This commit is contained in:
parent
d85b7f729f
commit
3fcaeccf48
3 changed files with 135 additions and 2 deletions
|
@ -2,7 +2,7 @@
|
|||
title: "Path induction: a GADT perspective"
|
||||
slug: 2023-10-23-path-induction-gadt-perspective
|
||||
date: 2023-10-23
|
||||
tags: ["type-theory"]
|
||||
tags: ["type-theory", "programming-languages"]
|
||||
---
|
||||
|
||||
<details>
|
||||
|
|
133
src/content/posts/2024-06-11-logical-relations.lagda.md
Normal file
133
src/content/posts/2024-06-11-logical-relations.lagda.md
Normal file
|
@ -0,0 +1,133 @@
|
|||
---
|
||||
title: "Logical Relations"
|
||||
slug: 2024-06-11-path-induction-gadt-perspective
|
||||
date: 2024-06-11
|
||||
tags: ["programming-languages", "formal-verification"]
|
||||
draft: true
|
||||
---
|
||||
|
||||
<details>
|
||||
<summary>Imports</summary>
|
||||
|
||||
```
|
||||
open import Agda.Builtin.Sigma
|
||||
open import Data.Bool
|
||||
open import Data.Empty
|
||||
open import Data.Fin
|
||||
open import Data.Maybe
|
||||
open import Data.Nat
|
||||
open import Data.Product
|
||||
open import Data.Sum
|
||||
open import Relation.Nullary
|
||||
|
||||
id : {A : Set} → A → A
|
||||
id {A} x = x
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## Syntax
|
||||
|
||||
```
|
||||
data type : Set where
|
||||
bool : type
|
||||
_-→_ : type → type → type
|
||||
|
||||
data term : Set where
|
||||
`_ : ℕ → term
|
||||
`true : term
|
||||
`false : term
|
||||
`if_then_else_ : term → term → term → term
|
||||
`λ[_]_ : (τ : type) → (e : term) → term
|
||||
_∙_ : term → term → term
|
||||
```
|
||||
|
||||
## Substitution
|
||||
|
||||
```
|
||||
data ctx : Set where
|
||||
nil : ctx
|
||||
cons : ctx → type → ctx
|
||||
|
||||
lookup : ctx → ℕ → Maybe type
|
||||
lookup nil _ = nothing
|
||||
lookup (cons ctx₁ x) zero = just x
|
||||
lookup (cons ctx₁ x) (suc n) = lookup ctx₁ n
|
||||
|
||||
data sub : Set where
|
||||
nil : sub
|
||||
cons : sub → term → sub
|
||||
|
||||
subst : term → term → term
|
||||
subst (` zero) v = v
|
||||
subst (` suc x) v = ` x
|
||||
subst `true v = `true
|
||||
subst `false v = `false
|
||||
subst (`if x then x₁ else x₂) v = `if (subst x v) then (subst x₁ v) else (subst x₂ v)
|
||||
subst (`λ[ τ ] x) v = `λ[ τ ] subst x v
|
||||
subst (x ∙ x₁) v = (subst x v) ∙ (subst x₁ v)
|
||||
|
||||
data value-rel : type → term → Set where
|
||||
v-`true : value-rel bool `true
|
||||
v-`false : value-rel bool `false
|
||||
v-`λ[_]_ : ∀ {τ e} → value-rel τ (`λ[ τ ] e)
|
||||
|
||||
data good-subst : ctx → sub → Set where
|
||||
nil : good-subst nil nil
|
||||
cons : ∀ {ctx τ γ v}
|
||||
→ good-subst ctx γ
|
||||
→ value-rel τ v
|
||||
→ good-subst (cons ctx τ) γ
|
||||
```
|
||||
|
||||
## Semantics
|
||||
|
||||
```
|
||||
data step : term → term → Set where
|
||||
step-if-1 : ∀ {e₁ e₂} → step (`if `true then e₁ else e₂) e₁
|
||||
step-if-2 : ∀ {e₁ e₂} → step (`if `false then e₁ else e₂) e₂
|
||||
step-`λ : ∀ {τ e v} → step ((`λ[ τ ] e) ∙ v) (subst e v)
|
||||
|
||||
data steps : ℕ → term → term → Set where
|
||||
zero : ∀ {e} → steps zero e e
|
||||
suc : ∀ {e e' e''} → (n : ℕ) → step e e' → steps n e' e'' → steps (suc n) e e''
|
||||
|
||||
data _⊢_∶_ : ctx → term → type → Set where
|
||||
type-`true : ∀ {ctx} → ctx ⊢ `true ∶ bool
|
||||
type-`false : ∀ {ctx} → ctx ⊢ `false ∶ bool
|
||||
type-`ifthenelse : ∀ {ctx e e₁ e₂ τ}
|
||||
→ ctx ⊢ e ∶ bool
|
||||
→ ctx ⊢ e₁ ∶ τ
|
||||
→ ctx ⊢ e₂ ∶ τ
|
||||
→ ctx ⊢ (`if e then e₁ else e₂) ∶ τ
|
||||
type-`x : ∀ {ctx x}
|
||||
→ (p : Is-just (lookup ctx x))
|
||||
→ ctx ⊢ (` x) ∶ (to-witness p)
|
||||
type-`λ : ∀ {ctx τ τ₂ e}
|
||||
→ (cons ctx τ) ⊢ e ∶ τ₂
|
||||
→ ctx ⊢ (`λ[ τ ] e) ∶ (τ -→ τ₂)
|
||||
type-∙ : ∀ {ctx τ₁ τ₂ e₁ e₂}
|
||||
→ ctx ⊢ e₁ ∶ (τ₁ -→ τ₂)
|
||||
→ ctx ⊢ e₂ ∶ τ₂
|
||||
→ ctx ⊢ (e₁ ∙ e₂) ∶ τ₂
|
||||
|
||||
irreducible : term → Set
|
||||
irreducible e = ¬ (∃ λ e' → step e e')
|
||||
|
||||
data term-relation : type → term → Set where
|
||||
e-term : ∀ {τ e}
|
||||
→ (∀ {n} → (e' : term) → steps n e e' → irreducible e' → value-rel τ e')
|
||||
→ term-relation τ e
|
||||
|
||||
type-sound : ∀ {Γ e τ} → Γ ⊢ e ∶ τ → Set
|
||||
type-sound {Γ} {e} {τ} s = ∀ {n} → (e' : term) → steps n e e' → value-rel τ e' ⊎ ∃ λ e'' → step e' e''
|
||||
|
||||
_⊨_∶_ : (Γ : ctx) → (e : term) → (τ : type) → Set
|
||||
_⊨_∶_ Γ e τ = (γ : sub) → (good-subst Γ γ) → term-relation τ e
|
||||
|
||||
fundamental : ∀ {Γ e τ} → (well-typed : Γ ⊢ e ∶ τ) → type-sound well-typed → Γ ⊨ e ∶ τ
|
||||
fundamental {Γ} {e} {τ} well-typed type-sound γ good-sub = e-term f
|
||||
where
|
||||
f : {n : ℕ} (e' : term) → steps n e e' → irreducible e' → value-rel τ e'
|
||||
f e' steps irred = [ id , (λ exists → ⊥-elim (irred exists)) ] (type-sound e' steps)
|
||||
```
|
|
@ -31,7 +31,7 @@ const hasToc = toc ?? false;
|
|||
|
||||
<body>
|
||||
<div class="flex-wrapper">
|
||||
<LeftNav />
|
||||
<!-- <LeftNav /> -->
|
||||
|
||||
<div class="sep"></div>
|
||||
|
||||
|
|
Loading…
Reference in a new issue