Spectral/homotopy/wedge.hlean
Floris van Doorn fffc3cd03a fix after moving stuff to library
also cleanup spectrum.basic a little
2018-09-05 22:56:40 +02:00

270 lines
9.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Authors: Floris van Doorn
import homotopy.wedge homotopy.cofiber ..move_to_lib .pushout
open wedge pushout eq prod sum pointed equiv is_equiv unit lift bool option
namespace wedge
variable (A : Type*)
variables {A}
definition add_point_of_wedge_pbool [unfold 2]
(x : A pbool) : A₊ :=
begin
induction x with a b,
{ exact some a },
{ induction b, exact some pt, exact none },
{ reflexivity }
end
definition wedge_pbool_of_add_point [unfold 2]
(x : A₊) : A pbool :=
begin
induction x with a,
{ exact inr tt },
{ exact inl a }
end
variables (A)
definition wedge_pbool_equiv_add_point [constructor] :
A pbool ≃ A₊ :=
equiv.MK add_point_of_wedge_pbool wedge_pbool_of_add_point
abstract begin
intro x, induction x,
{ reflexivity },
{ reflexivity }
end end
abstract begin
intro x, induction x with a b,
{ reflexivity },
{ induction b, exact wedge.glue, reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose wedge_pbool_of_add_point _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
exact square_of_eq idp }
end end
definition wedge_flip' [unfold 3] {A B : Type*} (x : A B) : B A :=
begin
induction x,
{ exact inr a },
{ exact inl a },
{ exact (glue ⋆)⁻¹ }
end
definition wedge_flip [constructor] (A B : Type*) : A B →* B A :=
pmap.mk wedge_flip' (glue ⋆)⁻¹
definition wedge_flip'_wedge_flip' [unfold 3] {A B : Type*} (x : A B) : wedge_flip' (wedge_flip' x) = x :=
begin
induction x,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right,
apply hdeg_square,
exact ap_compose wedge_flip' _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_inv ⬝ !elim_glue⁻² ⬝ !inv_inv }
end
definition wedge_flip_wedge_flip (A B : Type*) :
wedge_flip B A ∘* wedge_flip A B ~* pid (A B) :=
phomotopy.mk wedge_flip'_wedge_flip'
proof (whisker_right _ (!ap_inv ⬝ !wedge.elim_glue⁻²) ⬝ !con.left_inv)⁻¹ qed
definition wedge_comm [constructor] (A B : Type*) : A B ≃* B A :=
begin
fapply pequiv.MK,
{ exact wedge_flip A B },
{ exact wedge_flip B A },
{ exact wedge_flip_wedge_flip A B },
{ exact wedge_flip_wedge_flip B A }
end
-- TODO: wedge is associative
definition wedge_shift [unfold 3] {A B C : Type*} (x : (A B) C) : (A (B C)) :=
begin
induction x with l,
induction l with a,
exact inl a,
exact inr (inl a),
exact (glue ⋆),
exact inr (inr a),
-- exact elim_glue _ _ _,
exact sorry
end
definition wedge_pequiv [constructor] {A A' B B' : Type*} (a : A ≃* A') (b : B ≃* B') : A B ≃* A' B' :=
begin
fapply pequiv_of_equiv,
exact pushout.equiv !pconst !pconst !pconst !pconst !pequiv.refl a b (λdummy, respect_pt a) (λdummy, respect_pt b),
exact ap pushout.inl (respect_pt a)
end
definition plift_wedge.{u v} (A B : Type*) : plift.{u v} (A B) ≃* plift.{u v} A plift.{u v} B :=
calc plift.{u v} (A B) ≃* A B : by exact !pequiv_plift⁻¹ᵉ*
... ≃* plift.{u v} A plift.{u v} B : by exact wedge_pequiv !pequiv_plift !pequiv_plift
protected definition pelim [constructor] {X Y Z : Type*} (f : X →* Z) (g : Y →* Z) : X Y →* Z :=
pmap.mk (wedge.elim f g (respect_pt f ⬝ (respect_pt g)⁻¹)) (respect_pt f)
definition wedge_pr1 [constructor] (X Y : Type*) : X Y →* X := wedge.pelim (pid X) (pconst Y X)
definition wedge_pr2 [constructor] (X Y : Type*) : X Y →* Y := wedge.pelim (pconst X Y) (pid Y)
open fiber prod cofiber pi
variables {X Y : Type*}
definition pcofiber_pprod_incl1_of_pfiber_wedge_pr2' [unfold 3]
(x : pfiber (wedge_pr2 X Y)) : pcofiber (pprod_incl1 (Ω Y) X) :=
begin
induction x with x p, induction x with x y,
{ exact cod _ (p, x) },
{ exact pt },
{ apply arrow_pathover_constant_right, intro p, apply cofiber.glue }
end
--set_option pp.all true
/-
X : Type* has a nondegenerate basepoint iff
it has the homotopy extension property iff
Π(f : X → Y) (y : Y) (p : f pt = y), ∃(g : X → Y) (h : f ~ g) (q : y = g pt), h pt = p ⬝ q
(or Σ?)
-/
definition pfiber_wedge_pr2_of_pcofiber_pprod_incl1' [unfold 3]
(x : pcofiber (pprod_incl1 (Ω Y) X)) : pfiber (wedge_pr2 X Y) :=
begin
induction x with v p,
{ induction v with p x, exact fiber.mk (inl x) p },
{ exact fiber.mk (inr pt) idp },
{ esimp, apply fiber_eq (wedge.glue ⬝ ap inr p), symmetry,
refine !ap_con ⬝ !wedge.elim_glue ◾ (!ap_compose'⁻¹ ⬝ !ap_id) ⬝ !idp_con }
end
variables (X Y)
definition pcofiber_pprod_incl1_of_pfiber_wedge_pr2 [constructor] :
pfiber (wedge_pr2 X Y) →* pcofiber (pprod_incl1 (Ω Y) X) :=
pmap.mk pcofiber_pprod_incl1_of_pfiber_wedge_pr2' (cofiber.glue idp)
-- definition pfiber_wedge_pr2_of_pprod [constructor] :
-- Ω Y ×* X →* pfiber (wedge_pr2 X Y) :=
-- begin
-- fapply pmap.mk,
-- { intro v, induction v with p x, exact fiber.mk (inl x) p },
-- { reflexivity }
-- end
definition pfiber_wedge_pr2_of_pcofiber_pprod_incl1 [constructor] :
pcofiber (pprod_incl1 (Ω Y) X) →* pfiber (wedge_pr2 X Y) :=
pmap.mk pfiber_wedge_pr2_of_pcofiber_pprod_incl1'
begin refine (fiber_eq wedge.glue _)⁻¹, exact !wedge.elim_glue⁻¹ end
-- pcofiber.elim (pfiber_wedge_pr2_of_pprod X Y)
-- begin
-- fapply phomotopy.mk,
-- { intro p, apply fiber_eq (wedge.glue ⬝ ap inr p ⬝ wedge.glue⁻¹), symmetry,
-- refine !ap_con ⬝ (!ap_con ⬝ !wedge.elim_glue ◾ (!ap_compose'⁻¹ ⬝ !ap_id)) ◾
-- (!ap_inv ⬝ !wedge.elim_glue⁻²) ⬝ _, exact idp_con p },
-- { esimp, refine fiber_eq2 (con.right_inv wedge.glue) _ ⬝ !fiber_eq_eta⁻¹,
-- rewrite [idp_con, ↑fiber_eq_pr2, con2_idp, whisker_right_idp, whisker_right_idp],
-- -- refine _ ⬝ (eq_bot_of_square (transpose (ap_con_right_inv_sq
-- -- (wedge.elim (λx : X, Point Y) (@id Y) idp) wedge.glue)))⁻¹,
-- -- refine whisker_right _ !con_inv ⬝ _,
-- exact sorry
-- }
-- end
--set_option pp.notation false
set_option pp.binder_types true
open sigma.ops
definition pfiber_wedge_pr2_pequiv_pcofiber_pprod_incl1 [constructor] :
pfiber (wedge_pr2 X Y) ≃* pcofiber (pprod_incl1 (Ω Y) X) :=
pequiv.MK (pcofiber_pprod_incl1_of_pfiber_wedge_pr2 _ _)
(pfiber_wedge_pr2_of_pcofiber_pprod_incl1 _ _)
abstract begin
fapply phomotopy.mk,
{ intro x, esimp, induction x with x p, induction x with x y,
{ reflexivity },
{ refine (fiber_eq (ap inr p) _)⁻¹, refine !ap_id⁻¹ ⬝ !ap_compose' },
{ apply @pi_pathover_right' _ _ _ _ (λ(xp : Σ(x : X Y), pppi.to_fun (wedge_pr2 X Y) x = pt),
pfiber_wedge_pr2_of_pcofiber_pprod_incl1'
(pcofiber_pprod_incl1_of_pfiber_wedge_pr2' (mk xp.1 xp.2)) = mk xp.1 xp.2),
intro p, apply eq_pathover, exact sorry }},
{ symmetry, refine !cofiber.elim_glue ◾ idp ⬝ _, apply con_inv_eq_idp,
apply ap (fiber_eq wedge.glue), esimp, rewrite [idp_con], refine !whisker_right_idp⁻² }
end end
abstract begin
exact sorry
end end
-- apply eq_pathover_id_right, refine ap_compose pcofiber_pprod_incl1_of_pfiber_wedge_pr2 _ _ ⬝ ap02 _ !elim_glue ⬝ph _
-- apply eq_pathover_id_right, refine ap_compose pfiber_wedge_pr2_of_pcofiber_pprod_incl1 _ _ ⬝ ap02 _ !elim_glue ⬝ph _
/- move -/
definition ap1_idp {A B : Type*} (f : A →* B) : Ω→ f idp = idp :=
respect_pt (Ω→ f)
definition ap1_phomotopy_idp {A B : Type*} {f g : A →* B} (h : f ~* g) :
Ω⇒ h idp = !respect_pt ⬝ !respect_pt⁻¹ :=
sorry
variables {A} {B : Type*} {f : A →* B} {g : B →* A} (h : f ∘* g ~* pid B)
include h
definition nar_of_noo' (p : Ω A) : Ω (pfiber f) ×* Ω B :=
begin
refine (_, Ω→ f p),
have z : Ω A →* Ω A, from pmap.mk (λp, Ω→ (g ∘* f) p ⬝ p⁻¹) proof (respect_pt (Ω→ (g ∘* f))) qed,
refine fiber_eq ((Ω→ g ∘* Ω→ f) p ⬝ p⁻¹) (!idp_con⁻¹ ⬝ whisker_right (respect_pt f) _⁻¹),
induction B with B b₀, induction f with f f₀, esimp at * ⊢, induction f₀,
refine !idp_con⁻¹ ⬝ ap1_con (pmap_of_map f pt) _ _ ⬝
((ap1_pcompose (pmap_of_map f pt) g _)⁻¹ ⬝ Ω⇒ h _ ⬝ ap1_pid _) ◾ ap1_inv _ _ ⬝ !con.right_inv
end
definition noo_of_nar' (x : Ω (pfiber f) ×* Ω B) : Ω A :=
begin
induction x with p q, exact Ω→ (ppoint f) p ⬝ Ω→ g q
end
variables (f g)
definition nar_of_noo [constructor] :
Ω A →* Ω (pfiber f) ×* Ω B :=
begin
refine pmap.mk (nar_of_noo' h) (prod_eq _ (ap1_gen_idp f (respect_pt f))),
esimp [nar_of_noo'],
refine fiber_eq2 (ap (ap1_gen _ _ _) (ap1_gen_idp f _) ⬝ !ap1_gen_idp) _ ⬝ !fiber_eq_eta⁻¹,
induction B with B b₀, induction f with f f₀, esimp at * ⊢, induction f₀, esimp,
refine (!idp_con ⬝ !whisker_right_idp) ◾ !whisker_right_idp ⬝ _, esimp [fiber_eq_pr2],
apply inv_con_eq_idp,
refine ap (ap02 f) !idp_con ⬝ _,
esimp [ap1_con, ap1_gen_con, ap1_inv, ap1_gen_inv],
refine _ ⬝ whisker_left _ (!con2_idp ⬝ !whisker_right_idp ⬝ idp ◾ ap1_phomotopy_idp h)⁻¹ᵖ,
esimp, exact sorry
end
definition noo_of_nar [constructor] :
Ω (pfiber f) ×* Ω B →* Ω A :=
pmap.mk (noo_of_nar' h) (respect_pt (Ω→ (ppoint f)) ◾ respect_pt (Ω→ g))
definition noo_pequiv_nar [constructor] :
Ω A ≃* Ω (pfiber f) ×* Ω B :=
pequiv.MK (nar_of_noo f g h) (noo_of_nar f g h)
abstract begin
exact sorry
end end
abstract begin
exact sorry
end end
-- apply eq_pathover_id_right, refine ap_compose nar_of_noo _ _ ⬝ ap02 _ !elim_glue ⬝ph _
-- apply eq_pathover_id_right, refine ap_compose noo_of_nar _ _ ⬝ ap02 _ !elim_glue ⬝ph _
-- definition loop_pequiv_of_cross_section {A B : Type*} (f : A →* B) (g : B →* A)
-- (h : f ∘* g ~* pid B) : Ω A ≃* Ω (pfiber f) ×* Ω B :=
-- sorry
end wedge