This commit is contained in:
parent
7f8137b9f6
commit
28025a8c66
2 changed files with 122 additions and 2 deletions
|
@ -9,8 +9,8 @@ html {
|
|||
|
||||
::selection,
|
||||
::-moz-selection {
|
||||
background-color: $heading-color;
|
||||
color: $background-color;
|
||||
background-color: $heading-color !important;
|
||||
color: $background-color !important;
|
||||
}
|
||||
|
||||
body {
|
||||
|
|
120
content/posts/2023-05-06-equivalences.lagda.md
Normal file
120
content/posts/2023-05-06-equivalences.lagda.md
Normal file
|
@ -0,0 +1,120 @@
|
|||
+++
|
||||
title = "Equivalences"
|
||||
slug = "equivalences"
|
||||
date = 2023-05-06
|
||||
tags = ["type-theory", "agda", "hott"]
|
||||
math = true
|
||||
draft = true
|
||||
+++
|
||||
|
||||
<details>
|
||||
<summary>Imports</summary>
|
||||
|
||||
```
|
||||
{-# OPTIONS --cubical #-}
|
||||
|
||||
open import Agda.Primitive.Cubical
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Data.Bool
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
```
|
||||
Bool-id : Bool → Bool
|
||||
Bool-id true = true
|
||||
Bool-id false = false
|
||||
|
||||
unap : {A B : Type} {x y : A} (f : A → B) → f x ≡ f y → x ≡ y
|
||||
unap p i = ?
|
||||
|
||||
-- Need to convert point-wise equality into universally quantified equality?
|
||||
Bool-id-refl : (x : Bool) → (Bool-id x ≡ x)
|
||||
Bool-id-refl true = refl
|
||||
Bool-id-refl false = refl
|
||||
```
|
||||
|
||||
The equivalence proof below involves the contractibility-of-fibers definition of
|
||||
an equivalence. There are others, but the "default" one used by the Cubical
|
||||
standard library uses this.
|
||||
|
||||
```
|
||||
Bool-id-is-equiv : isEquiv Bool-id
|
||||
```
|
||||
|
||||
In the contractibility-of-fibers proof, we must first establish our fibers. If
|
||||
we had $(f : A \rightarrow B)$, then this is saying given any $(y : B)$, we must
|
||||
provide:
|
||||
|
||||
- an $(x : A)$ that would have gotten mapped to $y$ (preimage), and
|
||||
- a proof that $f\ x \equiv y$
|
||||
|
||||
These are the two elements of the pair given below. Since our function is `id`,
|
||||
we can just give $y$ again, and use the `refl` function above for the equality
|
||||
proof
|
||||
|
||||
```
|
||||
Bool-id-is-equiv .equiv-proof y .fst = y , Bool-id-refl y
|
||||
```
|
||||
|
||||
The next step is to prove that it's contractible. Using the same derivation for
|
||||
$y$ as above, this involves taking in another fiber $y_1$, and proving that it's
|
||||
equivalent the fiber we've just defined above.
|
||||
|
||||
To prove fiber equality, we can just do point-wise equality over both the
|
||||
preimage of $y$, and then the second-level equality of the proof of $f\ x \equiv
|
||||
y$.
|
||||
|
||||
In the first case here, we need to provide something that equals our $x$ above
|
||||
when $i = i0$, and something that equals the fiber $y_1$'s preimage $x_1$ when
|
||||
$i = i1$, aka $y \equiv proj_1\ y_1$.
|
||||
|
||||
```
|
||||
Bool-id-is-equiv .equiv-proof y .snd y₁ i .fst =
|
||||
let
|
||||
eqv = snd y₁
|
||||
-- eqv : Bool-id (fst y₁) ≡ y
|
||||
|
||||
eqv2 = eqv ∙ sym (Bool-id-refl y)
|
||||
-- eqv2 : Bool-id (fst y₁) ≡ Bool-id y
|
||||
|
||||
-- Ok, unap doesn't actually exist unless f is known to have an inverse.
|
||||
-- Fortunately, because we're proving an equivalence, we know that f has an
|
||||
-- inverse, in particular going from y to x, which in thise case is also y.
|
||||
eqv3 = unap Bool-id eqv2
|
||||
|
||||
Bool-id-inv : Bool → Bool
|
||||
Bool-id-inv b = (((Bool-id-is-equiv .equiv-proof) b) .fst) .fst
|
||||
|
||||
eqv3′ = cong Bool-id-inv eqv2
|
||||
give-me-info = ?
|
||||
-- eqv3 : fst y₁ ≡ y
|
||||
|
||||
eqv4 = sym eqv3
|
||||
-- eqv4 : y ≡ fst y₁
|
||||
in
|
||||
eqv4 i
|
||||
```
|
||||
|
||||
Now we can prove that the path is the same
|
||||
|
||||
\begin{CD}
|
||||
A @> > > B \\\
|
||||
@VVV @VVV \\\
|
||||
C @> > > D
|
||||
\end{CD}
|
||||
|
||||
- $A \rightarrow B$ is the path of the original fiber that we've specified, which is $f\ x \equiv y$
|
||||
- $C \rightarrow D$ is the path of the other fiber that we're proving, which is $proj_2\ y_1$
|
||||
|
||||
So what we want now is `a-b ≡ c-d`
|
||||
|
||||
```
|
||||
Bool-id-is-equiv .equiv-proof y .snd y₁ i .snd j =
|
||||
let
|
||||
a-b = Bool-id-refl y
|
||||
c-d = y₁ .snd
|
||||
in
|
||||
?
|
||||
```
|
Loading…
Reference in a new issue