Spectral/higher_groups.hlean
2018-01-19 10:07:42 -05:00

184 lines
6.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Ulrik Buchholtz, Egbert Rijke and Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Egbert Rijke, Floris van Doorn
Formalization of the higher groups paper
-/
import .move_to_lib
open eq is_conn pointed is_trunc trunc equiv is_equiv trunc_index susp nat algebra prod.ops sigma sigma.ops
namespace higher_group
set_option pp.binder_types true
/- We require that the carrier has a point (preserved by the equivalence) -/
structure Grp.{u} (n k : ) : Type.{u+1} := /- (n,k)Grp, denoted here as [n;k]Grp -/
(car : ptrunctype.{u} n)
(B : pconntype.{u} (k.-1))
(e : car ≃* Ω[k] B)
structure InfGrp.{u} (k : ) : Type.{u+1} := /- (∞,k)Grp, denoted here as [∞;k]Grp -/
(car : pType.{u})
(B : pconntype.{u} (k.-1))
(e : car ≃* Ω[k] B)
structure ωGrp (n : ) := /- (n,ω)Grp, denoted here as [n;ω]Grp -/
(B : Π(k : ), (n+k)-Type*[k.-1])
(e : Π(k : ), B k ≃* Ω (B (k+1)))
attribute InfGrp.car Grp.car [coercion]
variables {n k l : }
notation `[`:95 n:0 `; ` k `]Grp`:0 := Grp n k
notation `[∞; `:95 k:0 `]Grp`:0 := InfGrp k
notation `[`:95 n:0 `;ω]Grp`:0 := ωGrp n
open Grp
open InfGrp (renaming B→iB e→ie)
open ωGrp (renaming B→oB e→oe)
/- some basic properties -/
lemma is_trunc_B' (G : [n;k]Grp) : is_trunc (k+n) (B G) :=
begin
apply is_trunc_of_is_trunc_loopn,
exact is_trunc_equiv_closed _ (e G),
exact _
end
lemma is_trunc_B (G : [n;k]Grp) : is_trunc (n+k) (B G) :=
transport (λm, is_trunc m (B G)) (add.comm k n) (is_trunc_B' G)
local attribute [instance] is_trunc_B
definition Grp_equiv (n k : ) : [n;k]Grp ≃ (n+k)-Type*[k.-1] :=
let f : Π(B : Type*[k.-1]) (H : Σ(X : n-Type*), X ≃* Ω[k] B), (n+k)-Type*[k.-1] :=
λB' H, ptruncconntype.mk B' (is_trunc_B (Grp.mk H.1 B' H.2)) pt _
in
calc
[n;k]Grp ≃ Σ(B : Type*[k.-1]), Σ(X : n-Type*), X ≃* Ω[k] B : sorry
... ≃ Σ(B : (n+k)-Type*[k.-1]), Σ(X : n-Type*), X ≃* Ω[k] B :
@sigma_equiv_of_is_embedding_left _ _ _ sorry ptruncconntype.to_pconntype sorry
(λB' H, fiber.mk (f B' H) sorry)
... ≃ Σ(B : (n+k)-Type*[k.-1]), Σ(X : n-Type*),
X = ptrunctype_of_pType (Ω[k] B) !is_trunc_loopn_nat :> n-Type* :
sigma_equiv_sigma_right (λB, sigma_equiv_sigma_right (λX, sorry))
... ≃ (n+k)-Type*[k.-1] : sigma_equiv_of_is_contr_right
definition Grp_eq_equiv {n k : } (G H : [n;k]Grp) : (G = H) ≃ (B G ≃* B H) :=
sorry
definition Grp_eq {n k : } {G H : [n;k]Grp} (e : B G ≃* B H) : G = H :=
(Grp_eq_equiv G H)⁻¹ᵉ e
definition InfGrp_equiv (k : ) : [∞;k]Grp ≃ Type*[k.-1] :=
sorry
-- maybe to do: ωGrp ≃ Σ(X : spectrum), is_sconn n X
/- Constructions -/
definition Decat (G : [n+1;k]Grp) : [n;k]Grp :=
Grp.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (B G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (e G) ⬝e* _,
symmetry, exact sorry --!loopn_ptrunc_pequiv
end end
definition Disc (G : [n;k]Grp) : [n+1;k]Grp :=
Grp.mk (ptrunctype.mk G (show is_trunc (n.+1) G, from _) pt) (B G) (e G)
definition Decat_adjoint_Disc (G : [n+1;k]Grp) (H : [n;k]Grp) :
ppmap (B (Decat G)) (B H) ≃* ppmap (B G) (B (Disc H)) :=
pmap_ptrunc_pequiv (n + k) (B G) (B H)
definition Decat_adjoint_Disc_natural {G G' : [n+1;k]Grp} {H H' : [n;k]Grp}
(eG : B G' ≃* B G) (eH : B H ≃* B H') :
psquare (Decat_adjoint_Disc G H)
(Decat_adjoint_Disc G' H')
(ppcompose_left eH ∘* ppcompose_right (ptrunc_functor _ eG))
(ppcompose_left eH ∘* ppcompose_right eG) :=
sorry
definition Decat_Disc (G : [n;k]Grp) : Decat (Disc G) = G :=
Grp_eq !ptrunc_pequiv
definition InfDecat (n : ) (G : [∞;k]Grp) : [n;k]Grp :=
Grp.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (iB G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (ie G) ⬝e* _,
symmetry, exact !loopn_ptrunc_pequiv_nat
end end
definition InfDisc (n : ) (G : [n;k]Grp) : [∞;k]Grp :=
InfGrp.mk G (B G) (e G)
definition InfDecat_adjoint_InfDisc (G : [∞;k]Grp) (H : [n;k]Grp) :
ppmap (B (InfDecat n G)) (B H) ≃* ppmap (iB G) (iB (InfDisc n H)) :=
pmap_ptrunc_pequiv (n + k) (iB G) (B H)
/- To do: naturality -/
definition InfDecat_InfDisc (G : [n;k]Grp) : InfDecat n (InfDisc n G) = G :=
sorry
definition Loop (G : [n+1;k]Grp) : [n;k+1]Grp :=
Grp.mk (ptrunctype.mk (Ω G) !is_trunc_loop_nat pt)
(connconnect k (B G))
(loop_pequiv_loop (e G) ⬝e* (loopn_connect k (B G))⁻¹ᵉ*)
definition Deloop (G : [n;k+1]Grp) : [n+1;k]Grp :=
have is_conn k (B G), from is_conn_pconntype (B G),
have is_trunc (n + (k + 1)) (B G), from is_trunc_B G,
have is_trunc ((n + 1) + k) (B G), from transport (λ(n : ), is_trunc n _) (succ_add n k)⁻¹ this,
Grp.mk (ptrunctype.mk (Ω[k] (B G)) !is_trunc_loopn_nat pt)
(pconntype.mk (B G) !is_conn_of_is_conn_succ pt)
(pequiv_of_equiv erfl idp)
/- to do: adjunction, and Loop ∘ Deloop = id -/
definition Forget (G : [n;k+1]Grp) : [n;k]Grp :=
have is_conn k (B G), from !is_conn_pconntype,
Grp.mk G (pconntype.mk (Ω (B G)) !is_conn_loop pt)
abstract begin
refine e G ⬝e* !loopn_succ_in
end end
definition Stabilize (G : [n;k]Grp) : [n;k+1]Grp :=
have is_conn k (susp (B G)), from !is_conn_susp,
have Hconn : is_conn k (ptrunc (n + k + 1) (susp (B G))), from !is_conn_ptrunc,
Grp.mk (ptrunctype.mk (ptrunc n (Ω[k+1] (susp (B G)))) _ pt)
(pconntype.mk (ptrunc (n+k+1) (susp (B G))) Hconn pt)
abstract begin
refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
apply loopn_pequiv_loopn,
exact ptrunc_change_index !of_nat_add_of_nat _
end end
/- to do: adjunction -/
definition ωForget (k : ) (G : [n;ω]Grp) : [n;k]Grp :=
have is_trunc (n + k) (oB G k), from _,
have is_trunc (n +[ℕ₋₂] k) (oB G k), from transport (λn, is_trunc n _) !of_nat_add_of_nat⁻¹ this,
have is_trunc n (Ω[k] (oB G k)), from !is_trunc_loopn,
Grp.mk (ptrunctype.mk (Ω[k] (oB G k)) _ pt) (oB G k) (pequiv_of_equiv erfl idp)
definition nStabilize.{u} (H : k ≤ l) (G : Grp.{u} n k) : Grp.{u} n l :=
begin
induction H with l H IH, exact G, exact Stabilize IH
end
theorem stabilization (H : k ≥ n + 2) : is_equiv (@Stabilize n k) :=
sorry
definition ωStabilize_of_le (H : k ≥ n + 2) (G : [n;k]Grp) : [n;ω]Grp :=
ωGrp.mk (λl, sorry) (λl, sorry)
/- for l ≤ k we want to define it as Ω[k-l] (B G),
for H : l ≥ k we want to define it as nStabilize H G -/
definition ωStabilize (G : [n;k]Grp) : [n;ω]Grp :=
ωStabilize_of_le !le_max_left (nStabilize !le_max_right G)
/- to do: adjunction (and ωStabilize ∘ ωForget =?= id) -/
end higher_group