diff --git a/plugin/remark-agda.ts b/plugin/remark-agda.ts index 8714e57..02b01fa 100644 --- a/plugin/remark-agda.ts +++ b/plugin/remark-agda.ts @@ -113,6 +113,7 @@ const remarkAgda: RemarkPlugin = ({ base, publicDir }: Options) => { const htmlname = parse(path).base.replace(/\.lagda.md/, ".html"); + console.log("Output file:", outputFile); const doc = readFileSync(outputFile); // This is the post-processed markdown with HTML code blocks replacing the Agda code blocks @@ -150,13 +151,23 @@ const remarkAgda: RemarkPlugin = ({ base, publicDir }: Options) => { }); let idx = 0; - visit(tree, "code", (node) => { - if (!(node.lang === null || node.lang === "agda")) return; + try { + visit(tree, "code", (node) => { + if (!(node.lang === null || node.lang === "agda")) return; - node.type = "html"; - node.value = collectedCodeBlocks[idx].contents; - idx += 1; - }); + if (idx > collectedCodeBlocks.length) { + throw new Error("failed"); + } + + node.type = "html"; + node.value = collectedCodeBlocks[idx].contents; + idx += 1; + }); + } catch (e) { + console.log( + "Mismatch in number of args. Perhaps there was an empty block?", + ); + } }; }; diff --git a/src/content/posts/2024-09-18-hcomp/index.lagda.md b/src/content/posts/2024-09-18-hcomp/index.lagda.md new file mode 100644 index 0000000..75b10b3 --- /dev/null +++ b/src/content/posts/2024-09-18-hcomp/index.lagda.md @@ -0,0 +1,87 @@ +--- +title: Examples of hcomp +slug: 2024-09-18-hcomp +date: 2024-09-18T04:07:13-05:00 +tags: [hott, cubical] +draft: true +--- + +**hcomp** is a primitive operation in cubical type theory. + +``` +{-# OPTIONS --cubical --allow-unsolved-metas #-} +module 2024-09-18-hcomp.index where +open import Cubical.Foundations.Prelude hiding (isProp→isSet) +open import Cubical.Core.Primitives +``` + +Intuitively, hcomp can be understood as the composition operation. + +``` +path-comp : {A : Type} {x y z : A} → x ≡ y → y ≡ z → x ≡ z +path-comp {x = x} p q i = + let u = λ j → λ where + (i = i0) → x + (i = i1) → q j + in hcomp u (p i) +``` + +## Example: $\mathsf{isProp}(A) \rightarrow \mathsf{isSet}(A)$ + +Suppose we want to prove that all mere propositions (h-level 1) are sets (h-level 2). +This result exists in the cubical standard library, but let's go over it here. + +``` +isProp→isSet : {A : Type} → isProp A → isSet A +isProp→isSet {A} A-isProp = goal where + goal : (x y : A) → (p q : x ≡ y) → p ≡ q + goal x y p q j i = -- ... +``` + +Now let's construct an hcomp. In a set, we'd want paths $p$ and $q$ between the same points $x$ and $y$ to be equal. +Suppose $p$ and $q$ operate over the same dimension, $i$. +If we want to find a path between $p$ and $q$, we'll want another dimension. +Let's call this $j$. +So essentially, we want a square with these boundaries + +* the left is $\mathsf{refl}_x$ +* the right is $\mathsf{refl}_y$ +* the bottom is $p(i)$ +* the top is $q(i)$ + +Our goal is to find out what completes this square. +Well, one way to complete a square is to treat it as the top face of a cube and use $\mathsf{hcomp}$. + +Remember: + +* $i$ is the left-right dimension, the one that $p$ and $q$ work over +* $j$ is the dimension of our final path between $p \equiv q$. + Note that this is the first argument, because our top-level ask was $p \equiv q$. +* Let's introduce a dimension $k$ for doing our $\mathsf{hcomp}$ + +We can map both $p(i)$ and $q(i)$ down to a square that has $x$ on all corners and $\mathsf{refl}_x$ on all sides. +The method is this: + +* the bottom face $(k = \mathsf{i0})$ is the constant $x$ +* the left face $(i = \mathsf{i0})$ is _also_ the constant $x$ +* the right face $(i = \mathsf{i1})$ is trickier. + We have $x$ on the bottom 2 corners, but $y$ on the top two corners. + Fortunately, $\mathsf{isProp}(A)$ tells us that $x$ and $y$ are the same, so $x \equiv y$. + This means we can define this face as $\mathsf{isProp}(A, x, y, j)$. +* the same logic applies to the front face $(j = \mathsf{i0})$ and back face $(j = \mathsf{i1})$. + We can use $\mathsf{isProp}$ to generate us some faces, except using $x$ and $p(i)$, or $x$ and $q(i)$ as the two endpoints. + +Now we can try to find the top face $(k = \mathsf{i1})$: + +``` + let u = λ k → λ where + (i = i0) → A-isProp x x k + (i = i1) → A-isProp x y k + (j = i0) → A-isProp x (p i) k + (j = i1) → A-isProp x (q i) k + in hcomp u x +``` + +This type-checks! Let's move on to a more complicated example. + +## Example: $\Sigma \mathbb{2} \rightarrow S^1$