Spectral/homology/homology.hlean
2017-06-08 20:09:48 -04:00

149 lines
7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2017 Yuri Sulyma, Favonia
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuri Sulyma, Favonia
Reduced homology theories
-/
import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..choice ..homotopy.pushout ..move_to_lib
open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc
function fwedge cofiber lift is_equiv choice algebra pi smash
namespace homology
/- homology theory -/
structure homology_theory.{u} : Type.{u+1} :=
(HH : → pType.{u} → AbGroup.{u})
(Hh : Π(n : ) {X Y : Type*} (f : X →* Y), HH n X →g HH n Y)
(Hpid : Π(n : ) {X : Type*} (x : HH n X), Hh n (pid X) x = x)
(Hpcompose : Π(n : ) {X Y Z : Type*} (f : Y →* Z) (g : X →* Y),
Hh n (f ∘* g) ~ Hh n f ∘ Hh n g)
(Hpsusp : Π(n : ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X)
(Hpsusp_natural : Π(n : ) {X Y : Type*} (f : X →* Y),
Hpsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hpsusp n X)
(Hexact : Π(n : ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n f) (Hh n (pcod f)))
(Hadditive : Π(n : ) {I : Set.{u}} (X : I → Type*), is_equiv
(dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n ( X)))
structure ordinary_homology_theory.{u} extends homology_theory.{u} : Type.{u+1} :=
(Hdimension : Π(n : ), n ≠ 0 → is_contr (HH n (plift (psphere 0))))
section
parameter (theory : homology_theory)
open homology_theory
theorem HH_base_indep (n : ) {A : Type} (a b : A)
: HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) :=
calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hpsusp theory n (pType.mk A a)) ⁻¹ᵍ
... ≃g HH theory n (pType.mk A b) : by exact Hpsusp theory n (pType.mk A b)
theorem Hh_homotopy' (n : ) {A B : Type*} (f : A → B) (p q : f pt = pt)
: Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x,
calc Hh theory n (pmap.mk f p) x
= Hh theory n (pmap.mk f p) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ᵍ x))
: by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)⁻¹
... = Hpsusp theory n B (Hh theory (succ n) (pmap.mk (susp.functor f) !refl) ((Hpsusp theory n A)⁻¹ x))
: by exact (Hpsusp_natural theory n (pmap.mk f p) ((Hpsusp theory n A)⁻¹ᵍ x))⁻¹
... = Hh theory n (pmap.mk f q) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ x))
: by exact Hpsusp_natural theory n (pmap.mk f q) ((Hpsusp theory n A)⁻¹ x)
... = Hh theory n (pmap.mk f q) x
: by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)
theorem Hh_homotopy (n : ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x,
calc Hh theory n f x
= Hh theory n (pmap.mk f (respect_pt f)) x : by exact ap (λ f, Hh theory n f x) (pmap.eta f)⁻¹
... = Hh theory n (pmap.mk f (h pt ⬝ respect_pt g)) x : by exact Hh_homotopy' n f (respect_pt f) (h pt ⬝ respect_pt g) x
... = Hh theory n g x : by exact ap (λ f, Hh theory n f x) (@pmap_eq _ _ (pmap.mk f (h pt ⬝ respect_pt g)) _ h (refl (h pt ⬝ respect_pt g)))
definition HH_isomorphism (n : ) {A B : Type*} (e : A ≃* B)
: HH theory n A ≃g HH theory n B :=
begin
fapply isomorphism.mk,
{ exact Hh theory n e },
fapply adjointify,
{ exact Hh theory n e⁻¹ᵉ* },
{ intro x, exact calc
Hh theory n e (Hh theory n e⁻¹ᵉ* x)
= Hh theory n (e ∘* e⁻¹ᵉ*) x : by exact (Hpcompose theory n e e⁻¹ᵉ* x)⁻¹
... = Hh theory n !pid x : by exact Hh_homotopy n (e ∘* e⁻¹ᵉ*) !pid (to_right_inv e) x
... = x : by exact Hpid theory n x
},
{ intro x, exact calc
Hh theory n e⁻¹ᵉ* (Hh theory n e x)
= Hh theory n (e⁻¹ᵉ* ∘* e) x : by exact (Hpcompose theory n e⁻¹ᵉ* e x)⁻¹
... = Hh theory n !pid x : by exact Hh_homotopy n (e⁻¹ᵉ* ∘* e) !pid (to_left_inv e) x
... = x : by exact Hpid theory n x
}
end
definition Hfwehce (n : ) {I : Set} (X : I → Type*): HH theory n ( X) ≃g dirsum (λi, HH theory n (X i)) :=
(isomorphism.mk _ (Hadditive theory n X))⁻¹ᵍ
definition Hpwedge (n : ) (A B : Type*) : HH theory n (pwedge A B) ≃g HH theory n A ×g HH theory n B :=
calc HH theory n (pwedge A B) ≃g HH theory n (fwedge (bool.rec A B)) : by exact sorry
... ≃g dirsum (λb, HH theory n (bool.rec A B b)) : by exact sorry
... ≃g HH theory n A ×g HH theory n B : by exact sorry
end
/- homology theory associated to a prespectrum -/
definition homology (X : Type*) (E : prespectrum) (n : ) : AbGroup :=
pshomotopy_group n (smash_prespectrum X E)
/- an alternative definition, which might be a bit harder to work with -/
definition homology_spectrum (X : Type*) (E : spectrum) (n : ) : AbGroup :=
shomotopy_group n (smash_spectrum X E)
definition parametrized_homology {X : Type*} (E : X → spectrum) (n : ) : AbGroup :=
sorry
definition ordinary_homology [reducible] (X : Type*) (G : AbGroup) (n : ) : AbGroup :=
homology X (EM_spectrum G) n
definition ordinary_homology_Z [reducible] (X : Type*) (n : ) : AbGroup :=
ordinary_homology X ag n
notation `H_` n `[`:0 X:0 `, ` E:0 `]`:0 := homology X E n
notation `H_` n `[`:0 X:0 `]`:0 := ordinary_homology_Z X n
notation `pH_` n `[`:0 binders `, ` r:(scoped E, parametrized_homology E n) `]`:0 := r
definition unpointed_homology (X : Type) (E : spectrum) (n : ) : AbGroup :=
H_ n[X₊, E]
definition homology_functor [constructor] {X Y : Type*} {E F : spectrum} (f : X →* Y) (g : E →ₛ F) (n : )
: homology X E n →g homology Y F n :=
pshomotopy_group_fun n (smash_prespectrum_fun f g)
definition homology_theory_spectrum.{u} [constructor] (E : spectrum.{u}) : homology_theory.{u} :=
begin
fapply homology_theory.mk,
exact (λn X, H_ n[X, E]),
exact (λn X Y f, homology_functor f (sid E) n),
exact sorry, -- Hid is uninteresting but potentially very hard to prove
exact sorry,
exact sorry,
exact sorry,
exact sorry,
exact sorry
-- sorry
-- sorry
-- sorry
-- sorry
-- sorry
-- sorry
-- (λn A, H^n[A, Y])
-- (λn A B f, cohomology_isomorphism f Y n)
-- (λn A, cohomology_isomorphism_refl A Y n)
-- (λn A B f, cohomology_functor f Y n)
-- (λn A B f g p, cohomology_functor_phomotopy p Y n)
-- (λn A B f x, cohomology_functor_phomotopy_refl f Y n x)
-- (λn A x, cohomology_functor_pid A Y n x)
-- (λn A B C g f x, cohomology_functor_pcompose g f Y n x)
-- (λn A, cohomology_psusp A Y n)
-- (λn A B f, cohomology_psusp_natural f Y n)
-- (λn A B f, cohomology_exact f Y n)
-- (λn I A H, spectrum_additive H A Y n)
end
end homology