diff --git a/src/content/posts/2024-09-15-circle-is-a-suspension-over-booleans/index.lagda.md b/src/content/posts/2024-09-15-circle-is-a-suspension-over-booleans/index.lagda.md index 93016ea..687e38b 100644 --- a/src/content/posts/2024-09-15-circle-is-a-suspension-over-booleans/index.lagda.md +++ b/src/content/posts/2024-09-15-circle-is-a-suspension-over-booleans/index.lagda.md @@ -118,26 +118,26 @@ We can write functions going back and forth: Σ2→S¹ (merid false i) = loop i -- for the path going through false, let's map this to the loop Σ2→S¹ (merid true i) = base -- for the path going through true, let's map this to refl -S¹→Σ2 : S¹ → Susp Bool -S¹→Σ2 base = north -S¹→Σ2 (loop i) = {! !} +-- S¹→Σ2 : S¹ → Susp Bool +-- S¹→Σ2 base = north +-- S¹→Σ2 (loop i) = {! !} ``` Now, to finish showing the equivalence, we need to prove that these functions concatenate into the identity in both directions: ``` -rightInv : section Σ2→S¹ S¹→Σ2 -rightInv = {! !} +-- rightInv : section Σ2→S¹ S¹→Σ2 +-- rightInv = {! !} -leftInv : retract Σ2→S¹ S¹→Σ2 -leftInv = {! !} +-- leftInv : retract Σ2→S¹ S¹→Σ2 +-- leftInv = {! !} ``` And this gives us our equivalence! ``` -Σ2≃S¹ : Susp Bool ≃ S¹ -Σ2≃S¹ = isoToEquiv (iso Σ2→S¹ S¹→Σ2 rightInv leftInv) +-- Σ2≃S¹ : Susp Bool ≃ S¹ +-- Σ2≃S¹ = isoToEquiv (iso Σ2→S¹ S¹→Σ2 rightInv leftInv) ``` In fact, we can also show that the $2$-sphere is the suspension of the $1$-sphere.