Remove tick from constructors
This commit is contained in:
parent
f68782dccb
commit
07894d0d79
6 changed files with 535 additions and 550 deletions
|
@ -116,7 +116,7 @@ that it is _intrinsically typed_. In the previous two chapters,
|
|||
the definition of terms and the definition of types are
|
||||
completely separate. All terms have type `Term`, and nothing
|
||||
in Agda prevents one from writing a nonsense term such as
|
||||
`` `zero · `suc `zero `` which has no type. Such terms that
|
||||
`` zero · suc zero `` which has no type. Such terms that
|
||||
exist independent of types are sometimes called _preterms_ or
|
||||
_raw terms_. Here we are going to replace the type `Term` of
|
||||
raw terms by the type `Γ ⊢ A` of intrinsically-typed terms
|
||||
|
@ -140,7 +140,7 @@ the term that adds two naturals:
|
|||
plus = μ "+" ⇒ ƛ "m" ⇒ ƛ "n" ⇒
|
||||
case ` "m"
|
||||
[zero⇒ ` "n"
|
||||
|suc "m" ⇒ `suc (` "+" · ` "m" · ` "n") ]
|
||||
|suc "m" ⇒ suc (` "+" · ` "m" · ` "n") ]
|
||||
|
||||
Note variable `"m"` is bound twice, once in a lambda abstraction
|
||||
and once in the successor branch of the case. Any appearance
|
||||
|
@ -162,8 +162,8 @@ Here is its corresponding type derivation:
|
|||
The two definitions are in close correspondence, where in
|
||||
addition to the previous correspondences we have:
|
||||
|
||||
* `` `zero `` corresponds to `⊢zero`
|
||||
* `` `suc_ `` corresponds to `⊢suc`
|
||||
* `` zero `` corresponds to `⊢zero`
|
||||
* `` suc `` corresponds to `⊢suc`
|
||||
* `` case_[zero⇒_|suc_⇒_] `` corresponds to `⊢case`
|
||||
* `μ_⇒_` corresponds to `⊢μ`
|
||||
|
||||
|
@ -177,7 +177,7 @@ of `"n"` but accessed in different contexts, the first where
|
|||
Here is the term and its type derivation in the notation of this chapter:
|
||||
|
||||
plus : ∀ {Γ} → Γ ⊢ `ℕ ⇒ `ℕ ⇒ `ℕ
|
||||
plus = μ ƛ ƛ case (# 1) (# 0) (`suc (# 3 · # 0 · # 1))
|
||||
plus = μ ƛ ƛ case (# 1) (# 0) (suc (# 3 · # 0 · # 1))
|
||||
|
||||
Reading from left to right, each de Bruijn index corresponds
|
||||
to a lookup derivation:
|
||||
|
@ -230,7 +230,6 @@ infixr 7 _⇒_
|
|||
infix 5 ƛ_
|
||||
infix 5 μ_
|
||||
infixl 7 _·_
|
||||
infix 8 `suc_
|
||||
infix 9 `_
|
||||
infix 9 S_
|
||||
infix 9 #_
|
||||
|
@ -300,7 +299,7 @@ Constructor `S` no longer requires an additional parameter,
|
|||
since without names shadowing is no longer an issue. Now
|
||||
constructors `Z` and `S` correspond even more closely to the
|
||||
constructors `here` and `there` for the element-of relation
|
||||
`_∈_` on lists, as well as to constructors `zero` and `suc`
|
||||
`_∈_` on lists, as well as to constructors zero` and suc`
|
||||
for natural numbers.
|
||||
|
||||
For example, consider the following old-style lookup
|
||||
|
@ -353,11 +352,11 @@ data _⊢_ : Context → Type → Set where
|
|||
---------
|
||||
→ Γ ⊢ B
|
||||
|
||||
`zero : ∀ {Γ}
|
||||
zero : ∀ {Γ}
|
||||
---------
|
||||
→ Γ ⊢ `ℕ
|
||||
|
||||
`suc_ : ∀ {Γ}
|
||||
suc : ∀ {Γ}
|
||||
→ Γ ⊢ `ℕ
|
||||
------
|
||||
→ Γ ⊢ `ℕ
|
||||
|
@ -460,10 +459,10 @@ for comparison.
|
|||
First, computing two plus two on naturals:
|
||||
```
|
||||
two : ∀ {Γ} → Γ ⊢ `ℕ
|
||||
two = `suc `suc `zero
|
||||
two = suc (suc zero)
|
||||
|
||||
plus : ∀ {Γ} → Γ ⊢ `ℕ ⇒ `ℕ ⇒ `ℕ
|
||||
plus = μ ƛ ƛ (case (# 1) (# 0) (`suc (# 3 · # 0 · # 1)))
|
||||
plus = μ ƛ ƛ (case (# 1) (# 0) (suc (# 3 · # 0 · # 1)))
|
||||
|
||||
2+2 : ∀ {Γ} → Γ ⊢ `ℕ
|
||||
2+2 = plus · two · two
|
||||
|
@ -483,10 +482,10 @@ plusᶜ : ∀ {Γ A} → Γ ⊢ Ch A ⇒ Ch A ⇒ Ch A
|
|||
plusᶜ = ƛ ƛ ƛ ƛ (# 3 · # 1 · (# 2 · # 1 · # 0))
|
||||
|
||||
sucᶜ : ∀ {Γ} → Γ ⊢ `ℕ ⇒ `ℕ
|
||||
sucᶜ = ƛ `suc (# 0)
|
||||
sucᶜ = ƛ suc (# 0)
|
||||
|
||||
2+2ᶜ : ∀ {Γ} → Γ ⊢ `ℕ
|
||||
2+2ᶜ = plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero
|
||||
2+2ᶜ = plusᶜ · twoᶜ · twoᶜ · sucᶜ · zero
|
||||
```
|
||||
As before we generalise everything to arbitrary
|
||||
contexts. While we are at it, we also generalise `twoᶜ` and
|
||||
|
@ -550,8 +549,8 @@ rename : ∀ {Γ Δ}
|
|||
rename ρ (` x) = ` (ρ x)
|
||||
rename ρ (ƛ N) = ƛ (rename (ext ρ) N)
|
||||
rename ρ (L · M) = (rename ρ L) · (rename ρ M)
|
||||
rename ρ (`zero) = `zero
|
||||
rename ρ (`suc M) = `suc (rename ρ M)
|
||||
rename ρ (zero) = zero
|
||||
rename ρ (suc M) = suc (rename ρ M)
|
||||
rename ρ (case L M N) = case (rename ρ L) (rename ρ M) (rename (ext ρ) N)
|
||||
rename ρ (μ N) = μ (rename (ext ρ) N)
|
||||
```
|
||||
|
@ -664,8 +663,8 @@ subst : ∀ {Γ Δ}
|
|||
subst σ (` k) = σ k
|
||||
subst σ (ƛ N) = ƛ (subst (exts σ) N)
|
||||
subst σ (L · M) = (subst σ L) · (subst σ M)
|
||||
subst σ (`zero) = `zero
|
||||
subst σ (`suc M) = `suc (subst σ M)
|
||||
subst σ (zero) = zero
|
||||
subst σ (suc M) = suc (subst σ M)
|
||||
subst σ (case L M N) = case (subst σ L) (subst σ M) (subst (exts σ) N)
|
||||
subst σ (μ N) = μ (subst (exts σ) N)
|
||||
```
|
||||
|
@ -719,10 +718,10 @@ M₂ : ∅ , `ℕ ⇒ `ℕ ⊢ `ℕ ⇒ `ℕ
|
|||
M₂ = ƛ # 1 · (# 1 · # 0)
|
||||
|
||||
M₃ : ∅ ⊢ `ℕ ⇒ `ℕ
|
||||
M₃ = ƛ `suc # 0
|
||||
M₃ = ƛ suc (# 0)
|
||||
|
||||
M₄ : ∅ ⊢ `ℕ ⇒ `ℕ
|
||||
M₄ = ƛ (ƛ `suc # 0) · ((ƛ `suc # 0) · # 0)
|
||||
M₄ = ƛ (ƛ suc (# 0)) · ((ƛ suc (# 0)) · # 0)
|
||||
|
||||
_ : M₂ [ M₃ ] ≡ M₄
|
||||
_ = refl
|
||||
|
@ -732,8 +731,8 @@ Previously, we presented an example of substitution that we
|
|||
did not implement, since it needed to rename the bound
|
||||
variable to avoid capture:
|
||||
|
||||
* `` (ƛ "x" ⇒ ` "x" · ` "y") [ "y" := ` "x" · `zero ] `` should yield
|
||||
`` ƛ "z" ⇒ ` "z" · (` "x" · `zero) ``
|
||||
* `` (ƛ "x" ⇒ ` "x" · ` "y") [ "y" := ` "x" · zero ] `` should yield
|
||||
`` ƛ "z" ⇒ ` "z" · (` "x" · zero) ``
|
||||
|
||||
Say the bound `"x"` has type `` `ℕ ⇒ `ℕ ``, the substituted
|
||||
`"y"` has type `` `ℕ ``, and the free `"x"` also has type ``
|
||||
|
@ -743,10 +742,10 @@ M₅ : ∅ , `ℕ ⇒ `ℕ , `ℕ ⊢ (`ℕ ⇒ `ℕ) ⇒ `ℕ
|
|||
M₅ = ƛ # 0 · # 1
|
||||
|
||||
M₆ : ∅ , `ℕ ⇒ `ℕ ⊢ `ℕ
|
||||
M₆ = # 0 · `zero
|
||||
M₆ = # 0 · zero
|
||||
|
||||
M₇ : ∅ , `ℕ ⇒ `ℕ ⊢ (`ℕ ⇒ `ℕ) ⇒ `ℕ
|
||||
M₇ = ƛ (# 0 · (# 1 · `zero))
|
||||
M₇ = ƛ (# 0 · (# 1 · zero))
|
||||
|
||||
_ : M₅ [ M₆ ] ≡ M₇
|
||||
_ = refl
|
||||
|
@ -777,15 +776,15 @@ data Value : ∀ {Γ A} → Γ ⊢ A → Set where
|
|||
|
||||
V-zero : ∀ {Γ}
|
||||
-----------------
|
||||
→ Value (`zero {Γ})
|
||||
→ Value (zero {Γ})
|
||||
|
||||
V-suc : ∀ {Γ} {V : Γ ⊢ `ℕ}
|
||||
→ Value V
|
||||
--------------
|
||||
→ Value (`suc V)
|
||||
→ Value (suc V)
|
||||
```
|
||||
|
||||
Here `zero` requires an implicit parameter to aid inference,
|
||||
Here zero` requires an implicit parameter to aid inference,
|
||||
much in the same way that `[]` did in
|
||||
[Lists]({{ site.baseurl }}/Lists/).
|
||||
|
||||
|
@ -822,7 +821,7 @@ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where
|
|||
ξ-suc : ∀ {Γ} {M M′ : Γ ⊢ `ℕ}
|
||||
→ M —→ M′
|
||||
-----------------
|
||||
→ `suc M —→ `suc M′
|
||||
→ suc M —→ suc M′
|
||||
|
||||
ξ-case : ∀ {Γ A} {L L′ : Γ ⊢ `ℕ} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A}
|
||||
→ L —→ L′
|
||||
|
@ -831,12 +830,12 @@ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where
|
|||
|
||||
β-zero : ∀ {Γ A} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A}
|
||||
-------------------
|
||||
→ case `zero M N —→ M
|
||||
→ case zero M N —→ M
|
||||
|
||||
β-suc : ∀ {Γ A} {V : Γ ⊢ `ℕ} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A}
|
||||
→ Value V
|
||||
----------------------------
|
||||
→ case (`suc V) M N —→ N [ V ]
|
||||
→ case (suc V) M N —→ N [ V ]
|
||||
|
||||
β-μ : ∀ {Γ A} {N : Γ , A ⊢ A}
|
||||
----------------
|
||||
|
@ -889,86 +888,86 @@ We reiterate each of our previous examples. First, the Church
|
|||
numeral two applied to the successor function and zero yields
|
||||
the natural number two:
|
||||
```
|
||||
_ : twoᶜ · sucᶜ · `zero {∅} —↠ `suc `suc `zero
|
||||
_ : twoᶜ · sucᶜ · zero {∅} —↠ suc (suc zero)
|
||||
_ =
|
||||
begin
|
||||
twoᶜ · sucᶜ · `zero
|
||||
twoᶜ · sucᶜ · zero
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ (sucᶜ · (sucᶜ · # 0))) · `zero
|
||||
(ƛ (sucᶜ · (sucᶜ · # 0))) · zero
|
||||
—→⟨ β-ƛ V-zero ⟩
|
||||
sucᶜ · (sucᶜ · `zero)
|
||||
sucᶜ · (sucᶜ · zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
|
||||
sucᶜ · `suc `zero
|
||||
sucᶜ · suc zero
|
||||
—→⟨ β-ƛ (V-suc V-zero) ⟩
|
||||
`suc (`suc `zero)
|
||||
suc (suc zero)
|
||||
∎
|
||||
```
|
||||
As before, we need to supply an explicit context to `` `zero ``.
|
||||
As before, we need to supply an explicit context to `` zero ``.
|
||||
|
||||
Next, a sample reduction demonstrating that two plus two is four:
|
||||
```
|
||||
_ : plus {∅} · two · two —↠ `suc `suc `suc `suc `zero
|
||||
_ : plus {∅} · two · two —↠ suc (suc (suc (suc zero)))
|
||||
_ =
|
||||
plus · two · two
|
||||
—→⟨ ξ-·₁ (ξ-·₁ β-μ) ⟩
|
||||
(ƛ ƛ case (` S Z) (` Z) (`suc (plus · ` Z · ` S Z))) · two · two
|
||||
(ƛ ƛ case (` S Z) (` Z) (suc (plus · ` Z · ` S Z))) · two · two
|
||||
—→⟨ ξ-·₁ (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
(ƛ case two (` Z) (`suc (plus · ` Z · ` S Z))) · two
|
||||
(ƛ case two (` Z) (suc (plus · ` Z · ` S Z))) · two
|
||||
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
|
||||
case two two (`suc (plus · ` Z · two))
|
||||
case two two (suc (plus · ` Z · two))
|
||||
—→⟨ β-suc (V-suc V-zero) ⟩
|
||||
`suc (plus · `suc `zero · two)
|
||||
suc (plus · suc zero · two)
|
||||
—→⟨ ξ-suc (ξ-·₁ (ξ-·₁ β-μ)) ⟩
|
||||
`suc ((ƛ ƛ case (` S Z) (` Z) (`suc (plus · ` Z · ` S Z)))
|
||||
· `suc `zero · two)
|
||||
suc ((ƛ ƛ case (` S Z) (` Z) (suc (plus · ` Z · ` S Z)))
|
||||
· suc zero · two)
|
||||
—→⟨ ξ-suc (ξ-·₁ (β-ƛ (V-suc V-zero))) ⟩
|
||||
`suc ((ƛ case (`suc `zero) (` Z) (`suc (plus · ` Z · ` S Z))) · two)
|
||||
suc ((ƛ case (suc zero) (` Z) (suc (plus · ` Z · ` S Z))) · two)
|
||||
—→⟨ ξ-suc (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
`suc (case (`suc `zero) (two) (`suc (plus · ` Z · two)))
|
||||
suc (case (suc zero) (two) (suc (plus · ` Z · two)))
|
||||
—→⟨ ξ-suc (β-suc V-zero) ⟩
|
||||
`suc (`suc (plus · `zero · two))
|
||||
suc (suc (plus · zero · two))
|
||||
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ β-μ))) ⟩
|
||||
`suc (`suc ((ƛ ƛ case (` S Z) (` Z) (`suc (plus · ` Z · ` S Z)))
|
||||
· `zero · two))
|
||||
suc (suc ((ƛ ƛ case (` S Z) (` Z) (suc (plus · ` Z · ` S Z)))
|
||||
· zero · two))
|
||||
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (β-ƛ V-zero))) ⟩
|
||||
`suc (`suc ((ƛ case `zero (` Z) (`suc (plus · ` Z · ` S Z))) · two))
|
||||
suc (suc ((ƛ case zero (` Z) (suc (plus · ` Z · ` S Z))) · two))
|
||||
—→⟨ ξ-suc (ξ-suc (β-ƛ (V-suc (V-suc V-zero)))) ⟩
|
||||
`suc (`suc (case `zero (two) (`suc (plus · ` Z · two))))
|
||||
suc (suc (case zero (two) (suc (plus · ` Z · two))))
|
||||
—→⟨ ξ-suc (ξ-suc β-zero) ⟩
|
||||
`suc (`suc (`suc (`suc `zero)))
|
||||
suc (suc (suc (suc zero)))
|
||||
∎
|
||||
```
|
||||
|
||||
And finally, a similar sample reduction for Church numerals:
|
||||
```
|
||||
_ : plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero —↠ `suc `suc `suc `suc `zero {∅}
|
||||
_ : plusᶜ · twoᶜ · twoᶜ · sucᶜ · zero —↠ suc (suc (suc (suc (zero {∅}))))
|
||||
_ =
|
||||
begin
|
||||
plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero
|
||||
plusᶜ · twoᶜ · twoᶜ · sucᶜ · zero
|
||||
—→⟨ ξ-·₁ (ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ))) ⟩
|
||||
(ƛ ƛ ƛ twoᶜ · ` S Z · (` S S Z · ` S Z · ` Z)) · twoᶜ · sucᶜ · `zero
|
||||
(ƛ ƛ ƛ twoᶜ · ` S Z · (` S S Z · ` S Z · ` Z)) · twoᶜ · sucᶜ · zero
|
||||
—→⟨ ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
|
||||
(ƛ ƛ twoᶜ · ` S Z · (twoᶜ · ` S Z · ` Z)) · sucᶜ · `zero
|
||||
(ƛ ƛ twoᶜ · ` S Z · (twoᶜ · ` S Z · ` Z)) · sucᶜ · zero
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ twoᶜ · sucᶜ · (twoᶜ · sucᶜ · ` Z)) · `zero
|
||||
(ƛ twoᶜ · sucᶜ · (twoᶜ · sucᶜ · ` Z)) · zero
|
||||
—→⟨ β-ƛ V-zero ⟩
|
||||
twoᶜ · sucᶜ · (twoᶜ · sucᶜ · `zero)
|
||||
twoᶜ · sucᶜ · (twoᶜ · sucᶜ · zero)
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ sucᶜ · (sucᶜ · ` Z)) · (twoᶜ · sucᶜ · `zero)
|
||||
(ƛ sucᶜ · (sucᶜ · ` Z)) · (twoᶜ · sucᶜ · zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
|
||||
(ƛ sucᶜ · (sucᶜ · ` Z)) · ((ƛ sucᶜ · (sucᶜ · ` Z)) · `zero)
|
||||
(ƛ sucᶜ · (sucᶜ · ` Z)) · ((ƛ sucᶜ · (sucᶜ · ` Z)) · zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
|
||||
(ƛ sucᶜ · (sucᶜ · ` Z)) · (sucᶜ · (sucᶜ · `zero))
|
||||
(ƛ sucᶜ · (sucᶜ · ` Z)) · (sucᶜ · (sucᶜ · zero))
|
||||
—→⟨ ξ-·₂ V-ƛ (ξ-·₂ V-ƛ (β-ƛ V-zero)) ⟩
|
||||
(ƛ sucᶜ · (sucᶜ · ` Z)) · (sucᶜ · `suc `zero)
|
||||
(ƛ sucᶜ · (sucᶜ · ` Z)) · (sucᶜ · suc zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc V-zero)) ⟩
|
||||
(ƛ sucᶜ · (sucᶜ · ` Z)) · `suc (`suc `zero)
|
||||
(ƛ sucᶜ · (sucᶜ · ` Z)) · suc (suc zero)
|
||||
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
|
||||
sucᶜ · (sucᶜ · `suc (`suc `zero))
|
||||
sucᶜ · (sucᶜ · suc (suc zero))
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
sucᶜ · `suc (`suc (`suc `zero))
|
||||
sucᶜ · suc (suc (suc zero))
|
||||
—→⟨ β-ƛ (V-suc (V-suc (V-suc V-zero))) ⟩
|
||||
`suc (`suc (`suc (`suc `zero)))
|
||||
suc (suc (suc (suc zero)))
|
||||
∎
|
||||
```
|
||||
|
||||
|
@ -1023,8 +1022,8 @@ progress (L · M) with progress L
|
|||
... | done V-ƛ with progress M
|
||||
... | step M—→M′ = step (ξ-·₂ V-ƛ M—→M′)
|
||||
... | done VM = step (β-ƛ VM)
|
||||
progress (`zero) = done V-zero
|
||||
progress (`suc M) with progress M
|
||||
progress (zero) = done V-zero
|
||||
progress (suc M) with progress M
|
||||
... | step M—→M′ = step (ξ-suc M—→M′)
|
||||
... | done VM = done (V-suc VM)
|
||||
progress (case L M N) with progress L
|
||||
|
@ -1091,23 +1090,23 @@ to invoke preservation.
|
|||
## Examples
|
||||
|
||||
We reiterate each of our previous examples. We re-define the term
|
||||
`sucμ` that loops forever:
|
||||
sucμ` that loops forever:
|
||||
```
|
||||
sucμ : ∅ ⊢ `ℕ
|
||||
sucμ = μ (`suc (# 0))
|
||||
sucμ = μ (suc (# 0))
|
||||
```
|
||||
To compute the first three steps of the infinite reduction sequence,
|
||||
we evaluate with three steps worth of gas:
|
||||
```
|
||||
_ : eval (gas 3) sucμ ≡
|
||||
steps
|
||||
(μ `suc ` Z
|
||||
(μ suc (` Z)
|
||||
—→⟨ β-μ ⟩
|
||||
`suc (μ `suc ` Z)
|
||||
suc (μ suc (` Z))
|
||||
—→⟨ ξ-suc β-μ ⟩
|
||||
`suc (`suc (μ `suc ` Z))
|
||||
suc (suc (μ suc (` Z)))
|
||||
—→⟨ ξ-suc (ξ-suc β-μ) ⟩
|
||||
`suc (`suc (`suc (μ `suc ` Z)))
|
||||
suc (suc (suc (μ suc (` Z))))
|
||||
∎)
|
||||
out-of-gas
|
||||
_ = refl
|
||||
|
@ -1115,17 +1114,17 @@ _ = refl
|
|||
|
||||
The Church numeral two applied to successor and zero:
|
||||
```
|
||||
_ : eval (gas 100) (twoᶜ · sucᶜ · `zero) ≡
|
||||
_ : eval (gas 100) (twoᶜ · sucᶜ · zero) ≡
|
||||
steps
|
||||
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ `suc ` Z) · `zero
|
||||
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ suc (` Z)) · zero
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ (ƛ `suc ` Z) · ((ƛ `suc ` Z) · ` Z)) · `zero
|
||||
(ƛ (ƛ suc (` Z)) · ((ƛ suc (` Z)) · ` Z)) · zero
|
||||
—→⟨ β-ƛ V-zero ⟩
|
||||
(ƛ `suc ` Z) · ((ƛ `suc ` Z) · `zero)
|
||||
(ƛ suc (` Z)) · ((ƛ suc (` Z)) · zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
|
||||
(ƛ `suc ` Z) · `suc `zero
|
||||
(ƛ suc (` Z)) · suc zero
|
||||
—→⟨ β-ƛ (V-suc V-zero) ⟩
|
||||
`suc (`suc `zero)
|
||||
suc (suc zero)
|
||||
∎)
|
||||
(done (V-suc (V-suc V-zero)))
|
||||
_ = refl
|
||||
|
@ -1135,155 +1134,141 @@ Two plus two is four:
|
|||
```
|
||||
_ : eval (gas 100) (plus · two · two) ≡
|
||||
steps
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· `suc (`suc `zero)
|
||||
· `suc (`suc `zero)
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· suc (suc zero)
|
||||
· suc (suc zero)
|
||||
—→⟨ ξ-·₁ (ξ-·₁ β-μ) ⟩
|
||||
(ƛ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z)
|
||||
(`suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· ` (S Z)))))
|
||||
· `suc (`suc `zero)
|
||||
· `suc (`suc `zero)
|
||||
—→⟨ ξ-·₁ (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
(ƛ
|
||||
case (`suc (`suc `zero)) (` Z)
|
||||
(`suc
|
||||
case (` (S Z)) (` Z)
|
||||
(suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· ` (S Z))))
|
||||
· `suc (`suc `zero)
|
||||
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
|
||||
case (`suc (`suc `zero)) (`suc (`suc `zero))
|
||||
(`suc
|
||||
· ` (S Z)))))
|
||||
· suc (suc zero)
|
||||
· suc (suc zero)
|
||||
—→⟨ ξ-·₁ (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
(ƛ
|
||||
case (suc (suc zero)) (` Z)
|
||||
(suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· `suc (`suc `zero)))
|
||||
—→⟨ β-suc (V-suc V-zero) ⟩
|
||||
`suc
|
||||
· ` (S Z))))
|
||||
· suc (suc zero)
|
||||
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
|
||||
case (suc (suc zero)) (suc (suc zero))
|
||||
(suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· `suc `zero
|
||||
· `suc (`suc `zero))
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· suc (suc zero)))
|
||||
—→⟨ β-suc (V-suc V-zero) ⟩
|
||||
suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· suc zero
|
||||
· suc (suc zero))
|
||||
—→⟨ ξ-suc (ξ-·₁ (ξ-·₁ β-μ)) ⟩
|
||||
`suc
|
||||
suc
|
||||
((ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z)
|
||||
(suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· ` (S Z)))))
|
||||
· suc zero
|
||||
· suc (suc zero))
|
||||
—→⟨ ξ-suc (ξ-·₁ (β-ƛ (V-suc V-zero))) ⟩
|
||||
suc
|
||||
((ƛ
|
||||
case (suc zero) (` Z)
|
||||
(suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· ` (S Z))))
|
||||
· suc (suc zero))
|
||||
—→⟨ ξ-suc (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
suc
|
||||
(case (suc zero) (suc (suc zero))
|
||||
(suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· suc (suc zero))))
|
||||
—→⟨ ξ-suc (β-suc V-zero) ⟩
|
||||
suc
|
||||
(suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· zero
|
||||
· suc (suc zero)))
|
||||
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ β-μ))) ⟩
|
||||
suc
|
||||
(suc
|
||||
((ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z)
|
||||
(`suc
|
||||
(suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· ` (S Z)))))
|
||||
· `suc `zero
|
||||
· `suc (`suc `zero))
|
||||
—→⟨ ξ-suc (ξ-·₁ (β-ƛ (V-suc V-zero))) ⟩
|
||||
`suc
|
||||
· zero
|
||||
· suc (suc zero)))
|
||||
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (β-ƛ V-zero))) ⟩
|
||||
suc
|
||||
(suc
|
||||
((ƛ
|
||||
case (`suc `zero) (` Z)
|
||||
(`suc
|
||||
case zero (` Z)
|
||||
(suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· ` (S Z))))
|
||||
· `suc (`suc `zero))
|
||||
—→⟨ ξ-suc (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
`suc
|
||||
case (`suc `zero) (`suc (`suc `zero))
|
||||
(`suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· `suc (`suc `zero)))
|
||||
—→⟨ ξ-suc (β-suc V-zero) ⟩
|
||||
`suc
|
||||
(`suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· `zero
|
||||
· `suc (`suc `zero)))
|
||||
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ β-μ))) ⟩
|
||||
`suc
|
||||
(`suc
|
||||
((ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z)
|
||||
(`suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· ` (S Z)))))
|
||||
· `zero
|
||||
· `suc (`suc `zero)))
|
||||
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (β-ƛ V-zero))) ⟩
|
||||
`suc
|
||||
(`suc
|
||||
((ƛ
|
||||
case `zero (` Z)
|
||||
(`suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· ` (S Z))))
|
||||
· `suc (`suc `zero)))
|
||||
· suc (suc zero)))
|
||||
—→⟨ ξ-suc (ξ-suc (β-ƛ (V-suc (V-suc V-zero)))) ⟩
|
||||
`suc
|
||||
(`suc
|
||||
case `zero (`suc (`suc `zero))
|
||||
(`suc
|
||||
suc
|
||||
(suc
|
||||
(case zero (suc (suc zero))
|
||||
(suc
|
||||
((μ
|
||||
(ƛ
|
||||
(ƛ
|
||||
case (` (S Z)) (` Z) (`suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
(ƛ case (` (S Z)) (` Z) (suc (` (S (S (S Z))) · ` Z · ` (S Z))))))
|
||||
· ` Z
|
||||
· `suc (`suc `zero))))
|
||||
—→⟨ ξ-suc (ξ-suc β-zero) ⟩
|
||||
`suc (`suc (`suc (`suc `zero)))
|
||||
∎)
|
||||
(done (V-suc (V-suc (V-suc (V-suc V-zero)))))
|
||||
· suc (suc zero)))))
|
||||
—→⟨ ξ-suc (ξ-suc β-zero) ⟩ suc (suc (suc (suc zero))) ∎)
|
||||
(done (V-suc (V-suc (V-suc (V-suc V-zero)))))
|
||||
_ = refl
|
||||
```
|
||||
|
||||
And the corresponding term for Church numerals:
|
||||
```
|
||||
_ : eval (gas 100) (plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero) ≡
|
||||
_ : eval (gas 100) (plusᶜ · twoᶜ · twoᶜ · sucᶜ · zero) ≡
|
||||
steps
|
||||
((ƛ
|
||||
(ƛ
|
||||
(ƛ (ƛ ` (S (S (S Z))) · ` (S Z) · (` (S (S Z)) · ` (S Z) · ` Z)))))
|
||||
· (ƛ (ƛ ` (S Z) · (` (S Z) · ` Z)))
|
||||
· (ƛ (ƛ ` (S Z) · (` (S Z) · ` Z)))
|
||||
· (ƛ `suc ` Z)
|
||||
· `zero
|
||||
· (ƛ suc (` Z))
|
||||
· zero
|
||||
—→⟨ ξ-·₁ (ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ))) ⟩
|
||||
(ƛ
|
||||
(ƛ
|
||||
|
@ -1291,43 +1276,43 @@ _ : eval (gas 100) (plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero) ≡
|
|||
(ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · ` (S Z) ·
|
||||
(` (S (S Z)) · ` (S Z) · ` Z))))
|
||||
· (ƛ (ƛ ` (S Z) · (` (S Z) · ` Z)))
|
||||
· (ƛ `suc ` Z)
|
||||
· `zero
|
||||
· (ƛ suc (` Z))
|
||||
· zero
|
||||
—→⟨ ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
|
||||
(ƛ
|
||||
(ƛ
|
||||
(ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · ` (S Z) ·
|
||||
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · ` (S Z) · ` Z)))
|
||||
· (ƛ `suc ` Z)
|
||||
· `zero
|
||||
· (ƛ suc (` Z))
|
||||
· zero
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ
|
||||
(ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ `suc ` Z) ·
|
||||
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ `suc ` Z) · ` Z))
|
||||
· `zero
|
||||
(ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ suc (` Z)) ·
|
||||
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ suc (` Z)) · ` Z))
|
||||
· zero
|
||||
—→⟨ β-ƛ V-zero ⟩
|
||||
(ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ `suc ` Z) ·
|
||||
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ `suc ` Z) · `zero)
|
||||
(ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ suc (` Z)) ·
|
||||
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ suc (` Z)) · zero)
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ (ƛ `suc ` Z) · ((ƛ `suc ` Z) · ` Z)) ·
|
||||
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ `suc ` Z) · `zero)
|
||||
(ƛ (ƛ suc (` Z)) · ((ƛ suc (` Z)) · ` Z)) ·
|
||||
((ƛ (ƛ ` (S Z) · (` (S Z) · ` Z))) · (ƛ suc (` Z)) · zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
|
||||
(ƛ (ƛ `suc ` Z) · ((ƛ `suc ` Z) · ` Z)) ·
|
||||
((ƛ (ƛ `suc ` Z) · ((ƛ `suc ` Z) · ` Z)) · `zero)
|
||||
(ƛ (ƛ suc (` Z)) · ((ƛ suc (` Z)) · ` Z)) ·
|
||||
((ƛ (ƛ suc (` Z)) · ((ƛ suc (` Z)) · ` Z)) · zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
|
||||
(ƛ (ƛ `suc ` Z) · ((ƛ `suc ` Z) · ` Z)) ·
|
||||
((ƛ `suc ` Z) · ((ƛ `suc ` Z) · `zero))
|
||||
(ƛ (ƛ suc (` Z)) · ((ƛ suc (` Z)) · ` Z)) ·
|
||||
((ƛ suc (` Z)) · ((ƛ suc (` Z)) · zero))
|
||||
—→⟨ ξ-·₂ V-ƛ (ξ-·₂ V-ƛ (β-ƛ V-zero)) ⟩
|
||||
(ƛ (ƛ `suc ` Z) · ((ƛ `suc ` Z) · ` Z)) ·
|
||||
((ƛ `suc ` Z) · `suc `zero)
|
||||
(ƛ (ƛ suc (` Z)) · ((ƛ suc (` Z)) · ` Z)) ·
|
||||
((ƛ suc (` Z)) · suc zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc V-zero)) ⟩
|
||||
(ƛ (ƛ `suc ` Z) · ((ƛ `suc ` Z) · ` Z)) · `suc (`suc `zero)
|
||||
(ƛ (ƛ suc (` Z)) · ((ƛ suc (` Z)) · ` Z)) · suc (suc zero)
|
||||
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
|
||||
(ƛ `suc ` Z) · ((ƛ `suc ` Z) · `suc (`suc `zero))
|
||||
(ƛ suc (` Z)) · ((ƛ suc (` Z)) · suc (suc zero))
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
(ƛ `suc ` Z) · `suc (`suc (`suc `zero))
|
||||
(ƛ suc (` Z)) · suc (suc (suc zero))
|
||||
—→⟨ β-ƛ (V-suc (V-suc (V-suc V-zero))) ⟩
|
||||
`suc (`suc (`suc (`suc `zero)))
|
||||
suc (suc (suc (suc zero)))
|
||||
∎)
|
||||
(done (V-suc (V-suc (V-suc (V-suc V-zero)))))
|
||||
_ = refl
|
||||
|
|
|
@ -192,8 +192,8 @@ We can extract the grammar for terms from the above:
|
|||
|
||||
L⁻, M⁻, N⁻ ::= terms with inherited type
|
||||
ƛ x ⇒ N abstraction
|
||||
`zero zero
|
||||
`suc M⁻ successor
|
||||
zero zero
|
||||
suc M⁻ successor
|
||||
case L⁺ [zero⇒ M⁻ |suc x ⇒ N⁻ ] case
|
||||
μ x ⇒ N fixpoint
|
||||
M ↑ switch to synthesized
|
||||
|
@ -290,7 +290,6 @@ infix 5 μ_⇒_
|
|||
infix 6 _↑
|
||||
infix 6 _↓_
|
||||
infixl 7 _·_
|
||||
infix 8 `suc_
|
||||
infix 9 `_
|
||||
```
|
||||
|
||||
|
@ -324,8 +323,8 @@ data Term⁺ where
|
|||
|
||||
data Term⁻ where
|
||||
ƛ_⇒_ : Id → Term⁻ → Term⁻
|
||||
`zero : Term⁻
|
||||
`suc_ : Term⁻ → Term⁻
|
||||
zero : Term⁻
|
||||
suc : Term⁻ → Term⁻
|
||||
`case_[zero⇒_|suc_⇒_] : Term⁺ → Term⁻ → Id → Term⁻ → Term⁻
|
||||
μ_⇒_ : Id → Term⁻ → Term⁻
|
||||
_↑ : Term⁺ → Term⁻
|
||||
|
@ -342,12 +341,12 @@ We can recreate the examples from preceding chapters.
|
|||
First, computing two plus two on naturals:
|
||||
```
|
||||
two : Term⁻
|
||||
two = `suc (`suc `zero)
|
||||
two = suc (suc zero)
|
||||
|
||||
plus : Term⁺
|
||||
plus = (μ "p" ⇒ ƛ "m" ⇒ ƛ "n" ⇒
|
||||
`case (` "m") [zero⇒ ` "n" ↑
|
||||
|suc "m" ⇒ `suc (` "p" · (` "m" ↑) · (` "n" ↑) ↑) ])
|
||||
|suc "m" ⇒ suc (` "p" · (` "m" ↑) · (` "n" ↑) ↑) ])
|
||||
↓ (`ℕ ⇒ `ℕ ⇒ `ℕ)
|
||||
|
||||
2+2 : Term⁺
|
||||
|
@ -370,10 +369,10 @@ plusᶜ = (ƛ "m" ⇒ ƛ "n" ⇒ ƛ "s" ⇒ ƛ "z" ⇒
|
|||
↓ (Ch ⇒ Ch ⇒ Ch)
|
||||
|
||||
sucᶜ : Term⁻
|
||||
sucᶜ = ƛ "x" ⇒ `suc (` "x" ↑)
|
||||
sucᶜ = ƛ "x" ⇒ suc (` "x" ↑)
|
||||
|
||||
2+2ᶜ : Term⁺
|
||||
2+2ᶜ = plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero
|
||||
2+2ᶜ = plusᶜ · twoᶜ · twoᶜ · sucᶜ · zero
|
||||
```
|
||||
The only type decoration required is for `plusᶜ`. One is not even
|
||||
required for `sucᶜ`, which inherits its type as an argument of `plusᶜ`.
|
||||
|
@ -429,12 +428,12 @@ data _⊢_↓_ where
|
|||
|
||||
⊢zero : ∀ {Γ}
|
||||
--------------
|
||||
→ Γ ⊢ `zero ↓ `ℕ
|
||||
→ Γ ⊢ zero ↓ `ℕ
|
||||
|
||||
⊢suc : ∀ {Γ M}
|
||||
→ Γ ⊢ M ↓ `ℕ
|
||||
---------------
|
||||
→ Γ ⊢ `suc M ↓ `ℕ
|
||||
→ Γ ⊢ suc M ↓ `ℕ
|
||||
|
||||
⊢case : ∀ {Γ L M x N A}
|
||||
→ Γ ⊢ L ↑ `ℕ
|
||||
|
@ -763,12 +762,12 @@ inherit Γ (ƛ x ⇒ N) `ℕ = no (λ())
|
|||
inherit Γ (ƛ x ⇒ N) (A ⇒ B) with inherit (Γ , x ⦂ A) N B
|
||||
... | no ¬⊢N = no (λ{ (⊢ƛ ⊢N) → ¬⊢N ⊢N })
|
||||
... | yes ⊢N = yes (⊢ƛ ⊢N)
|
||||
inherit Γ `zero `ℕ = yes ⊢zero
|
||||
inherit Γ `zero (A ⇒ B) = no (λ())
|
||||
inherit Γ (`suc M) `ℕ with inherit Γ M `ℕ
|
||||
inherit Γ zero `ℕ = yes ⊢zero
|
||||
inherit Γ zero (A ⇒ B) = no (λ())
|
||||
inherit Γ (suc M) `ℕ with inherit Γ M `ℕ
|
||||
... | no ¬⊢M = no (λ{ (⊢suc ⊢M) → ¬⊢M ⊢M })
|
||||
... | yes ⊢M = yes (⊢suc ⊢M)
|
||||
inherit Γ (`suc M) (A ⇒ B) = no (λ())
|
||||
inherit Γ (suc M) (A ⇒ B) = no (λ())
|
||||
inherit Γ (`case L [zero⇒ M |suc x ⇒ N ]) A with synthesize Γ L
|
||||
... | no ¬∃ = no (λ{ (⊢case ⊢L _ _) → ¬∃ ⟨ `ℕ , ⊢L ⟩})
|
||||
... | yes ⟨ _ ⇒ _ , ⊢L ⟩ = no (λ{ (⊢case ⊢L′ _ _) → ℕ≢⇒ (uniq-↑ ⊢L′ ⊢L) })
|
||||
|
@ -961,7 +960,7 @@ _ = refl
|
|||
|
||||
Zero inherits a function type:
|
||||
```
|
||||
_ : synthesize ∅ (`zero ↓ `ℕ ⇒ `ℕ) ≡ no _
|
||||
_ : synthesize ∅ (zero ↓ `ℕ ⇒ `ℕ) ≡ no _
|
||||
_ = refl
|
||||
```
|
||||
|
||||
|
@ -973,21 +972,21 @@ _ = refl
|
|||
|
||||
Successor of an ill-typed term:
|
||||
```
|
||||
_ : synthesize ∅ (`suc twoᶜ ↓ `ℕ) ≡ no _
|
||||
_ : synthesize ∅ (suc twoᶜ ↓ `ℕ) ≡ no _
|
||||
_ = refl
|
||||
```
|
||||
|
||||
Case of a term with a function type:
|
||||
```
|
||||
_ : synthesize ∅
|
||||
((`case (twoᶜ ↓ Ch) [zero⇒ `zero |suc "x" ⇒ ` "x" ↑ ] ↓ `ℕ) ) ≡ no _
|
||||
((`case (twoᶜ ↓ Ch) [zero⇒ zero |suc "x" ⇒ ` "x" ↑ ] ↓ `ℕ) ) ≡ no _
|
||||
_ = refl
|
||||
```
|
||||
|
||||
Case of an ill-typed term:
|
||||
```
|
||||
_ : synthesize ∅
|
||||
((`case (twoᶜ ↓ `ℕ) [zero⇒ `zero |suc "x" ⇒ ` "x" ↑ ] ↓ `ℕ) ) ≡ no _
|
||||
((`case (twoᶜ ↓ `ℕ) [zero⇒ zero |suc "x" ⇒ ` "x" ↑ ] ↓ `ℕ) ) ≡ no _
|
||||
_ = refl
|
||||
```
|
||||
|
||||
|
@ -1043,8 +1042,8 @@ there are two mutually recursive erasure functions:
|
|||
∥ ⊢↓ ⊢M ∥⁺ = ∥ ⊢M ∥⁻
|
||||
|
||||
∥ ⊢ƛ ⊢N ∥⁻ = DB.ƛ ∥ ⊢N ∥⁻
|
||||
∥ ⊢zero ∥⁻ = DB.`zero
|
||||
∥ ⊢suc ⊢M ∥⁻ = DB.`suc ∥ ⊢M ∥⁻
|
||||
∥ ⊢zero ∥⁻ = DB.zero
|
||||
∥ ⊢suc ⊢M ∥⁻ = DB.suc ∥ ⊢M ∥⁻
|
||||
∥ ⊢case ⊢L ⊢M ⊢N ∥⁻ = DB.case ∥ ⊢L ∥⁺ ∥ ⊢M ∥⁻ ∥ ⊢N ∥⁻
|
||||
∥ ⊢μ ⊢M ∥⁻ = DB.μ ∥ ⊢M ∥⁻
|
||||
∥ ⊢↑ ⊢M refl ∥⁻ = ∥ ⊢M ∥⁺
|
||||
|
|
|
@ -71,8 +71,8 @@ Terms have seven constructs. Three are for the core lambda calculus:
|
|||
|
||||
Three are for the naturals:
|
||||
|
||||
* Zero `` `zero ``
|
||||
* Successor `` `suc ``
|
||||
* Zero `` zero ``
|
||||
* Successor `` suc ``
|
||||
* Case `` case L [zero⇒ M |suc x ⇒ N ] ``
|
||||
|
||||
And one is for recursion:
|
||||
|
@ -93,7 +93,7 @@ Here is the syntax of terms in Backus-Naur Form (BNF):
|
|||
|
||||
L, M, N ::=
|
||||
` x | ƛ x ⇒ N | L · M |
|
||||
`zero | `suc M | case L [zero⇒ M |suc x ⇒ N ] |
|
||||
zero | suc M | case L [zero⇒ M |suc x ⇒ N ] |
|
||||
μ x ⇒ M
|
||||
|
||||
And here it is formalised in Agda:
|
||||
|
@ -104,15 +104,14 @@ Id = String
|
|||
infix 5 ƛ_⇒_
|
||||
infix 5 μ_⇒_
|
||||
infixl 7 _·_
|
||||
infix 8 `suc_
|
||||
infix 9 `_
|
||||
|
||||
data Term : Set where
|
||||
`_ : Id → Term
|
||||
ƛ_⇒_ : Id → Term → Term
|
||||
_·_ : Term → Term → Term
|
||||
`zero : Term
|
||||
`suc_ : Term → Term
|
||||
zero : Term
|
||||
suc : Term → Term
|
||||
case_[zero⇒_|suc_⇒_] : Term → Term → Id → Term → Term
|
||||
μ_⇒_ : Id → Term → Term
|
||||
```
|
||||
|
@ -129,13 +128,13 @@ a function that adds naturals,
|
|||
and a term that computes two plus two:
|
||||
```
|
||||
two : Term
|
||||
two = `suc `suc `zero
|
||||
two = suc (suc zero)
|
||||
|
||||
plus : Term
|
||||
plus = μ "+" ⇒ ƛ "m" ⇒ ƛ "n" ⇒
|
||||
case ` "m"
|
||||
[zero⇒ ` "n"
|
||||
|suc "m" ⇒ `suc (` "+" · ` "m" · ` "n") ]
|
||||
|suc "m" ⇒ suc (` "+" · ` "m" · ` "n") ]
|
||||
```
|
||||
The recursive definition of addition is similar to our original
|
||||
definition of `_+_` for naturals, as given in
|
||||
|
@ -149,7 +148,7 @@ the term
|
|||
|
||||
plus · two · two
|
||||
|
||||
reduces to `` `suc `suc `suc `suc `zero ``.
|
||||
reduces to `` suc (suc (suc (suc zero))) ``.
|
||||
|
||||
As a second example, we use higher-order functions to represent
|
||||
natural numbers. In particular, the number _n_ is represented by a
|
||||
|
@ -167,7 +166,7 @@ plusᶜ = ƛ "m" ⇒ ƛ "n" ⇒ ƛ "s" ⇒ ƛ "z" ⇒
|
|||
` "m" · ` "s" · (` "n" · ` "s" · ` "z")
|
||||
|
||||
sucᶜ : Term
|
||||
sucᶜ = ƛ "n" ⇒ `suc (` "n")
|
||||
sucᶜ = ƛ "n" ⇒ suc (` "n")
|
||||
```
|
||||
The Church numeral for two takes two arguments `s` and `z`
|
||||
and applies `s` twice to `z`.
|
||||
|
@ -177,13 +176,13 @@ result of using `n` to apply `s` to `z`; hence `s` is applied `m` plus
|
|||
`n` times to `z`, yielding the Church numeral for the sum of `m` and
|
||||
`n`. For convenience, we define a function that computes successor.
|
||||
To convert a Church numeral to the corresponding natural, we apply
|
||||
it to the `sucᶜ` function and the natural number zero.
|
||||
it to the sucᶜ` function and the natural number zero.
|
||||
Again, later we will confirm that two plus two is four,
|
||||
in other words that the term
|
||||
|
||||
plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero
|
||||
plusᶜ · twoᶜ · twoᶜ · sucᶜ · zero
|
||||
|
||||
reduces to `` `suc `suc `suc `suc `zero ``.
|
||||
reduces to `` suc (suc (suc (suc zero))) ``.
|
||||
|
||||
|
||||
#### Exercise `mul` (recommended)
|
||||
|
@ -236,7 +235,7 @@ plus′ : Term
|
|||
plus′ = μ′ + ⇒ ƛ′ m ⇒ ƛ′ n ⇒
|
||||
case′ m
|
||||
[zero⇒ n
|
||||
|suc m ⇒ `suc (+ · m · n) ]
|
||||
|suc m ⇒ suc (+ · m · n) ]
|
||||
where
|
||||
+ = ` "+"
|
||||
m = ` "m"
|
||||
|
@ -258,7 +257,9 @@ _meta-language_ (the language in which the description is written),
|
|||
trusting readers can use context to distinguish the two. Agda is
|
||||
not quite so forgiving, so here we use `ƛ x ⇒ N` and `L · M` for the
|
||||
object language, as compared to `λ x → N` and `L M` in our
|
||||
meta-language, Agda.
|
||||
meta-language, Agda. We use `zero` and `suc` for both the object
|
||||
language and the meta-language, using Agda's ability to overload
|
||||
constructors to distinguish the two.
|
||||
|
||||
|
||||
### Bound and free variables
|
||||
|
@ -316,7 +317,7 @@ to alpha renaming. In the term
|
|||
μ "+" ⇒ ƛ "m" ⇒ ƛ "n" ⇒
|
||||
case ` "m"
|
||||
[zero⇒ ` "n"
|
||||
|suc "m" ⇒ `suc (` "+" · ` "m" · ` "n") ]
|
||||
|suc "m" ⇒ suc (` "+" · ` "m" · ` "n") ]
|
||||
|
||||
notice that there are two binding occurrences of `m`, one in the first
|
||||
line and one in the last line. It is equivalent to the following term,
|
||||
|
@ -324,7 +325,7 @@ line and one in the last line. It is equivalent to the following term,
|
|||
μ "plus" ⇒ ƛ "x" ⇒ ƛ "y" ⇒
|
||||
case ` "x"
|
||||
[zero⇒ ` "y"
|
||||
|suc "x′" ⇒ `suc (` "plus" · ` "x′" · ` "y") ]
|
||||
|suc "x′" ⇒ suc (` "plus" · ` "x′" · ` "y") ]
|
||||
|
||||
where the two binding occurrences corresponding to `m` now have distinct
|
||||
names, `x` and `x′`.
|
||||
|
@ -333,7 +334,7 @@ names, `x` and `x′`.
|
|||
## Values
|
||||
|
||||
A _value_ is a term that corresponds to an answer.
|
||||
Thus, `` `suc `suc `suc `suc `zero `` is a value,
|
||||
Thus, `` suc (suc (suc (suc zero))) `` is a value,
|
||||
while `` plus · two · two `` is not.
|
||||
Following convention, we treat all function abstractions
|
||||
as values; thus, `` plus `` by itself is considered a value.
|
||||
|
@ -349,12 +350,12 @@ data Value : Term → Set where
|
|||
|
||||
V-zero :
|
||||
-----------
|
||||
Value `zero
|
||||
Value zero
|
||||
|
||||
V-suc : ∀ {V}
|
||||
→ Value V
|
||||
--------------
|
||||
→ Value (`suc V)
|
||||
→ Value (suc V)
|
||||
```
|
||||
|
||||
In what follows, we let `V` and `W` range over values.
|
||||
|
@ -385,13 +386,13 @@ Substitution plays a key role in defining the
|
|||
operational semantics of function application.
|
||||
For instance, we have
|
||||
|
||||
(ƛ "s" ⇒ ƛ "z" ⇒ ` "s" · (` "s" · ` "z")) · sucᶜ · `zero
|
||||
(ƛ "s" ⇒ ƛ "z" ⇒ ` "s" · (` "s" · ` "z")) · sucᶜ · zero
|
||||
—→
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · "z")) · `zero
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · "z")) · zero
|
||||
—→
|
||||
sucᶜ · (sucᶜ · `zero)
|
||||
sucᶜ · (sucᶜ · zero)
|
||||
|
||||
where we substitute `sucᶜ` for `` ` "s" `` and `` `zero `` for `` ` "z" ``
|
||||
where we substitute sucᶜ` for `` ` "s" `` and `` zero `` for `` ` "z" ``
|
||||
in the body of the function abstraction.
|
||||
|
||||
We write substitution as `N [ x := V ]`, meaning
|
||||
|
@ -406,14 +407,14 @@ Here are some examples:
|
|||
|
||||
* `` (ƛ "z" ⇒ ` "s" · (` "s" · ` "z")) [ "s" := sucᶜ ] `` yields
|
||||
`` ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z") ``.
|
||||
* `` (sucᶜ · (sucᶜ · ` "z")) [ "z" := `zero ] `` yields
|
||||
`` sucᶜ · (sucᶜ · `zero) ``.
|
||||
* `` (ƛ "x" ⇒ ` "y") [ "y" := `zero ] `` yields `` ƛ "x" ⇒ `zero ``.
|
||||
* `` (ƛ "x" ⇒ ` "x") [ "x" := `zero ] `` yields `` ƛ "x" ⇒ ` "x" ``.
|
||||
* `` (ƛ "y" ⇒ ` "y") [ "x" := `zero ] `` yields `` ƛ "y" ⇒ ` "y" ``.
|
||||
* `` (sucᶜ · (sucᶜ · ` "z")) [ "z" := zero ] `` yields
|
||||
`` sucᶜ · (sucᶜ · zero) ``.
|
||||
* `` (ƛ "x" ⇒ ` "y") [ "y" := zero ] `` yields `` ƛ "x" ⇒ zero ``.
|
||||
* `` (ƛ "x" ⇒ ` "x") [ "x" := zero ] `` yields `` ƛ "x" ⇒ ` "x" ``.
|
||||
* `` (ƛ "y" ⇒ ` "y") [ "x" := zero ] `` yields `` ƛ "y" ⇒ ` "y" ``.
|
||||
|
||||
In the last but one example, substituting `` `zero `` for `x` in
|
||||
`` ƛ "x" ⇒ ` "x" `` does _not_ yield `` ƛ "x" ⇒ `zero ``,
|
||||
In the last but one example, substituting `` zero `` for `x` in
|
||||
`` ƛ "x" ⇒ ` "x" `` does _not_ yield `` ƛ "x" ⇒ zero ``,
|
||||
since `x` is bound in the lambda abstraction.
|
||||
The choice of bound names is irrelevant: both
|
||||
`` ƛ "x" ⇒ ` "x" `` and `` ƛ "y" ⇒ ` "y" `` stand for the
|
||||
|
@ -426,13 +427,13 @@ when term substituted for the variable is closed. This is because
|
|||
substitution by terms that are _not_ closed may require renaming
|
||||
of bound variables. For example:
|
||||
|
||||
* `` (ƛ "x" ⇒ ` "x" · ` "y") [ "y" := ` "x" · `zero] `` should not yield <br/>
|
||||
`` (ƛ "x" ⇒ ` "x" · (` "x" · `zero)) ``.
|
||||
* `` (ƛ "x" ⇒ ` "x" · ` "y") [ "y" := ` "x" · zero] `` should not yield <br/>
|
||||
`` (ƛ "x" ⇒ ` "x" · (` "x" · zero)) ``.
|
||||
|
||||
Instead, we should rename the bound variable to avoid capture:
|
||||
|
||||
* `` (ƛ "x" ⇒ ` "x" · ` "y") [ "y" := ` "x" · `zero ] `` should yield <br/>
|
||||
`` ƛ "x′" ⇒ ` "x′" · (` "x" · `zero) ``.
|
||||
* `` (ƛ "x" ⇒ ` "x" · ` "y") [ "y" := ` "x" · zero ] `` should yield <br/>
|
||||
`` ƛ "x′" ⇒ ` "x′" · (` "x" · zero) ``.
|
||||
|
||||
Here `x′` is a fresh variable distinct from `x`.
|
||||
Formal definition of substitution with suitable renaming is considerably
|
||||
|
@ -450,13 +451,13 @@ _[_:=_] : Term → Id → Term → Term
|
|||
... | no _ = ` x
|
||||
(ƛ x ⇒ N) [ y := V ] with x ≟ y
|
||||
... | yes _ = ƛ x ⇒ N
|
||||
... | no _ = ƛ x ⇒ N [ y := V ]
|
||||
(L · M) [ y := V ] = L [ y := V ] · M [ y := V ]
|
||||
(`zero) [ y := V ] = `zero
|
||||
(`suc M) [ y := V ] = `suc M [ y := V ]
|
||||
... | no _ = ƛ x ⇒ (N [ y := V ])
|
||||
(L · M) [ y := V ] = (L [ y := V ]) · (M [ y := V ])
|
||||
(zero) [ y := V ] = zero
|
||||
(suc M) [ y := V ] = suc (M [ y := V ])
|
||||
(case L [zero⇒ M |suc x ⇒ N ]) [ y := V ] with x ≟ y
|
||||
... | yes _ = case L [ y := V ] [zero⇒ M [ y := V ] |suc x ⇒ N ]
|
||||
... | no _ = case L [ y := V ] [zero⇒ M [ y := V ] |suc x ⇒ N [ y := V ] ]
|
||||
... | yes _ = case (L [ y := V ]) [zero⇒ (M [ y := V ]) |suc x ⇒ N ]
|
||||
... | no _ = case (L [ y := V ]) [zero⇒ (M [ y := V ]) |suc x ⇒ (N [ y := V ]) ]
|
||||
(μ x ⇒ N) [ y := V ] with x ≟ y
|
||||
... | yes _ = μ x ⇒ N
|
||||
... | no _ = μ x ⇒ N [ y := V ]
|
||||
|
@ -488,16 +489,16 @@ Here is confirmation that the examples above are correct:
|
|||
_ : (ƛ "z" ⇒ ` "s" · (` "s" · ` "z")) [ "s" := sucᶜ ] ≡ ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")
|
||||
_ = refl
|
||||
|
||||
_ : (sucᶜ · (sucᶜ · ` "z")) [ "z" := `zero ] ≡ sucᶜ · (sucᶜ · `zero)
|
||||
_ : (sucᶜ · (sucᶜ · ` "z")) [ "z" := zero ] ≡ sucᶜ · (sucᶜ · zero)
|
||||
_ = refl
|
||||
|
||||
_ : (ƛ "x" ⇒ ` "y") [ "y" := `zero ] ≡ ƛ "x" ⇒ `zero
|
||||
_ : (ƛ "x" ⇒ ` "y") [ "y" := zero ] ≡ ƛ "x" ⇒ zero
|
||||
_ = refl
|
||||
|
||||
_ : (ƛ "x" ⇒ ` "x") [ "x" := `zero ] ≡ ƛ "x" ⇒ ` "x"
|
||||
_ : (ƛ "x" ⇒ ` "x") [ "x" := zero ] ≡ ƛ "x" ⇒ ` "x"
|
||||
_ = refl
|
||||
|
||||
_ : (ƛ "y" ⇒ ` "y") [ "x" := `zero ] ≡ ƛ "y" ⇒ ` "y"
|
||||
_ : (ƛ "y" ⇒ ` "y") [ "x" := zero ] ≡ ƛ "y" ⇒ ` "y"
|
||||
_ = refl
|
||||
```
|
||||
|
||||
|
@ -506,12 +507,12 @@ _ = refl
|
|||
|
||||
What is the result of the following substitution?
|
||||
|
||||
(ƛ "y" ⇒ ` "x" · (ƛ "x" ⇒ ` "x")) [ "x" := `zero ]
|
||||
(ƛ "y" ⇒ ` "x" · (ƛ "x" ⇒ ` "x")) [ "x" := zero ]
|
||||
|
||||
1. `` (ƛ "y" ⇒ ` "x" · (ƛ "x" ⇒ ` "x")) ``
|
||||
2. `` (ƛ "y" ⇒ ` "x" · (ƛ "x" ⇒ `zero)) ``
|
||||
3. `` (ƛ "y" ⇒ `zero · (ƛ "x" ⇒ ` "x")) ``
|
||||
4. `` (ƛ "y" ⇒ `zero · (ƛ "x" ⇒ `zero)) ``
|
||||
2. `` (ƛ "y" ⇒ ` "x" · (ƛ "x" ⇒ zero)) ``
|
||||
3. `` (ƛ "y" ⇒ zero · (ƛ "x" ⇒ ` "x")) ``
|
||||
4. `` (ƛ "y" ⇒ zero · (ƛ "x" ⇒ zero)) ``
|
||||
|
||||
|
||||
#### Exercise `_[_:=_]′` (stretch)
|
||||
|
@ -604,7 +605,7 @@ data _—→_ : Term → Term → Set where
|
|||
ξ-suc : ∀ {M M′}
|
||||
→ M —→ M′
|
||||
------------------
|
||||
→ `suc M —→ `suc M′
|
||||
→ suc M —→ suc M′
|
||||
|
||||
ξ-case : ∀ {x L L′ M N}
|
||||
→ L —→ L′
|
||||
|
@ -613,12 +614,12 @@ data _—→_ : Term → Term → Set where
|
|||
|
||||
β-zero : ∀ {x M N}
|
||||
----------------------------------------
|
||||
→ case `zero [zero⇒ M |suc x ⇒ N ] —→ M
|
||||
→ case zero [zero⇒ M |suc x ⇒ N ] —→ M
|
||||
|
||||
β-suc : ∀ {x V M N}
|
||||
→ Value V
|
||||
---------------------------------------------------
|
||||
→ case `suc V [zero⇒ M |suc x ⇒ N ] —→ N [ x := V ]
|
||||
→ case suc V [zero⇒ M |suc x ⇒ N ] —→ N [ x := V ]
|
||||
|
||||
β-μ : ∀ {x M}
|
||||
------------------------------
|
||||
|
@ -660,14 +661,14 @@ What does the following term step to?
|
|||
2. `` (ƛ "x" ⇒ ` "x") · (ƛ "x" ⇒ ` "x") ``
|
||||
3. `` (ƛ "x" ⇒ ` "x") · (ƛ "x" ⇒ ` "x") · (ƛ "x" ⇒ ` "x") ``
|
||||
|
||||
What does the following term step to? (Where `twoᶜ` and `sucᶜ` are as
|
||||
What does the following term step to? (Where `twoᶜ` and sucᶜ` are as
|
||||
defined above.)
|
||||
|
||||
twoᶜ · sucᶜ · `zero —→ ???
|
||||
twoᶜ · sucᶜ · zero —→ ???
|
||||
|
||||
1. `` sucᶜ · (sucᶜ · `zero) ``
|
||||
2. `` (ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · `zero ``
|
||||
3. `` `zero ``
|
||||
1. `` sucᶜ · (sucᶜ · zero) ``
|
||||
2. `` (ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · zero ``
|
||||
3. `` zero ``
|
||||
|
||||
|
||||
## Reflexive and transitive closure
|
||||
|
@ -804,98 +805,98 @@ systems studied in this text are trivially confluent.
|
|||
We start with a simple example. The Church numeral two applied to the
|
||||
successor function and zero yields the natural number two:
|
||||
```
|
||||
_ : twoᶜ · sucᶜ · `zero —↠ `suc `suc `zero
|
||||
_ : twoᶜ · sucᶜ · zero —↠ suc (suc zero)
|
||||
_ =
|
||||
begin
|
||||
twoᶜ · sucᶜ · `zero
|
||||
twoᶜ · sucᶜ · zero
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · `zero
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · zero
|
||||
—→⟨ β-ƛ V-zero ⟩
|
||||
sucᶜ · (sucᶜ · `zero)
|
||||
sucᶜ · (sucᶜ · zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
|
||||
sucᶜ · `suc `zero
|
||||
sucᶜ · suc zero
|
||||
—→⟨ β-ƛ (V-suc V-zero) ⟩
|
||||
`suc (`suc `zero)
|
||||
suc (suc zero)
|
||||
∎
|
||||
```
|
||||
|
||||
Here is a sample reduction demonstrating that two plus two is four:
|
||||
```
|
||||
_ : plus · two · two —↠ `suc `suc `suc `suc `zero
|
||||
_ : plus · two · two —↠ suc (suc (suc (suc zero)))
|
||||
_ =
|
||||
begin
|
||||
plus · two · two
|
||||
—→⟨ ξ-·₁ (ξ-·₁ β-μ) ⟩
|
||||
(ƛ "m" ⇒ ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (plus · ` "m" · ` "n") ])
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (plus · ` "m" · ` "n") ])
|
||||
· two · two
|
||||
—→⟨ ξ-·₁ (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
(ƛ "n" ⇒
|
||||
case two [zero⇒ ` "n" |suc "m" ⇒ `suc (plus · ` "m" · ` "n") ])
|
||||
case two [zero⇒ ` "n" |suc "m" ⇒ suc (plus · ` "m" · ` "n") ])
|
||||
· two
|
||||
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
|
||||
case two [zero⇒ two |suc "m" ⇒ `suc (plus · ` "m" · two) ]
|
||||
case two [zero⇒ two |suc "m" ⇒ suc (plus · ` "m" · two) ]
|
||||
—→⟨ β-suc (V-suc V-zero) ⟩
|
||||
`suc (plus · `suc `zero · two)
|
||||
suc (plus · suc zero · two)
|
||||
—→⟨ ξ-suc (ξ-·₁ (ξ-·₁ β-μ)) ⟩
|
||||
`suc ((ƛ "m" ⇒ ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (plus · ` "m" · ` "n") ])
|
||||
· `suc `zero · two)
|
||||
suc ((ƛ "m" ⇒ ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (plus · ` "m" · ` "n") ])
|
||||
· suc zero · two)
|
||||
—→⟨ ξ-suc (ξ-·₁ (β-ƛ (V-suc V-zero))) ⟩
|
||||
`suc ((ƛ "n" ⇒
|
||||
case `suc `zero [zero⇒ ` "n" |suc "m" ⇒ `suc (plus · ` "m" · ` "n") ])
|
||||
suc ((ƛ "n" ⇒
|
||||
case suc zero [zero⇒ ` "n" |suc "m" ⇒ suc (plus · ` "m" · ` "n") ])
|
||||
· two)
|
||||
—→⟨ ξ-suc (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
`suc (case `suc `zero [zero⇒ two |suc "m" ⇒ `suc (plus · ` "m" · two) ])
|
||||
suc (case suc zero [zero⇒ two |suc "m" ⇒ suc (plus · ` "m" · two) ])
|
||||
—→⟨ ξ-suc (β-suc V-zero) ⟩
|
||||
`suc `suc (plus · `zero · two)
|
||||
suc (suc (plus · zero · two))
|
||||
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ β-μ))) ⟩
|
||||
`suc `suc ((ƛ "m" ⇒ ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (plus · ` "m" · ` "n") ])
|
||||
· `zero · two)
|
||||
suc (suc ((ƛ "m" ⇒ ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (plus · ` "m" · ` "n") ])
|
||||
· zero · two))
|
||||
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (β-ƛ V-zero))) ⟩
|
||||
`suc `suc ((ƛ "n" ⇒
|
||||
case `zero [zero⇒ ` "n" |suc "m" ⇒ `suc (plus · ` "m" · ` "n") ])
|
||||
· two)
|
||||
suc (suc ((ƛ "n" ⇒
|
||||
case zero [zero⇒ ` "n" |suc "m" ⇒ suc (plus · ` "m" · ` "n") ])
|
||||
· two))
|
||||
—→⟨ ξ-suc (ξ-suc (β-ƛ (V-suc (V-suc V-zero)))) ⟩
|
||||
`suc `suc (case `zero [zero⇒ two |suc "m" ⇒ `suc (plus · ` "m" · two) ])
|
||||
suc (suc (case zero [zero⇒ two |suc "m" ⇒ suc (plus · ` "m" · two) ]))
|
||||
—→⟨ ξ-suc (ξ-suc β-zero) ⟩
|
||||
`suc (`suc (`suc (`suc `zero)))
|
||||
suc (suc (suc (suc zero)))
|
||||
∎
|
||||
```
|
||||
|
||||
And here is a similar sample reduction for Church numerals:
|
||||
```
|
||||
_ : plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero —↠ `suc `suc `suc `suc `zero
|
||||
_ : plusᶜ · twoᶜ · twoᶜ · sucᶜ · zero —↠ suc (suc (suc (suc zero)))
|
||||
_ =
|
||||
begin
|
||||
(ƛ "m" ⇒ ƛ "n" ⇒ ƛ "s" ⇒ ƛ "z" ⇒ ` "m" · ` "s" · (` "n" · ` "s" · ` "z"))
|
||||
· twoᶜ · twoᶜ · sucᶜ · `zero
|
||||
· twoᶜ · twoᶜ · sucᶜ · zero
|
||||
—→⟨ ξ-·₁ (ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ))) ⟩
|
||||
(ƛ "n" ⇒ ƛ "s" ⇒ ƛ "z" ⇒ twoᶜ · ` "s" · (` "n" · ` "s" · ` "z"))
|
||||
· twoᶜ · sucᶜ · `zero
|
||||
· twoᶜ · sucᶜ · zero
|
||||
—→⟨ ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
|
||||
(ƛ "s" ⇒ ƛ "z" ⇒ twoᶜ · ` "s" · (twoᶜ · ` "s" · ` "z")) · sucᶜ · `zero
|
||||
(ƛ "s" ⇒ ƛ "z" ⇒ twoᶜ · ` "s" · (twoᶜ · ` "s" · ` "z")) · sucᶜ · zero
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ "z" ⇒ twoᶜ · sucᶜ · (twoᶜ · sucᶜ · ` "z")) · `zero
|
||||
(ƛ "z" ⇒ twoᶜ · sucᶜ · (twoᶜ · sucᶜ · ` "z")) · zero
|
||||
—→⟨ β-ƛ V-zero ⟩
|
||||
twoᶜ · sucᶜ · (twoᶜ · sucᶜ · `zero)
|
||||
twoᶜ · sucᶜ · (twoᶜ · sucᶜ · zero)
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · (twoᶜ · sucᶜ · `zero)
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · (twoᶜ · sucᶜ · zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · ((ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · `zero)
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · ((ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · (sucᶜ · (sucᶜ · `zero))
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · (sucᶜ · (sucᶜ · zero))
|
||||
—→⟨ ξ-·₂ V-ƛ (ξ-·₂ V-ƛ (β-ƛ V-zero)) ⟩
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · (sucᶜ · (`suc `zero))
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · (sucᶜ · suc zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc V-zero)) ⟩
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · (`suc `suc `zero)
|
||||
(ƛ "z" ⇒ sucᶜ · (sucᶜ · ` "z")) · suc (suc zero)
|
||||
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
|
||||
sucᶜ · (sucᶜ · `suc `suc `zero)
|
||||
sucᶜ · (sucᶜ · suc (suc zero))
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
sucᶜ · (`suc `suc `suc `zero)
|
||||
sucᶜ · suc (suc (suc zero))
|
||||
—→⟨ β-ƛ (V-suc (V-suc (V-suc V-zero))) ⟩
|
||||
`suc (`suc (`suc (`suc `zero)))
|
||||
suc (suc (suc (suc zero)))
|
||||
∎
|
||||
```
|
||||
|
||||
|
@ -916,13 +917,13 @@ Write out the reduction sequence demonstrating that one plus one is two.
|
|||
We have just two types:
|
||||
|
||||
* Functions, `A ⇒ B`
|
||||
* Naturals, `` `ℕ ``
|
||||
* Naturals, `` ℕ ``
|
||||
|
||||
As before, to avoid overlap we use variants of the names used by Agda.
|
||||
|
||||
Here is the syntax of types in BNF:
|
||||
|
||||
A, B, C ::= A ⇒ B | `ℕ
|
||||
A, B, C ::= A ⇒ B | ℕ
|
||||
|
||||
And here it is formalised in Agda:
|
||||
|
||||
|
@ -941,34 +942,34 @@ currying. This is made more convenient by declaring `_⇒_` to
|
|||
associate to the right and `_·_` to associate to the left.
|
||||
Thus:
|
||||
|
||||
* ``(`ℕ ⇒ `ℕ) ⇒ `ℕ ⇒ `ℕ`` stands for ``((`ℕ ⇒ `ℕ) ⇒ (`ℕ ⇒ `ℕ))``.
|
||||
* ``(ℕ ⇒ ℕ) ⇒ ℕ ⇒ ℕ`` stands for ``((ℕ ⇒ ℕ) ⇒ (ℕ ⇒ ℕ))``.
|
||||
* `plus · two · two` stands for `(plus · two) · two`.
|
||||
|
||||
### Quiz
|
||||
|
||||
* What is the type of the following term?
|
||||
|
||||
`` ƛ "s" ⇒ ` "s" · (` "s" · `zero) ``
|
||||
`` ƛ "s" ⇒ ` "s" · (` "s" · zero) ``
|
||||
|
||||
1. `` (`ℕ ⇒ `ℕ) ⇒ (`ℕ ⇒ `ℕ) ``
|
||||
2. `` (`ℕ ⇒ `ℕ) ⇒ `ℕ ``
|
||||
3. `` `ℕ ⇒ (`ℕ ⇒ `ℕ) ``
|
||||
4. `` `ℕ ⇒ `ℕ ⇒ `ℕ ``
|
||||
5. `` `ℕ ⇒ `ℕ ``
|
||||
6. `` `ℕ ``
|
||||
1. `` (ℕ ⇒ ℕ) ⇒ (ℕ ⇒ ℕ) ``
|
||||
2. `` (ℕ ⇒ ℕ) ⇒ ℕ ``
|
||||
3. `` ℕ ⇒ (ℕ ⇒ ℕ) ``
|
||||
4. `` ℕ ⇒ ℕ ⇒ ℕ ``
|
||||
5. `` ℕ ⇒ ℕ ``
|
||||
6. `` ℕ ``
|
||||
|
||||
Give more than one answer if appropriate.
|
||||
|
||||
* What is the type of the following term?
|
||||
|
||||
`` (ƛ "s" ⇒ ` "s" · (` "s" · `zero)) · sucᶜ ``
|
||||
`` (ƛ "s" ⇒ ` "s" · (` "s" · zero)) · sucᶜ ``
|
||||
|
||||
1. `` (`ℕ ⇒ `ℕ) ⇒ (`ℕ ⇒ `ℕ) ``
|
||||
2. `` (`ℕ ⇒ `ℕ) ⇒ `ℕ ``
|
||||
3. `` `ℕ ⇒ (`ℕ ⇒ `ℕ) ``
|
||||
4. `` `ℕ ⇒ `ℕ ⇒ `ℕ ``
|
||||
5. `` `ℕ ⇒ `ℕ ``
|
||||
6. `` `ℕ ``
|
||||
1. `` (ℕ ⇒ ℕ) ⇒ (ℕ ⇒ ℕ) ``
|
||||
2. `` (ℕ ⇒ ℕ) ⇒ ℕ ``
|
||||
3. `` ℕ ⇒ (ℕ ⇒ ℕ) ``
|
||||
4. `` ℕ ⇒ ℕ ⇒ ℕ ``
|
||||
5. `` ℕ ⇒ ℕ ``
|
||||
6. `` ℕ ``
|
||||
|
||||
Give more than one answer if appropriate.
|
||||
|
||||
|
@ -987,10 +988,10 @@ over contexts. We write `∅` for the empty context, and `Γ , x ⦂ A`
|
|||
for the context that extends `Γ` by mapping variable `x` to type `A`.
|
||||
For example,
|
||||
|
||||
* `` ∅ , "s" ⦂ `ℕ ⇒ `ℕ , "z" ⦂ `ℕ ``
|
||||
* `` ∅ , "s" ⦂ ℕ ⇒ ℕ , "z" ⦂ ℕ ``
|
||||
|
||||
is the context that associates variable `` "s" `` with type `` `ℕ ⇒ `ℕ ``,
|
||||
and variable `` "z" `` with type `` `ℕ ``.
|
||||
is the context that associates variable `` "s" `` with type `` ℕ ⇒ ℕ ``,
|
||||
and variable `` "z" `` with type `` ℕ ``.
|
||||
|
||||
Contexts are formalised as follows:
|
||||
|
||||
|
@ -1008,11 +1009,11 @@ data Context : Set where
|
|||
Show that `Context` is isomorphic to `List (Id × Type)`.
|
||||
For instance, the isomorphism relates the context
|
||||
|
||||
∅ , "s" ⦂ `ℕ ⇒ `ℕ , "z" ⦂ `ℕ
|
||||
∅ , "s" ⦂ ℕ ⇒ ℕ , "z" ⦂ ℕ
|
||||
|
||||
to the list
|
||||
|
||||
[ ⟨ "z" , `ℕ ⟩ , ⟨ "s" , `ℕ ⇒ `ℕ ⟩ ]
|
||||
[ ⟨ "z" , ℕ ⟩ , ⟨ "s" , ℕ ⇒ ℕ ⟩ ]
|
||||
|
||||
```
|
||||
-- Your code goes here
|
||||
|
@ -1028,8 +1029,8 @@ and indicates in context `Γ` that variable `x` has type `A`.
|
|||
It is called _lookup_.
|
||||
For example,
|
||||
|
||||
* `` ∅ , "s" ⦂ `ℕ ⇒ `ℕ , "z" ⦂ `ℕ ∋ "z" ⦂ `ℕ ``
|
||||
* `` ∅ , "s" ⦂ `ℕ ⇒ `ℕ , "z" ⦂ `ℕ ∋ "s" ⦂ `ℕ ⇒ `ℕ ``
|
||||
* `` ∅ , "s" ⦂ ℕ ⇒ ℕ , "z" ⦂ ℕ ∋ "z" ⦂ ℕ ``
|
||||
* `` ∅ , "s" ⦂ ℕ ⇒ ℕ , "z" ⦂ ℕ ∋ "s" ⦂ ℕ ⇒ ℕ ``
|
||||
|
||||
give us the types associated with variables `` "z" `` and `` "s" ``,
|
||||
respectively. The symbol `∋` (pronounced "ni", for "in"
|
||||
|
@ -1040,9 +1041,9 @@ If two variables in a context have the same name, then lookup
|
|||
should return the most recently bound variable, which _shadows_
|
||||
the other variables. For example,
|
||||
|
||||
* `` ∅ , "x" ⦂ `ℕ ⇒ `ℕ , "x" ⦂ `ℕ ∋ "x" ⦂ `ℕ ``.
|
||||
* `` ∅ , "x" ⦂ ℕ ⇒ ℕ , "x" ⦂ ℕ ∋ "x" ⦂ ℕ ``.
|
||||
|
||||
Here `` "x" ⦂ `ℕ ⇒ `ℕ `` is shadowed by `` "x" ⦂ `ℕ ``.
|
||||
Here `` "x" ⦂ ℕ ⇒ ℕ `` is shadowed by `` "x" ⦂ ℕ ``.
|
||||
|
||||
Lookup is formalised as follows:
|
||||
```
|
||||
|
@ -1077,12 +1078,12 @@ and indicates in context `Γ` that term `M` has type `A`.
|
|||
Context `Γ` provides types for all the free variables in `M`.
|
||||
For example:
|
||||
|
||||
* `` ∅ , "s" ⦂ `ℕ ⇒ `ℕ , "z" ⦂ `ℕ ⊢ ` "z" ⦂ `ℕ ``
|
||||
* `` ∅ , "s" ⦂ `ℕ ⇒ `ℕ , "z" ⦂ `ℕ ⊢ ` "s" ⦂ `ℕ ⇒ `ℕ ``
|
||||
* `` ∅ , "s" ⦂ `ℕ ⇒ `ℕ , "z" ⦂ `ℕ ⊢ ` "s" · ` "z" ⦂ `ℕ ``
|
||||
* `` ∅ , "s" ⦂ `ℕ ⇒ `ℕ , "z" ⦂ `ℕ ⊢ ` "s" · (` "s" · ` "z") ⦂ `ℕ ``
|
||||
* `` ∅ , "s" ⦂ `ℕ ⇒ `ℕ ⊢ ƛ "z" ⇒ ` "s" · (` "s" · ` "z") ⦂ `ℕ ⇒ `ℕ ``
|
||||
* `` ∅ ⊢ ƛ "s" ⇒ ƛ "z" ⇒ ` "s" · (` "s" · ` "z") ⦂ (`ℕ ⇒ `ℕ) ⇒ `ℕ ⇒ `ℕ ``
|
||||
* `` ∅ , "s" ⦂ ℕ ⇒ ℕ , "z" ⦂ ℕ ⊢ ` "z" ⦂ ℕ ``
|
||||
* `` ∅ , "s" ⦂ ℕ ⇒ ℕ , "z" ⦂ ℕ ⊢ ` "s" ⦂ ℕ ⇒ ℕ ``
|
||||
* `` ∅ , "s" ⦂ ℕ ⇒ ℕ , "z" ⦂ ℕ ⊢ ` "s" · ` "z" ⦂ ℕ ``
|
||||
* `` ∅ , "s" ⦂ ℕ ⇒ ℕ , "z" ⦂ ℕ ⊢ ` "s" · (` "s" · ` "z") ⦂ ℕ ``
|
||||
* `` ∅ , "s" ⦂ ℕ ⇒ ℕ ⊢ ƛ "z" ⇒ ` "s" · (` "s" · ` "z") ⦂ ℕ ⇒ ℕ ``
|
||||
* `` ∅ ⊢ ƛ "s" ⇒ ƛ "z" ⇒ ` "s" · (` "s" · ` "z") ⦂ (ℕ ⇒ ℕ) ⇒ ℕ ⇒ ℕ ``
|
||||
|
||||
Typing is formalised as follows:
|
||||
```
|
||||
|
@ -1112,13 +1113,13 @@ data _⊢_⦂_ : Context → Term → Type → Set where
|
|||
-- ℕ-I₁
|
||||
⊢zero : ∀ {Γ}
|
||||
--------------
|
||||
→ Γ ⊢ `zero ⦂ `ℕ
|
||||
→ Γ ⊢ zero ⦂ `ℕ
|
||||
|
||||
-- ℕ-I₂
|
||||
⊢suc : ∀ {Γ M}
|
||||
→ Γ ⊢ M ⦂ `ℕ
|
||||
---------------
|
||||
→ Γ ⊢ `suc M ⦂ `ℕ
|
||||
→ Γ ⊢ suc M ⦂ `ℕ
|
||||
|
||||
-- ℕ-E
|
||||
⊢case : ∀ {Γ L M x N A}
|
||||
|
@ -1267,7 +1268,7 @@ And here are typings for the remainder of the Church example:
|
|||
where
|
||||
∋n = Z
|
||||
|
||||
⊢2+2ᶜ : ∅ ⊢ plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero ⦂ `ℕ
|
||||
⊢2+2ᶜ : ∅ ⊢ plusᶜ · twoᶜ · twoᶜ · sucᶜ · zero ⦂ `ℕ
|
||||
⊢2+2ᶜ = ⊢plusᶜ · ⊢twoᶜ · ⊢twoᶜ · ⊢sucᶜ · ⊢zero
|
||||
```
|
||||
|
||||
|
@ -1285,11 +1286,11 @@ Typing C-c C-l causes Agda to create a hole and tell us its expected type:
|
|||
?0 : ∅ ⊢ sucᶜ ⦂ `ℕ ⇒ `ℕ
|
||||
|
||||
Now we fill in the hole by typing C-c C-r. Agda observes that
|
||||
the outermost term in `sucᶜ` is `ƛ`, which is typed using `⊢ƛ`. The
|
||||
the outermost term in sucᶜ` is `ƛ`, which is typed using `⊢ƛ`. The
|
||||
`⊢ƛ` rule in turn takes one argument, which Agda leaves as a hole:
|
||||
|
||||
⊢sucᶜ = ⊢ƛ { }1
|
||||
?1 : ∅ , "n" ⦂ `ℕ ⊢ `suc ` "n" ⦂ `ℕ
|
||||
?1 : ∅ , "n" ⦂ `ℕ ⊢ suc ` "n" ⦂ `ℕ
|
||||
|
||||
We can fill in the hole by typing C-c C-r again:
|
||||
|
||||
|
@ -1334,12 +1335,12 @@ the term `ƛ "x" ⇒ "x"` has type `A ⇒ A` for any type `A`.
|
|||
|
||||
We can also show that terms are _not_ typeable. For example, here is
|
||||
a formal proof that it is not possible to type the term
|
||||
`` `zero · `suc `zero ``. It cannot be typed, because doing so
|
||||
`` zero · suc zero ``. It cannot be typed, because doing so
|
||||
requires that the first term in the application is both a natural and
|
||||
a function:
|
||||
|
||||
```
|
||||
nope₁ : ∀ {A} → ¬ (∅ ⊢ `zero · `suc `zero ⦂ A)
|
||||
nope₁ : ∀ {A} → ¬ (∅ ⊢ zero · suc zero ⦂ A)
|
||||
nope₁ (() · _)
|
||||
```
|
||||
|
||||
|
|
|
@ -155,19 +155,19 @@ construct to a calculus without the construct.
|
|||
A `× B product type
|
||||
|
||||
L, M, N ::= ... Terms
|
||||
`⟨ M , N ⟩ pair
|
||||
⟨ M , N ⟩ pair
|
||||
`proj₁ L project first component
|
||||
`proj₂ L project second component
|
||||
|
||||
V, W ::= ... Values
|
||||
`⟨ V , W ⟩ pair
|
||||
⟨ V , W ⟩ pair
|
||||
|
||||
### Typing
|
||||
|
||||
Γ ⊢ M ⦂ A
|
||||
Γ ⊢ N ⦂ B
|
||||
----------------------- `⟨_,_⟩ or `×-I
|
||||
Γ ⊢ `⟨ M , N ⟩ ⦂ A `× B
|
||||
----------------------- ⟨_,_⟩ or `×-I
|
||||
Γ ⊢ ⟨ M , N ⟩ ⦂ A `× B
|
||||
|
||||
Γ ⊢ L ⦂ A `× B
|
||||
---------------- `proj₁ or `×-E₁
|
||||
|
@ -181,11 +181,11 @@ construct to a calculus without the construct.
|
|||
|
||||
M —→ M′
|
||||
------------------------- ξ-⟨,⟩₁
|
||||
`⟨ M , N ⟩ —→ `⟨ M′ , N ⟩
|
||||
⟨ M , N ⟩ —→ ⟨ M′ , N ⟩
|
||||
|
||||
N —→ N′
|
||||
------------------------- ξ-⟨,⟩₂
|
||||
`⟨ V , N ⟩ —→ `⟨ V , N′ ⟩
|
||||
⟨ V , N ⟩ —→ ⟨ V , N′ ⟩
|
||||
|
||||
L —→ L′
|
||||
--------------------- ξ-proj₁
|
||||
|
@ -196,17 +196,17 @@ construct to a calculus without the construct.
|
|||
`proj₂ L —→ `proj₂ L′
|
||||
|
||||
---------------------- β-proj₁
|
||||
`proj₁ `⟨ V , W ⟩ —→ V
|
||||
`proj₁ ⟨ V , W ⟩ —→ V
|
||||
|
||||
---------------------- β-proj₂
|
||||
`proj₂ `⟨ V , W ⟩ —→ W
|
||||
`proj₂ ⟨ V , W ⟩ —→ W
|
||||
|
||||
### Example
|
||||
|
||||
Here is a function to swap the components of a pair:
|
||||
|
||||
swap× : ∅ ⊢ A `× B ⇒ B `× A
|
||||
swap× = ƛ z ⇒ `⟨ proj₂ z , proj₁ z ⟩
|
||||
swap× = ƛ z ⇒ ⟨ proj₂ z , proj₁ z ⟩
|
||||
|
||||
|
||||
## Alternative formulation of products
|
||||
|
@ -222,11 +222,11 @@ and reduction rules:
|
|||
A `× B product type
|
||||
|
||||
L, M, N ::= ... Terms
|
||||
`⟨ M , N ⟩ pair
|
||||
⟨ M , N ⟩ pair
|
||||
case× L [⟨ x , y ⟩⇒ M ] case
|
||||
|
||||
V, W ::= Values
|
||||
`⟨ V , W ⟩ pair
|
||||
⟨ V , W ⟩ pair
|
||||
|
||||
### Typing
|
||||
|
||||
|
@ -242,7 +242,7 @@ and reduction rules:
|
|||
case× L [⟨ x , y ⟩⇒ N ] —→ case× L′ [⟨ x , y ⟩⇒ N ]
|
||||
|
||||
--------------------------------------------------------- β-case×
|
||||
case× `⟨ V , W ⟩ [⟨ x , y ⟩⇒ N ] —→ N [ x := V ][ y := W ]
|
||||
case× ⟨ V , W ⟩ [⟨ x , y ⟩⇒ N ] —→ N [ x := V ][ y := W ]
|
||||
|
||||
### Example
|
||||
|
||||
|
@ -250,7 +250,7 @@ Here is a function to swap the components of a pair rewritten in the new notatio
|
|||
|
||||
swap×-case : ∅ ⊢ A `× B ⇒ B `× A
|
||||
swap×-case = ƛ z ⇒ case× z
|
||||
[⟨ x , y ⟩⇒ `⟨ y , x ⟩ ]
|
||||
[⟨ x , y ⟩⇒ ⟨ y , x ⟩ ]
|
||||
|
||||
### Translation
|
||||
|
||||
|
@ -293,23 +293,23 @@ We can also translate back the other way:
|
|||
A `⊎ B sum type
|
||||
|
||||
L, M, N ::= ... Terms
|
||||
`inj₁ M inject first component
|
||||
`inj₂ N inject second component
|
||||
inj₁ M inject first component
|
||||
inj₂ N inject second component
|
||||
case⊎ L [inj₁ x ⇒ M |inj₂ y ⇒ N ] case
|
||||
|
||||
V, W ::= ... Values
|
||||
`inj₁ V inject first component
|
||||
`inj₂ W inject second component
|
||||
inj₁ V inject first component
|
||||
inj₂ W inject second component
|
||||
|
||||
### Typing
|
||||
|
||||
Γ ⊢ M ⦂ A
|
||||
-------------------- `inj₁ or ⊎-I₁
|
||||
Γ ⊢ `inj₁ M ⦂ A `⊎ B
|
||||
-------------------- inj₁ or ⊎-I₁
|
||||
Γ ⊢ inj₁ M ⦂ A `⊎ B
|
||||
|
||||
Γ ⊢ N ⦂ B
|
||||
-------------------- `inj₂ or ⊎-I₂
|
||||
Γ ⊢ `inj₂ N ⦂ A `⊎ B
|
||||
-------------------- inj₂ or ⊎-I₂
|
||||
Γ ⊢ inj₂ N ⦂ A `⊎ B
|
||||
|
||||
Γ ⊢ L ⦂ A `⊎ B
|
||||
Γ , x ⦂ A ⊢ M ⦂ C
|
||||
|
@ -321,21 +321,21 @@ We can also translate back the other way:
|
|||
|
||||
M —→ M′
|
||||
------------------- ξ-inj₁
|
||||
`inj₁ M —→ `inj₁ M′
|
||||
inj₁ M —→ inj₁ M′
|
||||
|
||||
N —→ N′
|
||||
------------------- ξ-inj₂
|
||||
`inj₂ N —→ `inj₂ N′
|
||||
inj₂ N —→ inj₂ N′
|
||||
|
||||
L —→ L′
|
||||
---------------------------------------------------------------------- ξ-case⊎
|
||||
case⊎ L [inj₁ x ⇒ M |inj₂ y ⇒ N ] —→ case⊎ L′ [inj₁ x ⇒ M |inj₂ y ⇒ N ]
|
||||
|
||||
--------------------------------------------------------- β-inj₁
|
||||
case⊎ (`inj₁ V) [inj₁ x ⇒ M |inj₂ y ⇒ N ] —→ M [ x := V ]
|
||||
case⊎ (inj₁ V) [inj₁ x ⇒ M |inj₂ y ⇒ N ] —→ M [ x := V ]
|
||||
|
||||
--------------------------------------------------------- β-inj₂
|
||||
case⊎ (`inj₂ W) [inj₁ x ⇒ M |inj₂ y ⇒ N ] —→ N [ y := W ]
|
||||
case⊎ (inj₂ W) [inj₁ x ⇒ M |inj₂ y ⇒ N ] —→ N [ y := W ]
|
||||
|
||||
### Example
|
||||
|
||||
|
@ -343,8 +343,8 @@ Here is a function to swap the components of a sum:
|
|||
|
||||
swap⊎ : ∅ ⊢ A `⊎ B ⇒ B `⊎ A
|
||||
swap⊎ = ƛ z ⇒ case⊎ z
|
||||
[inj₁ x ⇒ `inj₂ x
|
||||
|inj₂ y ⇒ `inj₁ y ]
|
||||
[inj₁ x ⇒ inj₂ x
|
||||
|inj₂ y ⇒ inj₁ y ]
|
||||
|
||||
|
||||
## Unit type
|
||||
|
@ -359,15 +359,15 @@ There are no reduction rules.
|
|||
`⊤ unit type
|
||||
|
||||
L, M, N ::= ... Terms
|
||||
`tt unit value
|
||||
tt unit value
|
||||
|
||||
V, W ::= ... Values
|
||||
`tt unit value
|
||||
tt unit value
|
||||
|
||||
### Typing
|
||||
|
||||
------------ `tt or ⊤-I
|
||||
Γ ⊢ `tt ⦂ `⊤
|
||||
----------- tt or ⊤-I
|
||||
Γ ⊢ tt ⦂ `⊤
|
||||
|
||||
### Reduction
|
||||
|
||||
|
@ -378,7 +378,7 @@ There are no reduction rules.
|
|||
Here is the isomorphism between `A` and ``A `× `⊤``:
|
||||
|
||||
to×⊤ : ∅ ⊢ A ⇒ A `× `⊤
|
||||
to×⊤ = ƛ x ⇒ `⟨ x , `tt ⟩
|
||||
to×⊤ = ƛ x ⇒ ⟨ x , tt ⟩
|
||||
|
||||
from×⊤ : ∅ ⊢ A `× `⊤ ⇒ A
|
||||
from×⊤ = ƛ z ⇒ proj₁ z
|
||||
|
@ -396,11 +396,11 @@ We repeat the syntax in full, but only give the new type and reduction rules:
|
|||
`⊤ unit type
|
||||
|
||||
L, M, N ::= ... Terms
|
||||
`tt unit value
|
||||
tt unit value
|
||||
`case⊤ L [tt⇒ N ] case
|
||||
|
||||
V, W ::= ... Values
|
||||
`tt unit value
|
||||
tt unit value
|
||||
|
||||
### Typing
|
||||
|
||||
|
@ -416,7 +416,7 @@ We repeat the syntax in full, but only give the new type and reduction rules:
|
|||
case⊤ L [tt⇒ M ] —→ case⊤ L′ [tt⇒ M ]
|
||||
|
||||
----------------------- β-case⊤
|
||||
case⊤ `tt [tt⇒ M ] —→ M
|
||||
case⊤ tt [tt⇒ M ] —→ M
|
||||
|
||||
### Example
|
||||
|
||||
|
@ -469,7 +469,7 @@ construct plays a role similar to `⊥-elim` in Agda:
|
|||
Here is the isomorphism between `A` and ``A `⊎ `⊥``:
|
||||
|
||||
to⊎⊥ : ∅ ⊢ A ⇒ A `⊎ `⊥
|
||||
to⊎⊥ = ƛ x ⇒ `inj₁ x
|
||||
to⊎⊥ = ƛ x ⇒ inj₁ x
|
||||
|
||||
from⊎⊥ : ∅ ⊢ A `⊎ `⊥ ⇒ A
|
||||
from⊎⊥ = ƛ z ⇒ case⊎ z
|
||||
|
@ -577,7 +577,6 @@ infix 5 ƛ_
|
|||
infix 5 μ_
|
||||
infixl 7 _·_
|
||||
infixl 8 _`*_
|
||||
infix 8 `suc_
|
||||
infix 9 `_
|
||||
infix 9 S_
|
||||
infix 9 #_
|
||||
|
@ -643,11 +642,11 @@ data _⊢_ : Context → Type → Set where
|
|||
|
||||
-- naturals
|
||||
|
||||
`zero : ∀ {Γ}
|
||||
zero : ∀ {Γ}
|
||||
------
|
||||
→ Γ ⊢ `ℕ
|
||||
|
||||
`suc_ : ∀ {Γ}
|
||||
suc : ∀ {Γ}
|
||||
→ Γ ⊢ `ℕ
|
||||
------
|
||||
→ Γ ⊢ `ℕ
|
||||
|
@ -689,7 +688,7 @@ data _⊢_ : Context → Type → Set where
|
|||
|
||||
-- products
|
||||
|
||||
`⟨_,_⟩ : ∀ {Γ A B}
|
||||
⟨_,_⟩ : ∀ {Γ A B}
|
||||
→ Γ ⊢ A
|
||||
→ Γ ⊢ B
|
||||
-----------
|
||||
|
@ -745,14 +744,14 @@ rename : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ∋ A) → (∀ {A} → Γ
|
|||
rename ρ (` x) = ` (ρ x)
|
||||
rename ρ (ƛ N) = ƛ (rename (ext ρ) N)
|
||||
rename ρ (L · M) = (rename ρ L) · (rename ρ M)
|
||||
rename ρ (`zero) = `zero
|
||||
rename ρ (`suc M) = `suc (rename ρ M)
|
||||
rename ρ (zero) = zero
|
||||
rename ρ (suc M) = suc (rename ρ M)
|
||||
rename ρ (case L M N) = case (rename ρ L) (rename ρ M) (rename (ext ρ) N)
|
||||
rename ρ (μ N) = μ (rename (ext ρ) N)
|
||||
rename ρ (con n) = con n
|
||||
rename ρ (M `* N) = rename ρ M `* rename ρ N
|
||||
rename ρ (`let M N) = `let (rename ρ M) (rename (ext ρ) N)
|
||||
rename ρ `⟨ M , N ⟩ = `⟨ rename ρ M , rename ρ N ⟩
|
||||
rename ρ ⟨ M , N ⟩ = ⟨ rename ρ M , rename ρ N ⟩
|
||||
rename ρ (`proj₁ L) = `proj₁ (rename ρ L)
|
||||
rename ρ (`proj₂ L) = `proj₂ (rename ρ L)
|
||||
rename ρ (case× L M) = case× (rename ρ L) (rename (ext (ext ρ)) M)
|
||||
|
@ -769,14 +768,14 @@ subst : ∀ {Γ Δ} → (∀ {C} → Γ ∋ C → Δ ⊢ C) → (∀ {C} → Γ
|
|||
subst σ (` k) = σ k
|
||||
subst σ (ƛ N) = ƛ (subst (exts σ) N)
|
||||
subst σ (L · M) = (subst σ L) · (subst σ M)
|
||||
subst σ (`zero) = `zero
|
||||
subst σ (`suc M) = `suc (subst σ M)
|
||||
subst σ (zero) = zero
|
||||
subst σ (suc M) = suc (subst σ M)
|
||||
subst σ (case L M N) = case (subst σ L) (subst σ M) (subst (exts σ) N)
|
||||
subst σ (μ N) = μ (subst (exts σ) N)
|
||||
subst σ (con n) = con n
|
||||
subst σ (M `* N) = subst σ M `* subst σ N
|
||||
subst σ (`let M N) = `let (subst σ M) (subst (exts σ) N)
|
||||
subst σ `⟨ M , N ⟩ = `⟨ subst σ M , subst σ N ⟩
|
||||
subst σ ⟨ M , N ⟩ = ⟨ subst σ M , subst σ N ⟩
|
||||
subst σ (`proj₁ L) = `proj₁ (subst σ L)
|
||||
subst σ (`proj₂ L) = `proj₂ (subst σ L)
|
||||
subst σ (case× L M) = case× (subst σ L) (subst (exts (exts σ)) M)
|
||||
|
@ -825,12 +824,12 @@ data Value : ∀ {Γ A} → Γ ⊢ A → Set where
|
|||
|
||||
V-zero : ∀ {Γ}
|
||||
-----------------
|
||||
→ Value (`zero {Γ})
|
||||
→ Value (zero {Γ})
|
||||
|
||||
V-suc_ : ∀ {Γ} {V : Γ ⊢ `ℕ}
|
||||
→ Value V
|
||||
--------------
|
||||
→ Value (`suc V)
|
||||
→ Value (suc V)
|
||||
|
||||
-- primitives
|
||||
|
||||
|
@ -844,7 +843,7 @@ data Value : ∀ {Γ A} → Γ ⊢ A → Set where
|
|||
→ Value V
|
||||
→ Value W
|
||||
----------------
|
||||
→ Value `⟨ V , W ⟩
|
||||
→ Value ⟨ V , W ⟩
|
||||
```
|
||||
|
||||
Implicit arguments need to be supplied when they are
|
||||
|
@ -880,7 +879,7 @@ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where
|
|||
ξ-suc : ∀ {Γ} {M M′ : Γ ⊢ `ℕ}
|
||||
→ M —→ M′
|
||||
-----------------
|
||||
→ `suc M —→ `suc M′
|
||||
→ suc M —→ suc M′
|
||||
|
||||
ξ-case : ∀ {Γ A} {L L′ : Γ ⊢ `ℕ} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A}
|
||||
→ L —→ L′
|
||||
|
@ -889,12 +888,12 @@ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where
|
|||
|
||||
β-zero : ∀ {Γ A} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A}
|
||||
-------------------
|
||||
→ case `zero M N —→ M
|
||||
→ case zero M N —→ M
|
||||
|
||||
β-suc : ∀ {Γ A} {V : Γ ⊢ `ℕ} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A}
|
||||
→ Value V
|
||||
----------------------------
|
||||
→ case (`suc V) M N —→ N [ V ]
|
||||
→ case (suc V) M N —→ N [ V ]
|
||||
|
||||
-- fixpoint
|
||||
|
||||
|
@ -936,13 +935,13 @@ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where
|
|||
ξ-⟨,⟩₁ : ∀ {Γ A B} {M M′ : Γ ⊢ A} {N : Γ ⊢ B}
|
||||
→ M —→ M′
|
||||
-------------------------
|
||||
→ `⟨ M , N ⟩ —→ `⟨ M′ , N ⟩
|
||||
→ ⟨ M , N ⟩ —→ ⟨ M′ , N ⟩
|
||||
|
||||
ξ-⟨,⟩₂ : ∀ {Γ A B} {V : Γ ⊢ A} {N N′ : Γ ⊢ B}
|
||||
→ Value V
|
||||
→ N —→ N′
|
||||
-------------------------
|
||||
→ `⟨ V , N ⟩ —→ `⟨ V , N′ ⟩
|
||||
→ ⟨ V , N ⟩ —→ ⟨ V , N′ ⟩
|
||||
|
||||
ξ-proj₁ : ∀ {Γ A B} {L L′ : Γ ⊢ A `× B}
|
||||
→ L —→ L′
|
||||
|
@ -958,13 +957,13 @@ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where
|
|||
→ Value V
|
||||
→ Value W
|
||||
----------------------
|
||||
→ `proj₁ `⟨ V , W ⟩ —→ V
|
||||
→ `proj₁ ⟨ V , W ⟩ —→ V
|
||||
|
||||
β-proj₂ : ∀ {Γ A B} {V : Γ ⊢ A} {W : Γ ⊢ B}
|
||||
→ Value V
|
||||
→ Value W
|
||||
----------------------
|
||||
→ `proj₂ `⟨ V , W ⟩ —→ W
|
||||
→ `proj₂ ⟨ V , W ⟩ —→ W
|
||||
|
||||
-- alternative formulation of products
|
||||
|
||||
|
@ -977,7 +976,7 @@ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where
|
|||
→ Value V
|
||||
→ Value W
|
||||
----------------------------------
|
||||
→ case× `⟨ V , W ⟩ M —→ M [ V ][ W ]
|
||||
→ case× ⟨ V , W ⟩ M —→ M [ V ][ W ]
|
||||
|
||||
```
|
||||
|
||||
|
@ -1051,8 +1050,8 @@ progress (L · M) with progress L
|
|||
... | done V-ƛ with progress M
|
||||
... | step M—→M′ = step (ξ-·₂ V-ƛ M—→M′)
|
||||
... | done VM = step (β-ƛ VM)
|
||||
progress (`zero) = done V-zero
|
||||
progress (`suc M) with progress M
|
||||
progress (zero) = done V-zero
|
||||
progress (suc M) with progress M
|
||||
... | step M—→M′ = step (ξ-suc M—→M′)
|
||||
... | done VM = done (V-suc VM)
|
||||
progress (case L M N) with progress L
|
||||
|
@ -1069,7 +1068,7 @@ progress (L `* M) with progress L
|
|||
progress (`let M N) with progress M
|
||||
... | step M—→M′ = step (ξ-let M—→M′)
|
||||
... | done VM = step (β-let VM)
|
||||
progress `⟨ M , N ⟩ with progress M
|
||||
progress ⟨ M , N ⟩ with progress M
|
||||
... | step M—→M′ = step (ξ-⟨,⟩₁ M—→M′)
|
||||
... | done VM with progress N
|
||||
... | step N—→N′ = step (ξ-⟨,⟩₂ VM N—→N′)
|
||||
|
@ -1171,31 +1170,31 @@ _ =
|
|||
∎
|
||||
|
||||
swap× : ∀ {A B} → ∅ ⊢ A `× B ⇒ B `× A
|
||||
swap× = ƛ `⟨ `proj₂ (# 0) , `proj₁ (# 0) ⟩
|
||||
swap× = ƛ ⟨ `proj₂ (# 0) , `proj₁ (# 0) ⟩
|
||||
|
||||
_ : swap× · `⟨ con 42 , `zero ⟩ —↠ `⟨ `zero , con 42 ⟩
|
||||
_ : swap× · ⟨ con 42 , zero ⟩ —↠ ⟨ zero , con 42 ⟩
|
||||
_ =
|
||||
begin
|
||||
swap× · `⟨ con 42 , `zero ⟩
|
||||
swap× · ⟨ con 42 , zero ⟩
|
||||
—→⟨ β-ƛ V-⟨ V-con , V-zero ⟩ ⟩
|
||||
`⟨ `proj₂ `⟨ con 42 , `zero ⟩ , `proj₁ `⟨ con 42 , `zero ⟩ ⟩
|
||||
⟨ `proj₂ ⟨ con 42 , zero ⟩ , `proj₁ ⟨ con 42 , zero ⟩ ⟩
|
||||
—→⟨ ξ-⟨,⟩₁ (β-proj₂ V-con V-zero) ⟩
|
||||
`⟨ `zero , `proj₁ `⟨ con 42 , `zero ⟩ ⟩
|
||||
⟨ zero , `proj₁ ⟨ con 42 , zero ⟩ ⟩
|
||||
—→⟨ ξ-⟨,⟩₂ V-zero (β-proj₁ V-con V-zero) ⟩
|
||||
`⟨ `zero , con 42 ⟩
|
||||
⟨ zero , con 42 ⟩
|
||||
∎
|
||||
|
||||
swap×-case : ∀ {A B} → ∅ ⊢ A `× B ⇒ B `× A
|
||||
swap×-case = ƛ case× (# 0) `⟨ # 0 , # 1 ⟩
|
||||
swap×-case = ƛ case× (# 0) ⟨ # 0 , # 1 ⟩
|
||||
|
||||
_ : swap×-case · `⟨ con 42 , `zero ⟩ —↠ `⟨ `zero , con 42 ⟩
|
||||
_ : swap×-case · ⟨ con 42 , zero ⟩ —↠ ⟨ zero , con 42 ⟩
|
||||
_ =
|
||||
begin
|
||||
swap×-case · `⟨ con 42 , `zero ⟩
|
||||
swap×-case · ⟨ con 42 , zero ⟩
|
||||
—→⟨ β-ƛ V-⟨ V-con , V-zero ⟩ ⟩
|
||||
case× `⟨ con 42 , `zero ⟩ `⟨ # 0 , # 1 ⟩
|
||||
case× ⟨ con 42 , zero ⟩ ⟨ # 0 , # 1 ⟩
|
||||
—→⟨ β-case× V-con V-zero ⟩
|
||||
`⟨ `zero , con 42 ⟩
|
||||
⟨ zero , con 42 ⟩
|
||||
∎
|
||||
```
|
||||
|
||||
|
|
|
@ -46,7 +46,7 @@ Ultimately, we would like to show that we can keep reducing a term
|
|||
until we reach a value. For instance, in the last chapter we showed
|
||||
that two plus two is four,
|
||||
|
||||
plus · two · two —↠ `suc `suc `suc `suc `zero
|
||||
plus · two · two —↠ suc suc suc suc `zero
|
||||
|
||||
which was proved by a long chain of reductions, ending in the value
|
||||
on the right. Every term in the chain had the same type, `` `ℕ ``.
|
||||
|
@ -146,12 +146,12 @@ data Canonical_⦂_ : Term → Type → Set where
|
|||
|
||||
C-zero :
|
||||
--------------------
|
||||
Canonical `zero ⦂ `ℕ
|
||||
Canonical zero ⦂ `ℕ
|
||||
|
||||
C-suc : ∀ {V}
|
||||
→ Canonical V ⦂ `ℕ
|
||||
---------------------
|
||||
→ Canonical `suc V ⦂ `ℕ
|
||||
→ Canonical (suc V) ⦂ `ℕ
|
||||
```
|
||||
|
||||
Every closed, well-typed value is canonical:
|
||||
|
@ -213,7 +213,7 @@ case of successor.
|
|||
We would like to show that every term is either a value or takes a
|
||||
reduction step. However, this is not true in general. The term
|
||||
|
||||
`zero · `suc `zero
|
||||
`zero · suc `zero
|
||||
|
||||
is neither a value nor can take a reduction step. And if `` s ⦂ `ℕ ⇒ `ℕ ``
|
||||
then the term
|
||||
|
@ -874,17 +874,17 @@ well-typed term to its value, if it has one.
|
|||
|
||||
Some terms may reduce forever. Here is a simple example:
|
||||
```
|
||||
sucμ = μ "x" ⇒ `suc (` "x")
|
||||
sucμ = μ "x" ⇒ suc (` "x")
|
||||
|
||||
_ =
|
||||
begin
|
||||
sucμ
|
||||
—→⟨ β-μ ⟩
|
||||
`suc sucμ
|
||||
suc sucμ
|
||||
—→⟨ ξ-suc β-μ ⟩
|
||||
`suc `suc sucμ
|
||||
suc (suc sucμ)
|
||||
—→⟨ ξ-suc (ξ-suc β-μ) ⟩
|
||||
`suc `suc `suc sucμ
|
||||
suc (suc (suc sucμ))
|
||||
-- ...
|
||||
∎
|
||||
```
|
||||
|
@ -981,10 +981,10 @@ remaining. There are two possibilities:
|
|||
### Examples
|
||||
|
||||
We can now use Agda to compute the non-terminating reduction
|
||||
sequence given earlier. First, we show that the term `sucμ`
|
||||
sequence given earlier. First, we show that the term sucμ`
|
||||
is well typed:
|
||||
```
|
||||
⊢sucμ : ∅ ⊢ μ "x" ⇒ `suc ` "x" ⦂ `ℕ
|
||||
⊢sucμ : ∅ ⊢ μ "x" ⇒ suc (` "x") ⦂ `ℕ
|
||||
⊢sucμ = ⊢μ (⊢suc (⊢` ∋x))
|
||||
where
|
||||
∋x = Z
|
||||
|
@ -994,13 +994,13 @@ sequence, we evaluate with three steps worth of gas:
|
|||
```
|
||||
_ : eval (gas 3) ⊢sucμ ≡
|
||||
steps
|
||||
(μ "x" ⇒ `suc ` "x"
|
||||
(μ "x" ⇒ suc (` "x")
|
||||
—→⟨ β-μ ⟩
|
||||
`suc (μ "x" ⇒ `suc ` "x")
|
||||
suc (μ "x" ⇒ suc (` "x"))
|
||||
—→⟨ ξ-suc β-μ ⟩
|
||||
`suc (`suc (μ "x" ⇒ `suc ` "x"))
|
||||
suc (suc (μ "x" ⇒ suc (` "x")))
|
||||
—→⟨ ξ-suc (ξ-suc β-μ) ⟩
|
||||
`suc (`suc (`suc (μ "x" ⇒ `suc ` "x")))
|
||||
suc (suc (suc (μ "x" ⇒ suc (` "x"))))
|
||||
∎)
|
||||
out-of-gas
|
||||
_ = refl
|
||||
|
@ -1012,17 +1012,17 @@ applied to successor and zero. Supplying 100 steps of gas is more than enough:
|
|||
```
|
||||
_ : eval (gas 100) (⊢twoᶜ · ⊢sucᶜ · ⊢zero) ≡
|
||||
steps
|
||||
((ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ `suc ` "n")
|
||||
· `zero
|
||||
((ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ suc (` "n"))
|
||||
· zero
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ `suc ` "n") · ((ƛ "n" ⇒ `suc ` "n") · ` "z")) ·
|
||||
`zero
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ suc (` "n")) · ((ƛ "n" ⇒ suc (` "n")) · ` "z")) ·
|
||||
zero
|
||||
—→⟨ β-ƛ V-zero ⟩
|
||||
(ƛ "n" ⇒ `suc ` "n") · ((ƛ "n" ⇒ `suc ` "n") · `zero)
|
||||
(ƛ "n" ⇒ suc (` "n")) · ((ƛ "n" ⇒ suc (` "n")) · zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
|
||||
(ƛ "n" ⇒ `suc ` "n") · `suc `zero
|
||||
(ƛ "n" ⇒ suc (` "n")) · suc zero
|
||||
—→⟨ β-ƛ (V-suc V-zero) ⟩
|
||||
`suc (`suc `zero)
|
||||
suc (suc zero)
|
||||
∎)
|
||||
(done (V-suc (V-suc V-zero)))
|
||||
_ = refl
|
||||
|
@ -1031,7 +1031,7 @@ The example above was generated by using `C-c C-n` to normalise the
|
|||
left-hand side of the equation and pasting in the result as the
|
||||
right-hand side of the equation. The example reduction of the
|
||||
previous chapter was derived from this result, reformatting and
|
||||
writing `twoᶜ` and `sucᶜ` in place of their expansions.
|
||||
writing `twoᶜ` and sucᶜ` in place of their expansions.
|
||||
|
||||
Next, we show two plus two is four:
|
||||
```
|
||||
|
@ -1040,157 +1040,157 @@ _ : eval (gas 100) ⊢2+2 ≡
|
|||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· `suc (`suc `zero)
|
||||
· `suc (`suc `zero)
|
||||
· suc (suc zero)
|
||||
· suc (suc zero)
|
||||
—→⟨ ξ-·₁ (ξ-·₁ β-μ) ⟩
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒
|
||||
`suc
|
||||
suc
|
||||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· ` "m"
|
||||
· ` "n")
|
||||
]))
|
||||
· `suc (`suc `zero)
|
||||
· `suc (`suc `zero)
|
||||
· suc (suc zero)
|
||||
· suc (suc zero)
|
||||
—→⟨ ξ-·₁ (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
(ƛ "n" ⇒
|
||||
case `suc (`suc `zero) [zero⇒ ` "n" |suc "m" ⇒
|
||||
`suc
|
||||
case suc (suc zero) [zero⇒ ` "n" |suc "m" ⇒
|
||||
suc
|
||||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· ` "m"
|
||||
· ` "n")
|
||||
])
|
||||
· `suc (`suc `zero)
|
||||
· suc (suc zero)
|
||||
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
|
||||
case `suc (`suc `zero) [zero⇒ `suc (`suc `zero) |suc "m" ⇒
|
||||
`suc
|
||||
case suc (suc zero) [zero⇒ suc (suc zero) |suc "m" ⇒
|
||||
suc
|
||||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· ` "m"
|
||||
· `suc (`suc `zero))
|
||||
· suc (suc zero))
|
||||
]
|
||||
—→⟨ β-suc (V-suc V-zero) ⟩
|
||||
`suc
|
||||
suc
|
||||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· `suc `zero
|
||||
· `suc (`suc `zero))
|
||||
· suc zero
|
||||
· suc (suc zero))
|
||||
—→⟨ ξ-suc (ξ-·₁ (ξ-·₁ β-μ)) ⟩
|
||||
`suc
|
||||
suc
|
||||
((ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒
|
||||
`suc
|
||||
suc
|
||||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· ` "m"
|
||||
· ` "n")
|
||||
]))
|
||||
· `suc `zero
|
||||
· `suc (`suc `zero))
|
||||
· suc zero
|
||||
· suc (suc zero))
|
||||
—→⟨ ξ-suc (ξ-·₁ (β-ƛ (V-suc V-zero))) ⟩
|
||||
`suc
|
||||
suc
|
||||
((ƛ "n" ⇒
|
||||
case `suc `zero [zero⇒ ` "n" |suc "m" ⇒
|
||||
`suc
|
||||
case suc zero [zero⇒ ` "n" |suc "m" ⇒
|
||||
suc
|
||||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· ` "m"
|
||||
· ` "n")
|
||||
])
|
||||
· `suc (`suc `zero))
|
||||
· suc (suc zero))
|
||||
—→⟨ ξ-suc (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
`suc
|
||||
case `suc `zero [zero⇒ `suc (`suc `zero) |suc "m" ⇒
|
||||
`suc
|
||||
suc
|
||||
case suc zero [zero⇒ suc (suc zero) |suc "m" ⇒
|
||||
suc
|
||||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· ` "m"
|
||||
· `suc (`suc `zero))
|
||||
· suc (suc zero))
|
||||
]
|
||||
—→⟨ ξ-suc (β-suc V-zero) ⟩
|
||||
`suc
|
||||
(`suc
|
||||
suc
|
||||
(suc
|
||||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· `zero
|
||||
· `suc (`suc `zero)))
|
||||
· zero
|
||||
· suc (suc zero)))
|
||||
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ β-μ))) ⟩
|
||||
`suc
|
||||
(`suc
|
||||
suc
|
||||
(suc
|
||||
((ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒
|
||||
`suc
|
||||
suc
|
||||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· ` "m"
|
||||
· ` "n")
|
||||
]))
|
||||
· `zero
|
||||
· `suc (`suc `zero)))
|
||||
· zero
|
||||
· suc (suc zero)))
|
||||
—→⟨ ξ-suc (ξ-suc (ξ-·₁ (β-ƛ V-zero))) ⟩
|
||||
`suc
|
||||
(`suc
|
||||
suc
|
||||
(suc
|
||||
((ƛ "n" ⇒
|
||||
case `zero [zero⇒ ` "n" |suc "m" ⇒
|
||||
`suc
|
||||
case zero [zero⇒ ` "n" |suc "m" ⇒
|
||||
suc
|
||||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· ` "m"
|
||||
· ` "n")
|
||||
])
|
||||
· `suc (`suc `zero)))
|
||||
· suc (suc zero)))
|
||||
—→⟨ ξ-suc (ξ-suc (β-ƛ (V-suc (V-suc V-zero)))) ⟩
|
||||
`suc
|
||||
(`suc
|
||||
case `zero [zero⇒ `suc (`suc `zero) |suc "m" ⇒
|
||||
`suc
|
||||
suc
|
||||
(suc
|
||||
case zero [zero⇒ suc (suc zero) |suc "m" ⇒
|
||||
suc
|
||||
((μ "+" ⇒
|
||||
(ƛ "m" ⇒
|
||||
(ƛ "n" ⇒
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ `suc (` "+" · ` "m" · ` "n")
|
||||
case ` "m" [zero⇒ ` "n" |suc "m" ⇒ suc (` "+" · ` "m" · ` "n")
|
||||
])))
|
||||
· ` "m"
|
||||
· `suc (`suc `zero))
|
||||
· suc (suc zero))
|
||||
])
|
||||
—→⟨ ξ-suc (ξ-suc β-zero) ⟩
|
||||
`suc (`suc (`suc (`suc `zero)))
|
||||
suc (suc (suc (suc zero)))
|
||||
∎)
|
||||
(done (V-suc (V-suc (V-suc (V-suc V-zero)))))
|
||||
_ = refl
|
||||
|
@ -1207,8 +1207,8 @@ _ : eval (gas 100) ⊢2+2ᶜ ≡
|
|||
(ƛ "s" ⇒ (ƛ "z" ⇒ ` "m" · ` "s" · (` "n" · ` "s" · ` "z")))))
|
||||
· (ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z")))
|
||||
· (ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z")))
|
||||
· (ƛ "n" ⇒ `suc ` "n")
|
||||
· `zero
|
||||
· (ƛ "n" ⇒ suc (` "n"))
|
||||
· zero
|
||||
—→⟨ ξ-·₁ (ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ))) ⟩
|
||||
(ƛ "n" ⇒
|
||||
(ƛ "s" ⇒
|
||||
|
@ -1216,50 +1216,50 @@ _ : eval (gas 100) ⊢2+2ᶜ ≡
|
|||
(ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · ` "s" ·
|
||||
(` "n" · ` "s" · ` "z"))))
|
||||
· (ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z")))
|
||||
· (ƛ "n" ⇒ `suc ` "n")
|
||||
· `zero
|
||||
· (ƛ "n" ⇒ suc (` "n"))
|
||||
· zero
|
||||
—→⟨ ξ-·₁ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
|
||||
(ƛ "s" ⇒
|
||||
(ƛ "z" ⇒
|
||||
(ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · ` "s" ·
|
||||
((ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · ` "s" · ` "z")))
|
||||
· (ƛ "n" ⇒ `suc ` "n")
|
||||
· `zero
|
||||
· (ƛ "n" ⇒ suc (` "n"))
|
||||
· zero
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ "z" ⇒
|
||||
(ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ `suc ` "n")
|
||||
(ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ suc (` "n"))
|
||||
·
|
||||
((ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ `suc ` "n")
|
||||
((ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ suc (` "n"))
|
||||
· ` "z"))
|
||||
· `zero
|
||||
· zero
|
||||
—→⟨ β-ƛ V-zero ⟩
|
||||
(ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ `suc ` "n")
|
||||
(ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ suc (` "n"))
|
||||
·
|
||||
((ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ `suc ` "n")
|
||||
· `zero)
|
||||
((ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ suc (` "n"))
|
||||
· zero)
|
||||
—→⟨ ξ-·₁ (β-ƛ V-ƛ) ⟩
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ `suc ` "n") · ((ƛ "n" ⇒ `suc ` "n") · ` "z")) ·
|
||||
((ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ `suc ` "n")
|
||||
· `zero)
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ suc (` "n")) · ((ƛ "n" ⇒ suc (` "n")) · ` "z")) ·
|
||||
((ƛ "s" ⇒ (ƛ "z" ⇒ ` "s" · (` "s" · ` "z"))) · (ƛ "n" ⇒ suc (` "n"))
|
||||
· zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (ξ-·₁ (β-ƛ V-ƛ)) ⟩
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ `suc ` "n") · ((ƛ "n" ⇒ `suc ` "n") · ` "z")) ·
|
||||
((ƛ "z" ⇒ (ƛ "n" ⇒ `suc ` "n") · ((ƛ "n" ⇒ `suc ` "n") · ` "z")) ·
|
||||
`zero)
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ suc (` "n")) · ((ƛ "n" ⇒ suc (` "n")) · ` "z")) ·
|
||||
((ƛ "z" ⇒ (ƛ "n" ⇒ suc (` "n")) · ((ƛ "n" ⇒ suc (` "n")) · ` "z")) ·
|
||||
zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ V-zero) ⟩
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ `suc ` "n") · ((ƛ "n" ⇒ `suc ` "n") · ` "z")) ·
|
||||
((ƛ "n" ⇒ `suc ` "n") · ((ƛ "n" ⇒ `suc ` "n") · `zero))
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ suc (` "n")) · ((ƛ "n" ⇒ suc (` "n")) · ` "z")) ·
|
||||
((ƛ "n" ⇒ suc (` "n")) · ((ƛ "n" ⇒ suc (` "n")) · zero))
|
||||
—→⟨ ξ-·₂ V-ƛ (ξ-·₂ V-ƛ (β-ƛ V-zero)) ⟩
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ `suc ` "n") · ((ƛ "n" ⇒ `suc ` "n") · ` "z")) ·
|
||||
((ƛ "n" ⇒ `suc ` "n") · `suc `zero)
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ suc (` "n")) · ((ƛ "n" ⇒ suc (` "n")) · ` "z")) ·
|
||||
((ƛ "n" ⇒ suc (` "n")) · suc zero)
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc V-zero)) ⟩
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ `suc ` "n") · ((ƛ "n" ⇒ `suc ` "n") · ` "z")) ·
|
||||
`suc (`suc `zero)
|
||||
(ƛ "z" ⇒ (ƛ "n" ⇒ suc (` "n")) · ((ƛ "n" ⇒ suc (` "n")) · ` "z")) ·
|
||||
suc (suc zero)
|
||||
—→⟨ β-ƛ (V-suc (V-suc V-zero)) ⟩
|
||||
(ƛ "n" ⇒ `suc ` "n") · ((ƛ "n" ⇒ `suc ` "n") · `suc (`suc `zero))
|
||||
(ƛ "n" ⇒ suc (` "n")) · ((ƛ "n" ⇒ suc (` "n")) · suc (suc zero))
|
||||
—→⟨ ξ-·₂ V-ƛ (β-ƛ (V-suc (V-suc V-zero))) ⟩
|
||||
(ƛ "n" ⇒ `suc ` "n") · `suc (`suc (`suc `zero))
|
||||
(ƛ "n" ⇒ suc (` "n")) · suc (suc (suc zero))
|
||||
—→⟨ β-ƛ (V-suc (V-suc (V-suc V-zero))) ⟩
|
||||
`suc (`suc (`suc (`suc `zero)))
|
||||
suc (suc (suc (suc zero)))
|
||||
∎)
|
||||
(done (V-suc (V-suc (V-suc (V-suc V-zero)))))
|
||||
_ = refl
|
||||
|
@ -1401,7 +1401,7 @@ det (ξ-·₂ _ M—→M′) (β-ƛ VM) = ⊥-elim (V¬—→ VM M—
|
|||
det (β-ƛ _) (ξ-·₁ L—→L″) = ⊥-elim (V¬—→ V-ƛ L—→L″)
|
||||
det (β-ƛ VM) (ξ-·₂ _ M—→M″) = ⊥-elim (V¬—→ VM M—→M″)
|
||||
det (β-ƛ _) (β-ƛ _) = refl
|
||||
det (ξ-suc M—→M′) (ξ-suc M—→M″) = cong `suc_ (det M—→M′ M—→M″)
|
||||
det (ξ-suc M—→M′) (ξ-suc M—→M″) = cong suc (det M—→M′ M—→M″)
|
||||
det (ξ-case L—→L′) (ξ-case L—→L″) = cong₄ case_[zero⇒_|suc_⇒_]
|
||||
(det L—→L′ L—→L″) refl refl refl
|
||||
det (ξ-case L—→L′) β-zero = ⊥-elim (V¬—→ V-zero L—→L′)
|
||||
|
|
|
@ -216,7 +216,7 @@ plusᶜ = ƛ ƛ ƛ ƛ (# 3 · # 1 · (# 2 · # 1 · # 0))
|
|||
2+2ᶜ = plusᶜ · twoᶜ · twoᶜ
|
||||
```
|
||||
Before, reduction stopped when we reached a lambda term, so we had to
|
||||
compute `` plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero `` to ensure we reduced
|
||||
compute `` plusᶜ · twoᶜ · twoᶜ · sucᶜ · zero `` to ensure we reduced
|
||||
to a representation of the natural four. Now, reduction continues
|
||||
under lambda, so we don't need the extra arguments. It is convenient
|
||||
to define a term to represent four as a Church numeral, as well as
|
||||
|
@ -487,7 +487,7 @@ form or takes a reduction step.
|
|||
|
||||
Previously, progress only applied to closed, well-typed terms. We had
|
||||
to rule out terms where we apply something other than a function (such
|
||||
as `` `zero ``) or terms with a free variable. Now we can demonstrate
|
||||
as `` zero ``) or terms with a free variable. Now we can demonstrate
|
||||
it for open, well-scoped terms. The definition of normal form permits
|
||||
free variables, and we have no terms that are not functions.
|
||||
|
||||
|
@ -698,7 +698,8 @@ case L M N = L · (ƛ N) · M
|
|||
Here we have been careful to retain the exact form of our previous
|
||||
definitions. The successor branch expects an additional variable to
|
||||
be in scope (as indicated by its type), so it is converted to an
|
||||
ordinary term using lambda abstraction.
|
||||
ordinary term using lambda abstraction. We use names `` `zero `` and
|
||||
`` `suc ``, since we are defining terms rather than constructors.
|
||||
|
||||
We can also define fixpoint. Using named terms, we define:
|
||||
|
||||
|
|
Loading…
Reference in a new issue