Compare commits
2 commits
37d59e6927
...
79e8a2300a
Author | SHA1 | Date | |
---|---|---|---|
79e8a2300a | |||
2f4c87ea1d |
2 changed files with 28 additions and 6 deletions
|
@ -1,7 +1,7 @@
|
|||
I'm a computer science master's student at the [University of Minnesota][1], advised by [Favonia].
|
||||
My current research topic is in cubical type theory and formalization of the Serre spectral sequence.
|
||||
|
||||
I also work as a researcher for [SIFT], specializing in compilers and binary analysis. Previously I worked as a software engineer at [Swoop Search] and [AWS].
|
||||
I've also worked as a researcher for [SIFT], specializing in compilers and binary analysis. Previously I worked as a software engineer at [Swoop Search] and [AWS].
|
||||
|
||||
Before that, I was a CTF hobbyist. I created [EasyCTF], a cybersecurity competition for high schoolers.
|
||||
I also briefly played with the CTF team [Project Sekai][pjsk].
|
||||
|
|
|
@ -22,7 +22,7 @@ open import Cubical.Foundations.Isomorphism
|
|||
open import Cubical.Core.Primitives
|
||||
open import Cubical.HITs.Susp.Base
|
||||
open import Cubical.HITs.S1.Base
|
||||
open import Data.Bool.Base
|
||||
open import Data.Bool.Base hiding (_∧_; _∨_)
|
||||
```
|
||||
|
||||
</details>
|
||||
|
@ -196,17 +196,39 @@ Between the second and third steps, I used functoriality of the $\mathsf{ap}$ op
|
|||
```
|
||||
fg (loop i) k =
|
||||
let
|
||||
leftFace = λ j → compPath-filler (λ i → f (merid false i)) (λ j → f (merid true (~ j))) j i
|
||||
|
||||
u = λ j → λ where
|
||||
(i = i0) → base
|
||||
(i = i1) → f (merid true (~ j))
|
||||
(k = i0) → leftFace j
|
||||
(k = i0) → compPath-filler
|
||||
(λ i → f (merid false i))
|
||||
(λ j → f (merid true (~ j))) j i
|
||||
(k = i1) → loop i
|
||||
in hcomp u (f (merid false i))
|
||||
```
|
||||
|
||||
```
|
||||
gf : (b : Susp Bool) → g (f b) ≡ b
|
||||
gf b = {! !}
|
||||
gf north = refl
|
||||
gf south = merid true
|
||||
-- Both merid true and merid false work here... why pick true?
|
||||
gf (merid true i) j = merid true (i ∧ j)
|
||||
```
|
||||
|
||||
For the last part, we are trying to prove:
|
||||
|
||||
`(merid false ∙ (λ i₁ → merid true (~ i₁))) i ≡ merid false i`
|
||||
|
||||
```
|
||||
gf (merid false i) j =
|
||||
let
|
||||
u = λ k → λ where
|
||||
(i = i0) → north
|
||||
(i = i1) → merid true (j ∨ ~ k)
|
||||
(j = i0) →
|
||||
let u = λ k' → λ where
|
||||
(i = i0) → north
|
||||
(i = i1) → merid true (~ k')
|
||||
in hfill u (inS (merid false i)) k
|
||||
(j = i1) → merid false i
|
||||
in hcomp u (merid false i)
|
||||
```
|
||||
|
|
Loading…
Reference in a new issue