added reductions to Lambda

This commit is contained in:
wadler 2018-05-21 18:09:58 -03:00
parent 78a1163f0a
commit 01d9e9f12c

View file

@ -116,23 +116,20 @@ Here are some example terms: the naturals two and four, the recursive
definition of a function to naturals, and a term that computes
two plus two.
\begin{code}
tm2 : Term
tm2 = `suc `suc `zero
two : Term
two = `suc `suc `zero
tm4 : Term
tm4 = `suc `suc `suc `suc `zero
tm+ : Term
tm+ = μ "+" ⇒ ƛ "m" ⇒ ƛ "n" ⇒
plus : Term
plus = μ "+" ⇒ ƛ "m" ⇒ ƛ "n" ⇒
`case # "m"
[zero⇒ # "n"
|suc "m" ⇒ `suc (# "+" · # "m" · # "n") ]
tm2+2 : Term
tm2+2 = tm+ · tm2 · tm2
\end{code}
The recursive definition of addition is similar to our original
definition of `_+_` for naturals, as given in Chapter [Natural](Naturals).
Later we will confirm that two plus two is four, in other words
plus · two · two ⟹ `suc `suc `suc `suc `zero
As a second example, we use higher-order functions to represent
natural numbers. In particular, the number _n_ is represented by a
@ -142,21 +139,15 @@ naturals. Similar to before, we define: the numerals two and four, a
function to add numerals, a function to convert numerals to naturals,
and a term that computes two plus two.
\begin{code}
ch2 : Term
ch2 = ƛ "s" ⇒ ƛ "z" ⇒ # "s" · (# "s" · # "z")
twoᶜ : Term
twoᶜ = ƛ "s" ⇒ ƛ "z" ⇒ # "s" · (# "s" · # "z")
ch4 : Term
ch4 = ƛ "s" ⇒ ƛ "z" ⇒ # "s" · (# "s" · (# "s" · (# "s" · # "z")))
ch+ : Term
ch+ = ƛ "m" ⇒ ƛ "n" ⇒ ƛ "s" ⇒ ƛ "z" ⇒
plusᶜ : Term
plusᶜ = ƛ "m" ⇒ ƛ "n" ⇒ ƛ "s" ⇒ ƛ "z" ⇒
# "m" · # "s" · (# "n" · # "s" · # "z")
ch : Term
ch = ƛ "m" ⇒ # "m" · (ƛ "n" ⇒ `suc (# "n")) · `zero
ch2+2 : Term
ch2+2 = ch · (ch+ · ch2 · ch2)
sucᶜ : Term
sucᶜ = ƛ "n" ⇒ `suc (# "n")
\end{code}
Two takes two arguments `s` and `z`, and applies `s` twice to `z`;
similarly for four. Addition takes two numerals `m` and `n`, a
@ -167,6 +158,10 @@ result of using `n` to apply `s` to `z`; hence `s` is applied `m` plus
first argument to the successor function and its second argument to
zero.
Again, later we will confirm that two plus two is four, in other words
plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero ⟹ `suc `suc `suc `suc `zero
### Formal vs informal
In informal presentation of formal semantics, one uses choice of
@ -614,12 +609,83 @@ We can read this as follows.
The names have been chosen to allow us to lay
out example reductions in an appealing way.
*(((REDUCTION EXAMPLES GO HERE, ONCE I CAN COMPUTE THEM)))*
\begin{code}
_ : plus · two · two ⟹* `suc `suc `suc `suc `zero
_ =
begin
plus · two · two
⟹⟨ ξ-·₁ (ξ-·₁ β-μ) ⟩
(ƛ "m" ⇒ ƛ "n" ⇒
`case # "m" [zero⇒ # "n" |suc "m" ⇒ `suc (plus · # "m" · # "n") ])
· two · two
⟹⟨ ξ-·₁ (β-ƛ· (V-suc (V-suc V-zero))) ⟩
(ƛ "n" ⇒
`case two [zero⇒ # "n" |suc "m" ⇒ `suc (plus · # "m" · # "n") ])
· two
⟹⟨ β-ƛ· (V-suc (V-suc V-zero)) ⟩
`case two [zero⇒ two |suc "m" ⇒ `suc (plus · # "m" · two) ]
⟹⟨ β-case-suc (V-suc V-zero) ⟩
`suc (plus · `suc `zero · two)
⟹⟨ ξ-suc (ξ-·₁ (ξ-·₁ β-μ)) ⟩
`suc ((ƛ "m" ⇒ ƛ "n" ⇒
`case # "m" [zero⇒ # "n" |suc "m" ⇒ `suc (plus · # "m" · # "n") ])
· `suc `zero · two)
⟹⟨ ξ-suc (ξ-·₁ (β-ƛ· (V-suc V-zero))) ⟩
`suc ((ƛ "n" ⇒
`case `suc `zero [zero⇒ # "n" |suc "m" ⇒ `suc (plus · # "m" · # "n") ])
· two)
⟹⟨ ξ-suc (β-ƛ· (V-suc (V-suc V-zero))) ⟩
`suc (`case `suc `zero [zero⇒ two |suc "m" ⇒ `suc (plus · # "m" · two) ])
⟹⟨ ξ-suc (β-case-suc V-zero) ⟩
`suc `suc (plus · `zero · two)
⟹⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ β-μ))) ⟩
`suc `suc ((ƛ "m" ⇒ ƛ "n" ⇒
`case # "m" [zero⇒ # "n" |suc "m" ⇒ `suc (plus · # "m" · # "n") ])
· `zero · two)
⟹⟨ ξ-suc (ξ-suc (ξ-·₁ (β-ƛ· V-zero))) ⟩
`suc `suc ((ƛ "n" ⇒
`case `zero [zero⇒ # "n" |suc "m" ⇒ `suc (plus · # "m" · # "n") ])
· two)
⟹⟨ ξ-suc (ξ-suc (β-ƛ· (V-suc (V-suc V-zero)))) ⟩
`suc `suc (`case `zero [zero⇒ two |suc "m" ⇒ `suc (plus · # "m" · two) ])
⟹⟨ ξ-suc (ξ-suc β-case-zero) ⟩
`suc (`suc (`suc (`suc `zero)))
\end{code}
Much of the above, though not all, can be filled in using C-c C-r and C-c C-s.
\begin{code}
_ : plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero ⟹* `suc `suc `suc `suc `zero
_ =
begin
(ƛ "m" ⇒ ƛ "n" ⇒ ƛ "s" ⇒ ƛ "z" ⇒ # "m" · # "s" · (# "n" · # "s" · # "z"))
· twoᶜ · twoᶜ · sucᶜ · `zero
⟹⟨ ξ-·₁ (ξ-·₁ (ξ-·₁ (β-ƛ· V-ƛ))) ⟩
(ƛ "n" ⇒ ƛ "s" ⇒ ƛ "z" ⇒ twoᶜ · # "s" · (# "n" · # "s" · # "z"))
· twoᶜ · sucᶜ · `zero
⟹⟨ ξ-·₁ (ξ-·₁ (β-ƛ· V-ƛ)) ⟩
(ƛ "s" ⇒ ƛ "z" ⇒ twoᶜ · # "s" · (twoᶜ · # "s" · # "z")) · sucᶜ · `zero
⟹⟨ ξ-·₁ (β-ƛ· V-ƛ) ⟩
(ƛ "z" ⇒ twoᶜ · sucᶜ · (twoᶜ · sucᶜ · # "z")) · `zero
⟹⟨ β-ƛ· V-zero ⟩
twoᶜ · sucᶜ · (twoᶜ · sucᶜ · `zero)
⟹⟨ ξ-·₁ (β-ƛ· V-ƛ) ⟩
(ƛ "z" ⇒ sucᶜ · (sucᶜ · # "z")) · (twoᶜ · sucᶜ · `zero)
⟹⟨ ξ-·₂ V-ƛ (ξ-·₁ (β-ƛ· V-ƛ)) ⟩
(ƛ "z" ⇒ sucᶜ · (sucᶜ · # "z")) · ((ƛ "z" ⇒ sucᶜ · (sucᶜ · # "z")) · `zero)
⟹⟨ ξ-·₂ V-ƛ (β-ƛ· V-zero) ⟩
(ƛ "z" ⇒ sucᶜ · (sucᶜ · # "z")) · (sucᶜ · (sucᶜ · `zero))
⟹⟨ ξ-·₂ V-ƛ (ξ-·₂ V-ƛ (β-ƛ· V-zero)) ⟩
(ƛ "z" ⇒ sucᶜ · (sucᶜ · # "z")) · (sucᶜ · (`suc `zero))
⟹⟨ ξ-·₂ V-ƛ (β-ƛ· (V-suc V-zero)) ⟩
(ƛ "z" ⇒ sucᶜ · (sucᶜ · # "z")) · (`suc `suc `zero)
⟹⟨ β-ƛ· (V-suc (V-suc V-zero)) ⟩
sucᶜ · (sucᶜ · `suc `suc `zero)
⟹⟨ ξ-·₂ V-ƛ (β-ƛ· (V-suc (V-suc V-zero))) ⟩
sucᶜ · (`suc `suc `suc `zero)
⟹⟨ β-ƛ· (V-suc (V-suc (V-suc V-zero))) ⟩
`suc (`suc (`suc (`suc `zero)))
\end{code}
## Syntax of types
@ -853,8 +919,8 @@ where `Γ₁ = ∅ , s ⦂ ` ⇒ `` and `Γ₂ = ∅ , s ⦂ ` ⇒ `
Here is the above derivation formalised in Agda.
\begin{code}
ch2 : ∅ ⊢ ch2 ⦂ (` ⇒ `) ⇒ ` ⇒ `
ch2 = ⇒-I (⇒-I (⇒-E (Ax ∋s) (⇒-E (Ax ∋s) (Ax ∋z))))
twoᶜ : ∅ ⊢ twoᶜ ⦂ (` ⇒ `) ⇒ ` ⇒ `
twoᶜ = ⇒-I (⇒-I (⇒-E (Ax ∋s) (⇒-E (Ax ∋s) (Ax ∋z))))
where
s≢z : "s" ≢ "z"
@ -865,14 +931,11 @@ Here is the above derivation formalised in Agda.
\end{code}
\begin{code}
⊢tm2 : ∅ ⊢ tm2 ⦂ `
⊢tm2 = -I₂ (-I₂ -I₁)
⊢two : ∅ ⊢ two ⦂ `
⊢two = -I₂ (-I₂ -I₁)
⊢tm4 : ∅ ⊢ tm4 ⦂ `
⊢tm4 = -I₂ (-I₂ (-I₂ (-I₂ -I₁)))
⊢tm+ : ∅ ⊢ tm+ ⦂ ` ⇒ ` ⇒ `
⊢tm+ = Fix (⇒-I (⇒-I (-E (Ax ∋m) (Ax ∋n)
⊢plus : ∅ ⊢ plus ⦂ ` ⇒ ` ⇒ `
⊢plus = Fix (⇒-I (⇒-I (-E (Ax ∋m) (Ax ∋n)
(-I₂ (⇒-E (⇒-E (Ax ∋+) (Ax ∋m)) (Ax ∋n))))))
where
∋+ = (S (λ()) (S (λ()) (S (λ()) Z)))
@ -880,9 +943,6 @@ Here is the above derivation formalised in Agda.
∋n = Z
∋m = Z
∋n = (S (λ()) Z)
⊢tm2+2 : ∅ ⊢ tm2+2 ⦂ `
⊢tm2+2 = ⇒-E (⇒-E ⊢tm+ ⊢tm2) ⊢tm2
\end{code}
Typing for the rest of the Church terms.
@ -890,16 +950,8 @@ Typing for the rest of the Church terms.
Ch : Type → Type
Ch A = (A ⇒ A) ⇒ A ⇒ A
⊢ch4 : ∀ {A} → (∅ ⊢ ch4 ⦂ (Ch A))
⊢ch4 = ⇒-I (⇒-I (⇒-E (Ax ∋s) (⇒-E (Ax ∋s)
(⇒-E (Ax ∋s) (⇒-E (Ax ∋s) (Ax ∋z))))))
where
∋s = S (λ()) Z
∋z = Z
⊢ch+ : ∀ {A} → ∅ ⊢ ch+ ⦂ Ch A ⇒ Ch A ⇒ Ch A
⊢ch+ = ⇒-I (⇒-I (⇒-I (⇒-I (⇒-E (⇒-E (Ax ∋m) (Ax ∋s))
⊢plusᶜ : ∀ {A} → ∅ ⊢ plusᶜ ⦂ Ch A ⇒ Ch A ⇒ Ch A
⊢plusᶜ = ⇒-I (⇒-I (⇒-I (⇒-I (⇒-E (⇒-E (Ax ∋m) (Ax ∋s))
(⇒-E (⇒-E (Ax ∋n) (Ax ∋s)) (Ax ∋z))))))
where
∋m = S (λ()) (S (λ()) (S (λ()) Z))
@ -907,15 +959,10 @@ Ch A = (A ⇒ A) ⇒ A ⇒ A
∋s = S (λ()) Z
∋z = Z
⊢ch : ∅ ⊢ ch ⦂ Ch ` ⇒ `
⊢ch = ⇒-I (⇒-E (⇒-E (Ax ∋m) (⇒-I (-I₂ (Ax ∋n)))) -I₁)
⊢sucᶜ : ∅ ⊢ sucᶜ ⦂ ` ⇒ `
⊢sucᶜ = ⇒-I (-I₂ (Ax ∋n))
where
∋m = Z
∋n = Z
⊢ch2+2 : ∅ ⊢ ch2+2 ⦂ `
⊢ch2+2 = ⇒-E (⊢ch) (⇒-E (⇒-E ⊢ch+ ⊢ch2) ⊢ch2)
\end{code}