Spectral/homotopy/serre.hlean
Floris van Doorn f54011335d define atiyah-hirzebruch exact couple
this commit also defines str and strunc_elim
proving that the exact couple is bounded, and that it converges to the right this is still todo
2017-07-01 20:02:31 +01:00

95 lines
3.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import ..algebra.module_exact_couple .strunc
open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift equiv is_equiv
/- Eilenberg MacLane spaces are the fibers of the Postnikov system of a type -/
definition postnikov_map [constructor] (A : Type*) (n : ℕ₋₂) : ptrunc (n.+1) A →* ptrunc n A :=
ptrunc.elim (n.+1) !ptr
definition ptrunc_functor_postnikov_map {A B : Type*} (n : ℕ₋₂) (f : A →* B) :
ptrunc_functor n f ∘* postnikov_map A n ~* ptrunc.elim (n.+1) (!ptr ∘* f) :=
begin
fapply phomotopy.mk,
{ intro x, induction x with a, reflexivity },
{ reflexivity }
end
section
open nat is_conn group
definition pfiber_postnikov_map (A : Type*) (n : ) :
pfiber (postnikov_map A n) ≃* EM_type A (n+1) :=
begin
symmetry, apply EM_type_pequiv,
{ symmetry, refine _ ⬝g ghomotopy_group_ptrunc (n+1) A,
exact chain_complex.LES_isomorphism_of_trivial_cod _ _
(trivial_homotopy_group_of_is_trunc _ (self_lt_succ n))
(trivial_homotopy_group_of_is_trunc _ (le_succ _)) },
{ apply is_conn_fun_trunc_elim, apply is_conn_fun_tr },
{ have is_trunc (n+1) (ptrunc n.+1 A), from !is_trunc_trunc,
have is_trunc ((n+1).+1) (ptrunc n A), by do 2 apply is_trunc_succ, apply is_trunc_trunc,
apply is_trunc_pfiber }
end
end
definition postnikov_map_natural {A B : Type*} (f : A →* B) (n : ℕ₋₂) :
psquare (postnikov_map A n) (postnikov_map B n)
(ptrunc_functor (n.+1) f) (ptrunc_functor n f) :=
!ptrunc_functor_postnikov_map ⬝* !ptrunc_elim_ptrunc_functor⁻¹*
definition is_equiv_postnikov_map (A : Type*) {n k : ℕ₋₂} [HA : is_trunc k A] (H : k ≤ n) :
is_equiv (postnikov_map A n) :=
begin
apply is_equiv_of_equiv_of_homotopy
(ptrunc_pequiv_ptrunc_of_is_trunc (trunc_index.le.step H) H HA),
intro x, induction x, reflexivity
end
definition encode_ap1_gen_tr (n : ℕ₋₂) {A : Type*} {a a' : A} (p : a = a') :
trunc.encode (ap1_gen tr idp idp p) = tr p :> trunc n (a = a') :=
by induction p; reflexivity
definition ap1_postnikov_map (A : Type*) (n : ℕ₋₂) :
psquare (Ω→ (postnikov_map A (n.+1))) (postnikov_map (Ω A) n)
(loop_ptrunc_pequiv (n.+1) A) (loop_ptrunc_pequiv n A) :=
have psquare (postnikov_map (Ω A) n) (Ω→ (postnikov_map A (n.+1)))
(loop_ptrunc_pequiv (n.+1) A)⁻¹ᵉ* (loop_ptrunc_pequiv n A)⁻¹ᵉ*,
begin
refine _ ⬝* !ap1_ptrunc_elim⁻¹*, apply pinv_left_phomotopy_of_phomotopy,
fapply phomotopy.mk,
{ intro x, induction x with p, exact !encode_ap1_gen_tr⁻¹ },
{ reflexivity }
end,
this⁻¹ᵛ*
definition is_strunc_strunc_pred (X : spectrum) (k : ) : is_strunc k (strunc (k - 1) X) :=
λn, @(is_trunc_of_le _ (maxm2_monotone (add_le_add_right (sub_one_le k) n))) !is_strunc_strunc
definition postnikov_smap [constructor] (X : spectrum) (k : ) :
strunc k X →ₛ strunc (k - 1) X :=
strunc_elim (str (k - 1) X) (is_strunc_strunc_pred X k)
definition postnikov_smap_phomotopy [constructor] (X : spectrum) (k : ) (n : ) :
postnikov_smap X k n ~* postnikov_map (X n) (maxm2 (k - 1 + n)) ∘*
sorry :=
sorry
section atiyah_hirzebruch
parameters {X : Type*} (Y : X → spectrum) (s₀ : ) (H : Πx, is_strunc s₀ (Y x))
definition atiyah_hirzebruch_exact_couple : exact_couple r Z2 :=
@exact_couple_sequence (λs, strunc s (spi X Y)) (postnikov_smap (spi X Y))
definition is_bounded_atiyah_hirzebruch : is_bounded atiyah_hirzebruch_exact_couple :=
is_bounded_sequence _ s₀ (λn, n - 1)
begin
intro s n H,
exact sorry
end
begin
intro s n H, apply trivial_shomotopy_group_of_is_strunc,
apply is_strunc_strunc,
exact lt_of_le_sub_one H,
end
end atiyah_hirzebruch