more on induction + implement language switcher
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful

This commit is contained in:
Michael Zhang 2023-03-30 03:29:11 -05:00
parent 07484d5812
commit a248240a6a
5 changed files with 277 additions and 13 deletions

View file

@ -338,6 +338,73 @@ table.table {
} }
} }
// Tabbing
.language-switcher-choice {
display: none;
}
.tabbed {
border: 1px solid #eee;
ul.tabs {
margin-top: 0;
margin-bottom: 0;
list-style: none;
padding-inline-start: 0;
border-bottom: 1px solid lightgray;
.tab {
display: inline-block;
list-style: none;
label {
display: inline-block;
padding: 4px 8px;
font-size: 0.9rem;
}
}
}
.contents {
.tab-content {
padding: 0 12px;
&:not(:last-child) {
border-bottom: 1px solid gray;
}
}
}
}
@for $i from 1 through 5 {
$colors: [green, red, blue, yellow, purple];
.language-switcher-choice:nth-of-type(#{$i}):checked {
outline: 2px solid nth($colors, $i);
}
body:has(.language-switcher-choice:nth-of-type(#{$i}):checked) .tabbed {
.tabs .tab:nth-child(#{$i}) {
border-bottom: 3px solid gray;
}
.tabs .tab:not(:nth-child(#{$i})) {
border-bottom: 3px solid transparent;
}
.contents .tab-content:nth-child(#{$i}) {
border-bottom: none;
}
.contents .tab-content:not(:nth-child(#{$i})) {
// text-shadow: 2px 2px nth($colors, $i);
display: none;
}
}
}
// Post container
.post-container { .post-container {
display: flex; display: flex;
@ -375,7 +442,7 @@ table.table {
*/ */
.post-content { .post-content {
ul { ul:not(.tabs) {
padding-left: 1.5rem; padding-left: 1.5rem;
} }
@ -403,6 +470,12 @@ table.table {
padding-left: 12px; padding-left: 12px;
} }
} }
.highlight,
details {
margin-top: 16px;
margin-bottom: 16px;
}
} }
&.logseq-post { &.logseq-post {

View file

@ -1,15 +1,17 @@
+++ +++
title = "Inductive Types" title = "Inductive Types"
slug = "inductive-types"
date = 2023-03-26 date = 2023-03-26
tags = ["type-theory"] tags = ["type-theory"]
math = true math = true
draft = true draft = true
language_switcher_languages = ["ocaml", "python"]
+++ +++
There's a feature common to many functional languages, the ability to have There's a feature common to many functional languages, the ability to have
algebraic data types. It might look something like this (OCaml syntax): algebraic data types. It might look something like this:
{{< language-switcher >}}
```ocaml ```ocaml
type bool = type bool =
| True | True
@ -26,6 +28,20 @@ that has two _constructors_, or ways to create this type. The constructors are
--- ---
```python
from typing import Literal
MyBool = Literal[True] | Literal[False]
```
{{</ language-switcher >}}
> **Note:** I'm using an experimental language switcher. It's implemented in
> pure CSS using a feature called the [`:has` pseudo-class][has]. As of writing,
> all major browsers _except_ Firefox has it implemented and enabled by default.
> For Firefox there does exist a feature flag in about:config, but your mileage
> may vary.
---
Many languages have this feature, under different names. Tagged unions, variant Many languages have this feature, under different names. Tagged unions, variant
types, enumerations, but they all reflect a basic idea: a type with a limited types, enumerations, but they all reflect a basic idea: a type with a limited
set of variants. set of variants.
@ -41,12 +57,21 @@ unknown value of type `Boolean`, you know it can only take one of two values.
There's actually nothing special about boolean itself. I could just as easily There's actually nothing special about boolean itself. I could just as easily
define a new type, like this: define a new type, like this:
{{< language-switcher >}}
```ocaml ```ocaml
type WeirdType = type WeirdType =
| Foo | Foo
| Bar | Bar
``` ```
---
```python
from typing import Literal
WeirdType = Literal['foo'] | Literal['bar']
```
{{</ language-switcher >}}
Because this type can only have two values, it's _semantically_ equivalent to Because this type can only have two values, it's _semantically_ equivalent to
the `Boolean` type. I could use it anywhere I would typically use `Boolean`. the `Boolean` type. I could use it anywhere I would typically use `Boolean`.
@ -65,11 +90,20 @@ You can make any _finite_ type like this: just create an algebraic data type
with unit constructors, and the result is a type with a finite cardinality. If I with unit constructors, and the result is a type with a finite cardinality. If I
wanted to make a unit type for example: wanted to make a unit type for example:
{{< language-switcher >}}
```ocaml ```ocaml
type unit = type unit =
| Unit | Unit
``` ```
---
```python
from typing import Literal
Unit = Literal[None]
```
{{</ language-switcher >}}
There's only one way to ever construct something of this type, so the There's only one way to ever construct something of this type, so the
cardinality of this type would be 1. cardinality of this type would be 1.
@ -83,6 +117,7 @@ called structural matching in some languages).
Let's see an example. Suppose I have a type with three values, defined like Let's see an example. Suppose I have a type with three values, defined like
this: this:
{{< language-switcher >}}
```ocaml ```ocaml
type direction = type direction =
| Left | Left
@ -90,10 +125,19 @@ type direction =
| Right | Right
``` ```
If I was given a value with type `direction`, but I wanted to do different ---
```python
from typing import Literal
Direction = Literal['left'] | Literal['middle'] | Literal['right']
```
{{</ language-switcher >}}
If I was given a value with a type of direction, but I wanted to do different
things depending on exactly which direction it was, I could use _pattern things depending on exactly which direction it was, I could use _pattern
matching_ like this: matching_ like this:
{{< language-switcher >}}
```ocaml ```ocaml
let do_something_with (d : direction) = let do_something_with (d : direction) =
match d with match d with
@ -102,6 +146,22 @@ let do_something_with (d : direction) =
| Right -> do_this_if_right | Right -> do_this_if_right
``` ```
---
```python
def do_something_with(d : Direction) -> str:
match inp:
case 'left': return do_this_if_left
case 'middle': return do_this_if_middle
case 'right': return do_this_if_right
case _: assert_never(inp)
```
**Note:** the `assert_never` is a static check for exhaustiveness. If we missed
a single one of the cases, a static type checker like [pyright] could catch it
and tell us which of the remaining cases there are.
{{</ language-switcher >}}
This gives me a way to discriminate between the different variants of This gives me a way to discriminate between the different variants of
`direction`. `direction`.
@ -109,7 +169,7 @@ This gives me a way to discriminate between the different variants of
> the `Boolean` type, called if-else. What would if-else look like if you wrote > the `Boolean` type, called if-else. What would if-else look like if you wrote
> it as a function in this pattern-matching form? > it as a function in this pattern-matching form?
## The Algebra of Types ## Constructing larger types
Finite-cardinality types like the ones we looked at just now are nice, but Finite-cardinality types like the ones we looked at just now are nice, but
they're not super interesting. If you had a programming language with nothing they're not super interesting. If you had a programming language with nothing
@ -131,24 +191,106 @@ contain themselves as a type).
You can see an example of this here: You can see an example of this here:
{{< language-switcher >}}
```ocaml ```ocaml
type nat = type nat =
| Suc of nat | Suc of nat
| Zero | Zero
``` ```
{{</ language-switcher >}}
These are the natural numbers, which are defined inductively. Each number is These are the natural numbers, which are defined inductively. Each number is
just represented by a data type that wraps 0 that number of times. So 3 would be just represented by a data type that wraps 0 that number of times. So 3 would be
`Suc (Suc (Suc Zero))`. `Suc (Suc (Suc Zero))`.
This data type is _inductive_ because the `Suc` case can contain arbitrarily At this point you can probably see why these have _infinite_ cardinality: with
many `nat`s inside of it. This also means that if we want to talk about writing the Suc case, you can keep wrapping nats as many times as you want!
any functions on `nat`, we just have to supply 2 cases instead of an infinite
number of cases: One key observation here is that although the _cardinality_ of the entire type is
infinite, it only uses _two_ constructors to build it. This also means that if
we want to talk about writing any functions on `nat`, we just have to supply 2
cases instead of an infinite number of cases:
```ocaml ```ocaml
let is_even = fun (x : nat) -> let rec is_even = fun (n : nat) ->
match x with match n with
| Suc n -> not (is_even n)
| Zero -> true | Zero -> true
| Suc n1 -> not (is_even n1)
``` ```
<details>
<summary>Try it for yourself</summary>
If you've got an OCaml interpreter handy, try a couple values for yourself and
convince yourself that this accurately represents the naturals and an even
testing function:
```ocaml
utop # is_even Zero;;
- : bool = true
utop # is_even (Suc Zero);;
- : bool = false
```
This is a good way of making sure the functions you write make sense!
</details>
## Induction principle
Let's express this in the language of mathematical induction. If I have any
natural number:
- If the natural number is the base case of zero, then the `is_even` relation
automatically evaluates to true.
- If the natural number is a successor, invert the induction hypothesis (which is
what `is_even` evaluates to for the previous step, a.k.a whether or not the
previous natural number is even), since every even number is succeeded by
an odd number and vice versa.
Once these rules are followed, by induction we know that `is_even` can run on
any natural number ever. In code, this looks like:
```ocaml
let is_even
(n_zero : bool)
(n_suc : nat -> bool)
(n : nat)
: bool =
match n with
| Zero -> n_zero
| Suc n1 -> n_suc n1
```
where n_zero defines what to do with the zero case, and n_suc defines what to do
with the successor case.
You might've noticed that this definition doesn't actually return any booleans.
That's because this is not actually the is_even function! This is a general
function that turns any natural into a boolean. In fact, we can go one step
further and generalize this to all types:
```ocaml
let nat_transformer
(n_zero : 'a)
(n_suc : 'a -> 'a)
(n : nat)
: 'a =
match n with
| Zero -> n_zero
| Suc n1 -> n_suc n1
```
Let's say I wanted to write a function that converts from our custom-defined nat
type into an OCaml integer. Using this constructor, that would look something
like this:
```ocaml
let convert_nat = nat_transformer 0 (fun x -> x + 1)
```
TODO: Talk about https://counterexamples.org/currys-paradox.html
[has]: https://developer.mozilla.org/en-US/docs/Web/CSS/:has
[pyright]: https://github.com/microsoft/pyright

View file

@ -14,7 +14,7 @@
{{ end }} {{ end }}
{{ $style := resources.Get "sass/main.scss" | resources.ToCSS }} {{ $style := resources.Get "sass/main.scss" | resources.ToCSS }}
<link rel="stylesheet" href="{{ $style.RelPermalink }}" /> <link rel="stylesheet" href="{{ $style.RelPermalink }}" crossorigin="anonymous" />
</head> </head>
<body> <body>

View file

@ -26,6 +26,27 @@
- {{ .ReadingTime }} min read - {{ .ReadingTime }} min read
</small> </small>
{{ if .Params.language_switcher_languages }}
<div class="has-warning">
warning! your browser does not support has
</div>
<div class="language_switcher_choices">
{{ range $index, $lang := .Page.Params.language_switcher_languages }}
<input
type="radio"
name="language-switcher"
class="language-switcher-choice"
id="language-switcher-{{ $lang }}"
value="{{ $lang }}"
{{ if (eq $index 0) }}
checked
{{ end }}
>
{{ end }}
</div>
{{ end }}
<div class="post-container <div class="post-container
{{ if .Params.logseq }}logseq-post{{ end }} {{ if .Params.logseq }}logseq-post{{ end }}
"> ">

View file

@ -0,0 +1,28 @@
{{ $_hugo_config := `{ "version": 1 }` }}
{{ $parts := split .Inner "---" }}
{{ $page := .Page }}
<div class="tabbed">
<ul class="tabs">
{{ range $index, $snippet := $parts }}
{{ $lang := index $page.Params.language_switcher_languages $index }}
<li class="tab">
<label for="language-switcher-{{ $lang }}">{{ $lang }}</label>
</li>
{{ end }}
</ul>
<div class="contents">
{{ range $index, $snippet := $parts }}
<div class="tab-content">
{{ $snippet | markdownify }}
</div>
{{ end }}
</div>
</div>
{{/* Thank you https://codepen.io/MPDoctor/pen/mpJdYe */}}