Tags
This commit is contained in:
parent
895ff81573
commit
307ba4e59f
4 changed files with 132 additions and 14 deletions
|
@ -169,6 +169,31 @@ table.table {
|
||||||
margin-bottom: 0;
|
margin-bottom: 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
.tags {
|
||||||
|
display: flex;
|
||||||
|
gap: 0.75rem;
|
||||||
|
margin-bottom: 6px;
|
||||||
|
|
||||||
|
.tag {
|
||||||
|
font-size: 0.9rem;
|
||||||
|
background-color: darken($link-color, 55%);
|
||||||
|
padding: 2px 7px;
|
||||||
|
|
||||||
|
.text {
|
||||||
|
margin-left: 2px;
|
||||||
|
text-decoration: underline;
|
||||||
|
}
|
||||||
|
|
||||||
|
&:hover {
|
||||||
|
text-decoration: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
&::before {
|
||||||
|
content: "\01F3F7";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
.post-container {
|
.post-container {
|
||||||
display: flex;
|
display: flex;
|
||||||
|
|
||||||
|
|
|
@ -43,9 +43,9 @@ $$ 1 + e_1 + e_1^2 + \cdots + e_1^x = 1 + e_2 + e_2^2 $$
|
||||||
Taking the entire equation $\mod e_1$ gives us:
|
Taking the entire equation $\mod e_1$ gives us:
|
||||||
|
|
||||||
$$\begin{aligned}
|
$$\begin{aligned}
|
||||||
1 &\equiv 1 + e_2 + e_2^2 \mod e_1 \\\
|
1 &\equiv 1 + e_2 + e_2^2 \mod e_1 \\\
|
||||||
0 &\equiv e_2 + e_2^2 \\\
|
0 &\equiv e_2 + e_2^2 \\\
|
||||||
0 &\equiv e_2(1 + e_2)
|
0 &\equiv e_2(1 + e_2)
|
||||||
\end{aligned}$$
|
\end{aligned}$$
|
||||||
|
|
||||||
This means there are two possibilities: either $e_1 = e_2$ or $e_1$ is even
|
This means there are two possibilities: either $e_1 = e_2$ or $e_1$ is even
|
||||||
|
@ -53,7 +53,90 @@ This means there are two possibilities: either $e_1 = e_2$ or $e_1$ is even
|
||||||
\> 2$, the geometric series equation would not be satisfied. So it must be true
|
\> 2$, the geometric series equation would not be satisfied. So it must be true
|
||||||
that $\boxed{e_1 = 2}$, the only even prime.
|
that $\boxed{e_1 = 2}$, the only even prime.
|
||||||
|
|
||||||
Applying geometric series expansion, $1 + e_2 + e_2^2 = 2^x - 1$.
|
Applying geometric series expansion, $1 + e_2 + e_2^2 = 2^{x + 1} - 1$. We can
|
||||||
|
rearrange this via the quadratic equation to $e_2 = \frac{-1 \pm \sqrt{1 - 4
|
||||||
|
(2 - 2^{x + 1})}}{2}$. Trying out a few values we see that only $\boxed{x = 4}$
|
||||||
|
and $\boxed{e_2 = 5}$ gives us a value that make $e_2$ prime.
|
||||||
|
|
||||||
|
## Finding $p$ and $q$
|
||||||
|
|
||||||
|
We're not actually given $p$ or $q$, but we are given $ip = p^{-1} \mod q$ and
|
||||||
|
$iq = q^{-1} \mod p$. In order words:
|
||||||
|
|
||||||
|
$$\begin{aligned}
|
||||||
|
p \times ip &\equiv 1 \mod q \\\
|
||||||
|
q \times iq &\equiv 1 \mod p
|
||||||
|
\end{aligned}$$
|
||||||
|
|
||||||
|
We can rewrite these equations without the mod by introducing variables $k_1$
|
||||||
|
and $k_2$ to be arbitrary constants that we solve for later:
|
||||||
|
|
||||||
|
$$\begin{aligned}
|
||||||
|
p \times ip &= 1 + k_1q \\\
|
||||||
|
q \times iq &= 1 + k_2p
|
||||||
|
\end{aligned}$$
|
||||||
|
|
||||||
|
We'll be trying to use these formulas to create a quadratic that we can use to
|
||||||
|
eliminate $k_1$ and $k_2$. Multiplying these together gives:
|
||||||
|
|
||||||
|
$$\begin{aligned}
|
||||||
|
(p \times ip)(q \times iq) &= (1 + k_1q)(1 + k_2p) \\\
|
||||||
|
pq \times ip \times iq &= 1 + k_1q + k_2p + k_1k_2pq
|
||||||
|
\end{aligned}$$
|
||||||
|
|
||||||
|
I grouped $p$ and $q$ together here because it's important to note that since we
|
||||||
|
have $x$, we know $r$ and thus $pq = \frac{N}{r}$. This means that for purposes
|
||||||
|
of solving the equation, $pq$ is a constant to us. This actually introduces an
|
||||||
|
interesting structure on the right hand side, we can create 2 new variables:
|
||||||
|
|
||||||
|
$$\begin{aligned}
|
||||||
|
\alpha &= k_1q \\\
|
||||||
|
\beta &= k_2p
|
||||||
|
\end{aligned}$$
|
||||||
|
|
||||||
|
Substituting this into our equation above we get:
|
||||||
|
|
||||||
|
$$\begin{aligned}
|
||||||
|
pq \times ip \times iq &= 1 + \alpha + \beta + \alpha\beta
|
||||||
|
\end{aligned}$$
|
||||||
|
|
||||||
|
Recall from whatever algebra class you last took that $(x - x_0)(x - x_1) = x^2
|
||||||
|
\- (x_0 + x_1)x + x_0x_1$. Since we have both $\alpha\beta$ and $(\alpha +
|
||||||
|
\beta)$ in our equation, we can try to look for a way to isolate them in order
|
||||||
|
to create our goal.
|
||||||
|
|
||||||
|
$$\begin{aligned}
|
||||||
|
pq \times ip \times iq &= 1 + k_1q + k_2p + k_1k_2pq \\\
|
||||||
|
k_1k_2pq &= pq \times ip \times iq - 1 - k_1q - k_2p \\\
|
||||||
|
k_1k_2 &= ip \times iq - \frac{1}{pq} - \frac{k_1}{p} - \frac{k_2}{q}
|
||||||
|
\end{aligned}$$
|
||||||
|
|
||||||
|
$\frac{1}{pq}$ is basically $0$, and since $k_1$ and $k_2$ are both smaller than
|
||||||
|
$p$ or $q$, then we'll approximate this using $k_1k_2 = ip \times iq - 1$. Now
|
||||||
|
that $k_1k_2$ has become a constant, we can create the coefficients we need:
|
||||||
|
|
||||||
|
$$\begin{aligned}
|
||||||
|
\alpha + \beta &= pq \times ip \times iq - 1 - k_1k_2pq \\\
|
||||||
|
\alpha\beta &= k_1k_2pq
|
||||||
|
\end{aligned}$$
|
||||||
|
|
||||||
|
$$\begin{aligned}
|
||||||
|
(x - \alpha)(x - \beta) &= 0 \\\
|
||||||
|
x^2 - (\alpha + \beta)x + \alpha\beta &= 0 \\\
|
||||||
|
x &= \frac{(\alpha+\beta) \pm \sqrt{(\alpha+\beta)^2 - 4\alpha\beta}}{2}
|
||||||
|
\end{aligned}$$
|
||||||
|
|
||||||
|
Putting this into Python, looks like:
|
||||||
|
|
||||||
|
```py
|
||||||
|
>>> k1k2 = ip * iq - 1
|
||||||
|
>>> alpha_times_beta = k1k2 * pq
|
||||||
|
>>> alpha_plus_beta = pq * ip * iq - 1 - k1k2 * pq
|
||||||
|
|
||||||
|
>>> def quadratic(b, c):
|
||||||
|
>>> disc = b ** 2 - 4 * c
|
||||||
|
>>> return (-b + sqrt(disc)) / 2, (-b - sqrt(disc)) / 2
|
||||||
|
```
|
||||||
|
|
||||||
I'd like to thank @10, @sahuang, and @thebishop in the Project Sekai discord for
|
I'd like to thank @10, @sahuang, and @thebishop in the Project Sekai discord for
|
||||||
doing a lot of the heavy-lifting to solve this challenge.
|
doing a lot of the heavy-lifting to solve this challenge.
|
||||||
|
|
|
@ -11,6 +11,14 @@
|
||||||
|
|
||||||
<h1 class="post-title">{{ .Title }}</h1>
|
<h1 class="post-title">{{ .Title }}</h1>
|
||||||
|
|
||||||
|
<span class="tags">
|
||||||
|
{{ range .Params.tags }}
|
||||||
|
<a href="/tags/{{ . }}" class="tag">
|
||||||
|
<span class="text">{{ . }}</span>
|
||||||
|
</a>
|
||||||
|
{{ end }}
|
||||||
|
</span>
|
||||||
|
|
||||||
<small style="display: block; margin-bottom: 20px;">
|
<small style="display: block; margin-bottom: 20px;">
|
||||||
Posted
|
Posted
|
||||||
on {{ .Date.Format "Mon Jan 02, 2006" }}
|
on {{ .Date.Format "Mon Jan 02, 2006" }}
|
||||||
|
|
|
@ -4,6 +4,7 @@
|
||||||
|
|
||||||
<ul>
|
<ul>
|
||||||
{{- range $name, $value := sort .Data.Pages "Title" -}}
|
{{- range $name, $value := sort .Data.Pages "Title" -}}
|
||||||
|
{{ if not .Draft }}
|
||||||
<li style="margin-bottom: 15px;">
|
<li style="margin-bottom: 15px;">
|
||||||
<a href="{{ $value.RelPermalink }}">{{ $value.Title }}</a>
|
<a href="{{ $value.RelPermalink }}">{{ $value.Title }}</a>
|
||||||
<br />
|
<br />
|
||||||
|
@ -14,6 +15,7 @@
|
||||||
{{- end -}}
|
{{- end -}}
|
||||||
</small>
|
</small>
|
||||||
</li>
|
</li>
|
||||||
|
{{ end }}
|
||||||
{{- end -}}
|
{{- end -}}
|
||||||
</ul>
|
</ul>
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue