sigma_comm_equiv
|
||
... ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ :
|
||
by exact sigma_equiv_sigma_right (λx, sigma_equiv_sigma_right (λa, !trunc_equiv⁻¹ᵉ))
|
||
|
||
definition pfiber_pequiv_component_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B]
|
||
/- extra condition, something like trunc_functor 0 f is an embedding -/ : pfiber f ≃* component A :=
|
||
sorry
|
||
|
||
end misc
|
||
|
||
namespace sphere
|
||
|
||
-- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S n →* S m) :
|
||
-- f ~* pconst (S n) (S m) :=
|
||
-- begin
|
||
-- assert H : is_contr (Ω[n] (S m)),
|
||
-- { apply homotopy_group_sphere_le, },
|
||
-- apply phomotopy_of_eq,
|
||
-- apply eq_of_fn_eq_fn !sphere_pmap_pequiv,
|
||
-- apply @is_prop.elim
|
||
-- end
|
||
|
||
end sphere
|
||
|
||
section injective_surjective
|
||
open trunc fiber image
|
||
|
||
/- do we want to prove this without funext before we move it? -/
|
||
variables {A B C : Type} (f : A → B)
|
||
definition is_embedding_factor [is_set A] [is_set B] (g : B → C) (h : A → C) (H : g ∘ f ~ h) :
|
||
is_embedding h → is_embedding f :=
|
||
begin
|
||
induction H using homotopy.rec_on_idp,
|
||
intro E,
|
||
fapply is_embedding_of_is_injective,
|
||
intro x y p,
|
||
fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p)
|
||
end
|
||
|
||
definition is_surjective_factor (g : B → C) (h : A → C) (H : g ∘ f ~ h) :
|
||
is_surjective h → is_surjective g :=
|
||
begin
|
||
induction H using homotopy.rec_on_idp,
|
||
intro S,
|
||
intro c,
|
||
note p := S c,
|
||
induction p,
|
||
apply tr,
|
||
fapply fiber.mk,
|
||
exact f a,
|
||
exact p
|
||
end
|
||
|
||
end injective_surjective
|
||
|
||
-- Yuri Sulyma's code from HoTT MRC
|
||
|
||
notation `⅀→`:(max+5) := susp_functor
|
||
notation `⅀⇒`:(max+5) := susp_functor_phomotopy
|
||
notation `Ω⇒`:(max+5) := ap1_phomotopy
|
||
|
||
definition ap1_phomotopy_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : (Ω⇒ p)⁻¹* = Ω⇒ (p⁻¹*) :=
|
||
begin
|
||
induction p using phomotopy_rec_idp,
|
||
rewrite ap1_phomotopy_refl,
|
||
xrewrite [+refl_symm],
|
||
rewrite ap1_phomotopy_refl
|
||
end
|
||
|
||
definition ap1_phomotopy_trans {A B : Type*} {f g h : A →* B} (q : g ~* h) (p : f ~* g) : Ω⇒ (p ⬝* q) = Ω⇒ p ⬝* Ω⇒ q :=
|
||
begin
|
||
induction p using phomotopy_rec_idp,
|
||
induction q using phomotopy_rec_idp,
|
||
rewrite trans_refl,
|
||
rewrite [+ap1_phomotopy_refl],
|
||
rewrite trans_refl
|
||
end
|
||
|
||
|
||
namespace pointed
|
||
|
||
definition pbool_pequiv_add_point_unit [constructor] : pbool ≃* unit₊ :=
|
||
pequiv_of_equiv (bool_equiv_option_unit) idp
|
||
|
||
definition to_homotopy_pt_mk {A B : Type*} {f g : A →* B} (h : f ~ g)
|
||
(p : h pt ⬝ respect_pt g = respect_pt f) : to_homotopy_pt (phomotopy.mk h p) = p :=
|
||
to_right_inv !eq_con_inv_equiv_con_eq p
|
||
|
||
|
||
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
|
||
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
|
||
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
|
||
definition psquare_transpose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ := p⁻¹*
|
||
|
||
end pointed
|
||
|
||
namespace pi
|
||
definition pi_bool_left_nat {A B : bool → Type} (g : Πx, A x -> B x) :
|
||
hsquare (pi_bool_left A) (pi_bool_left B) (pi_functor_right g) (prod_functor (g ff) (g tt)) :=
|
||
begin intro h, esimp end
|
||
|
||
definition pi_bool_left_inv_nat {A B : bool → Type} (g : Πx, A x -> B x) :
|
||
hsquare (pi_bool_left A)⁻¹ᵉ (pi_bool_left B)⁻¹ᵉ (prod_functor (g ff) (g tt)) (pi_functor_right g) := hhinverse (pi_bool_left_nat g)
|
||
|
||
end pi
|
||
|
||
namespace sum
|
||
|
||
infix ` +→ `:62 := sum_functor
|
||
|
||
variables {A₀₀ A₂₀ A₀₂ A₂₂ B₀₀ B₂₀ B₀₂ B₂₂ A A' B B' C C' : Type}
|
||
{f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂}
|
||
{g₁₀ : B₀₀ → B₂₀} {g₁₂ : B₀₂ → B₂₂} {g₀₁ : B₀₀ → B₀₂} {g₂₁ : B₂₀ → B₂₂}
|
||
{h₀₁ : B₀₀ → A₀₂} {h₂₁ : B₂₀ → A₂₂}
|
||
|
||
definition flip_flip (x : A ⊎ B) : flip (flip x) = x :=
|
||
begin induction x: reflexivity end
|
||
|
||
definition sum_rec_hsquare [unfold 16] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁)
|
||
(k : hsquare g₁₀ f₁₂ h₀₁ h₂₁) : hsquare (f₁₀ +→ g₁₀) f₁₂ (sum.rec f₀₁ h₀₁) (sum.rec f₂₁ h₂₁) :=
|
||
begin intro x, induction x with a b, exact h a, exact k b end
|
||
|
||
definition sum_functor_hsquare [unfold 19] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁)
|
||
(k : hsquare g₁₀ g₁₂ g₀₁ g₂₁) : hsquare (f₁₀ +→ g₁₀) (f₁₂ +→ g₁₂) (f₀₁ +→ g₀₁) (f₂₁ +→ g₂₁) :=
|
||
sum_rec_hsquare (λa, ap inl (h a)) (λb, ap inr (k b))
|
||
|
||
definition sum_functor_compose (g : B → C) (f : A → B) (g' : B' → C') (f' : A' → B') :
|
||
(g ∘ f) +→ (g' ∘ f') ~ g +→ g' ∘ f +→ f' :=
|
||
begin intro x, induction x with a a': reflexivity end
|
||
|
||
definition sum_rec_sum_functor (g : B → C) (g' : B' → C) (f : A → B) (f' : A' → B') :
|
||
sum.rec g g' ∘ sum_functor f f' ~ sum.rec (g ∘ f) (g' ∘ f') :=
|
||
begin intro x, induction x with a a': reflexivity end
|
||
|
||
definition sum_rec_same_compose (g : B → C) (f : A → B) :
|
||
sum.rec (g ∘ f) (g ∘ f) ~ g ∘ sum.rec f f :=
|
||
begin intro x, induction x with a a': reflexivity end
|
||
|
||
definition sum_rec_same (f : A → B) :
|
||
sum.rec f f ~ f ∘ sum.rec id id :=
|
||
sum_rec_same_compose f id
|
||
|
||
end sum
|
||
|
||
namespace prod
|
||
|
||
infix ` ×→ `:63 := prod_functor
|
||
infix ` ×≃ `:63 := prod_equiv_prod
|
||
|
||
end prod
|
||
|
||
namespace equiv
|
||
|
||
definition rec_eq_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a')
|
||
{a a' : A} (Q : P a a' → Type) (H : Π(q : a = a'), Q (e a a' q)) :
|
||
Π(p : P a a'), Q p :=
|
||
equiv_rect (e a a') Q H
|
||
|
||
definition rec_idp_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A}
|
||
(r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) ⦃a' : A⦄ (p : P a a') :
|
||
Q a' p :=
|
||
rec_eq_of_equiv e _ begin intro q, induction q, induction s, exact H end p
|
||
|
||
definition rec_idp_of_equiv_idp {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A}
|
||
(r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) :
|
||
rec_idp_of_equiv e r s Q H r = H :=
|
||
begin
|
||
induction s, refine !is_equiv_rect_comp ⬝ _, reflexivity
|
||
end
|
||
|
||
end equiv
|
||
|
||
|
||
namespace paths
|
||
|
||
variables {A : Type} {R : A → A → Type} {a₁ a₂ a₃ a₄ : A}
|
||
inductive all (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
|
||
| nil {} : Π{a : A}, all T (@nil A R a)
|
||
| cons : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} {p : paths R a₁ a₂}, T r → all T p → all T (cons r p)
|
||
|
||
inductive Exists (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
|
||
| base : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} (p : paths R a₁ a₂), T r → Exists T (cons r p)
|
||
| cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, Exists T p → Exists T (cons r p)
|
||
|
||
inductive mem (l : R a₃ a₄) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
|
||
| base : Π{a₂ : A} (p : paths R a₂ a₃), mem l (cons l p)
|
||
| cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, mem l p → mem l (cons r p)
|
||
|
||
definition len (p : paths R a₁ a₂) : ℕ :=
|
||
begin
|
||
induction p with a a₁ a₂ a₃ r p IH,
|
||
{ exact 0 },
|
||
{ exact nat.succ IH }
|
||
end
|
||
|
||
definition mem_equiv_Exists (l : R a₁ a₂) (p : paths R a₃ a₄) :
|
||
mem l p ≃ Exists (λa a' r, ⟨a₁, a₂, l⟩ = ⟨a, a', r⟩) p :=
|
||
sorry
|
||
|
||
end paths
|
||
|
||
namespace list
|
||
open is_trunc trunc sigma.ops prod.ops lift
|
||
variables {A B X : Type}
|
||
|
||
definition foldl_homotopy {f g : A → B → A} (h : f ~2 g) (a : A) : foldl f a ~ foldl g a :=
|
||
begin
|
||
intro bs, revert a, induction bs with b bs p: intro a, reflexivity, esimp [foldl],
|
||
exact p (f a b) ⬝ ap010 (foldl g) (h a b) bs
|
||
end
|
||
|
||
definition cons_eq_cons {x x' : X} {l l' : list X} (p : x::l = x'::l') : x = x' × l = l' :=
|
||
begin
|
||
refine lift.down (list.no_confusion p _), intro q r, split, exact q, exact r
|
||
end
|
||
|
||
definition concat_neq_nil (x : X) (l : list X) : concat x l ≠ nil :=
|
||
begin
|
||
intro p, cases l: cases p,
|
||
end
|
||
|
||
definition concat_eq_singleton {x x' : X} {l : list X} (p : concat x l = [x']) :
|
||
x = x' × l = [] :=
|
||
begin
|
||
cases l with x₂ l,
|
||
{ cases cons_eq_cons p with q r, subst q, split: reflexivity },
|
||
{ exfalso, esimp [concat] at p, apply concat_neq_nil x l, revert p, generalize (concat x l),
|
||
intro l' p, cases cons_eq_cons p with q r, exact r }
|
||
end
|
||
|
||
definition foldr_concat (f : A → B → B) (b : B) (a : A) (l : list A) :
|
||
foldr f b (concat a l) = foldr f (f a b) l :=
|
||
begin
|
||
induction l with a' l p, reflexivity, rewrite [concat_cons, foldr_cons, p]
|
||
end
|
||
|
||
definition iterated_prod (X : Type.{u}) (n : ℕ) : Type.{u} :=
|
||
iterate (prod X) n (lift unit)
|
||
|
||
definition is_trunc_iterated_prod {k : ℕ₋₂} {X : Type} {n : ℕ} (H : is_trunc k X) :
|
||
is_trunc k (iterated_prod X n) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ apply is_trunc_of_is_contr, apply is_trunc_lift },
|
||
{ exact @is_trunc_prod _ _ _ H IH }
|
||
end
|
||
|
||
definition list_of_iterated_prod {n : ℕ} (x : iterated_prod X n) : list X :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact [] },
|
||
{ exact x.1::IH x.2 }
|
||
end
|
||
|
||
definition list_of_iterated_prod_succ {n : ℕ} (x : X) (xs : iterated_prod X n) :
|
||
@list_of_iterated_prod X (succ n) (x, xs) = x::list_of_iterated_prod xs :=
|
||
by reflexivity
|
||
|
||
definition iterated_prod_of_list (l : list X) : Σn, iterated_prod X n :=
|
||
begin
|
||
induction l with x l IH,
|
||
{ exact ⟨0, up ⋆⟩ },
|
||
{ exact ⟨succ IH.1, (x, IH.2)⟩ }
|
||
end
|
||
|
||
definition iterated_prod_of_list_cons (x : X) (l : list X) :
|
||
iterated_prod_of_list (x::l) =
|
||
⟨succ (iterated_prod_of_list l).1, (x, (iterated_prod_of_list l).2)⟩ :=
|
||
by reflexivity
|
||
|
||
protected definition sigma_char [constructor] (X : Type) : list X ≃ Σ(n : ℕ), iterated_prod X n :=
|
||
begin
|
||
apply equiv.MK iterated_prod_of_list (λv, list_of_iterated_prod v.2),
|
||
{ intro x, induction x with n x, esimp, induction n with n IH,
|
||
{ induction x with x, induction x, reflexivity },
|
||
{ revert x, change Π(x : X × iterated_prod X n), _, intro xs, cases xs with x xs,
|
||
rewrite [list_of_iterated_prod_succ, iterated_prod_of_list_cons],
|
||
apply sigma_eq (ap succ (IH xs)..1),
|
||
apply pathover_ap, refine prod_pathover _ _ _ _ (IH xs)..2,
|
||
apply pathover_of_eq, reflexivity }},
|
||
{ intro l, induction l with x l IH,
|
||
{ reflexivity },
|
||
{ exact ap011 cons idp IH }}
|
||
end
|
||
|
||
local attribute [instance] is_trunc_iterated_prod
|
||
definition is_trunc_list [instance] {n : ℕ₋₂} {X : Type} (H : is_trunc (n.+2) X) :
|
||
is_trunc (n.+2) (list X) :=
|
||
begin
|
||
assert H : is_trunc (n.+2) (Σ(k : ℕ), iterated_prod X k),
|
||
{ apply is_trunc_sigma, apply is_trunc_succ_succ_of_is_set,
|
||
intro, exact is_trunc_iterated_prod H },
|
||
apply is_trunc_equiv_closed_rev _ (list.sigma_char X),
|
||
end
|
||
|
||
end list
|
||
|
||
|
||
namespace susp
|
||
open trunc_index
|
||
/- move to freudenthal -/
|
||
definition freudenthal_pequiv_trunc_index' (A : Type*) (n : ℕ) (k : ℕ₋₂) [HA : is_conn n A]
|
||
(H : k ≤ of_nat (2 * n)) : ptrunc k A ≃* ptrunc k (Ω (susp A)) :=
|
||
begin
|
||
assert lem : Π(l : ℕ₋₂), l ≤ 0 → ptrunc l A ≃* ptrunc l (Ω (susp A)),
|
||
{ intro l H', exact ptrunc_pequiv_ptrunc_of_le H' (freudenthal_pequiv A (zero_le (2 * n))) },
|
||
cases k with k, { exact lem -2 (minus_two_le 0) },
|
||
cases k with k, { exact lem -1 (succ_le_succ (minus_two_le -1)) },
|
||
rewrite [-of_nat_add_two at *, add_two_sub_two at HA],
|
||
exact freudenthal_pequiv A (le_of_of_nat_le_of_nat H)
|
||
end
|
||
|
||
end susp
|
||
|
||
/- namespace logic? -/
|
||
namespace decidable
|
||
definition double_neg_elim {A : Type} (H : decidable A) (p : ¬ ¬ A) : A :=
|
||
begin induction H, assumption, contradiction end
|
||
|
||
|
||
definition dite_true {C : Type} [H : decidable C] {A : Type}
|
||
{t : C → A} {e : ¬ C → A} (c : C) (H' : is_prop C) : dite C t e = t c :=
|
||
begin
|
||
induction H with H H,
|
||
exact ap t !is_prop.elim,
|
||
contradiction
|
||
end
|
||
|
||
definition dite_false {C : Type} [H : decidable C] {A : Type}
|
||
{t : C → A} {e : ¬ C → A} (c : ¬ C) : dite C t e = e c :=
|
||
begin
|
||
induction H with H H,
|
||
contradiction,
|
||
exact ap e !is_prop.elim,
|
||
end
|
||
|
||
definition decidable_eq_of_is_prop (A : Type) [is_prop A] : decidable_eq A :=
|
||
λa a', decidable.inl !is_prop.elim
|
||
|
||
definition decidable_eq_sigma [instance] {A : Type} (B : A → Type) [HA : decidable_eq A]
|
||
[HB : Πa, decidable_eq (B a)] : decidable_eq (Σa, B a) :=
|
||
begin
|
||
intro v v', induction v with a b, induction v' with a' b',
|
||
cases HA a a' with p np,
|
||
{ induction p, cases HB a b b' with q nq,
|
||
induction q, exact decidable.inl idp,
|
||
apply decidable.inr, intro p, apply nq, apply @eq_of_pathover_idp A B,
|
||
exact change_path !is_prop.elim p..2 },
|
||
{ apply decidable.inr, intro p, apply np, exact p..1 }
|
||
end
|
||
|
||
open sum
|
||
definition decidable_eq_sum [instance] (A B : Type) [HA : decidable_eq A] [HB : decidable_eq B] :
|
||
decidable_eq (A ⊎ B) :=
|
||
begin
|
||
intro v v', induction v with a b: induction v' with a' b',
|
||
{ cases HA a a' with p np,
|
||
{ exact decidable.inl (ap sum.inl p) },
|
||
{ apply decidable.inr, intro p, cases p, apply np, reflexivity }},
|
||
{ apply decidable.inr, intro p, cases p },
|
||
{ apply decidable.inr, intro p, cases p },
|
||
{ cases HB b b' with p np,
|
||
{ exact decidable.inl (ap sum.inr p) },
|
||
{ apply decidable.inr, intro p, cases p, apply np, reflexivity }},
|
||
end
|
||
end decidable
|
||
|
||
namespace category
|
||
open functor
|
||
/- shortening pullback to pb to keep names relatively short -/
|
||
definition pb_precategory [constructor] {A B : Type} (f : A → B) (C : precategory B) :
|
||
precategory A :=
|
||
precategory.mk (λa a', hom (f a) (f a')) (λa a' a'' h g, h ∘ g) (λa, ID (f a))
|
||
(λa a' a'' a''' k h g, assoc k h g) (λa a' g, id_left g) (λa a' g, id_right g)
|
||
|
||
definition pb_Precategory [constructor] {A : Type} (C : Precategory) (f : A → C) :
|
||
Precategory :=
|
||
Precategory.mk A (pb_precategory f C)
|
||
|
||
definition pb_Precategory_functor [constructor] {A : Type} (C : Precategory) (f : A → C) :
|
||
pb_Precategory C f ⇒ C :=
|
||
functor.mk f (λa a' g, g) proof (λa, idp) qed proof (λa a' a'' h g, idp) qed
|
||
|
||
definition fully_faithful_pb_Precategory_functor {A : Type} (C : Precategory)
|
||
(f : A → C) : fully_faithful (pb_Precategory_functor C f) :=
|
||
begin intro a a', apply is_equiv_id end
|
||
|
||
definition split_essentially_surjective_pb_Precategory_functor {A : Type} (C : Precategory)
|
||
(f : A → C) (H : is_split_surjective f) :
|
||
split_essentially_surjective (pb_Precategory_functor C f) :=
|
||
begin intro c, cases H c with a p, exact ⟨a, iso.iso_of_eq p⟩ end
|
||
|
||
definition is_equivalence_pb_Precategory_functor {A : Type} (C : Precategory)
|
||
(f : A → C) (H : is_split_surjective f) : is_equivalence (pb_Precategory_functor C f) :=
|
||
@(is_equivalence_of_fully_faithful_of_split_essentially_surjective _)
|
||
(fully_faithful_pb_Precategory_functor C f)
|
||
(split_essentially_surjective_pb_Precategory_functor C f H)
|
||
|
||
definition pb_Precategory_equivalence [constructor] {A : Type} (C : Precategory) (f : A → C)
|
||
(H : is_split_surjective f) : pb_Precategory C f ≃c C :=
|
||
equivalence.mk _ (is_equivalence_pb_Precategory_functor C f H)
|
||
|
||
definition pb_Precategory_equivalence_of_equiv [constructor] {A : Type} (C : Precategory)
|
||
(f : A ≃ C) : pb_Precategory C f ≃c C :=
|
||
pb_Precategory_equivalence C f (is_split_surjective_of_is_retraction f)
|
||
|
||
definition is_isomorphism_pb_Precategory_functor [constructor] {A : Type} (C : Precategory)
|
||
(f : A ≃ C) : is_isomorphism (pb_Precategory_functor C f) :=
|
||
(fully_faithful_pb_Precategory_functor C f, to_is_equiv f)
|
||
|
||
definition pb_Precategory_isomorphism [constructor] {A : Type} (C : Precategory) (f : A ≃ C) :
|
||
pb_Precategory C f ≅c C :=
|
||
isomorphism.mk _ (is_isomorphism_pb_Precategory_functor C f)
|
||
|
||
end category
|