tidied up Typed
This commit is contained in:
parent
7e60fd56b8
commit
093f3f0b83
2 changed files with 107 additions and 179 deletions
|
@ -1,5 +1,5 @@
|
|||
---
|
||||
title : "Collections: Collections represented as Lists"
|
||||
title : "Collections: Representing collections as lists"
|
||||
layout : page
|
||||
permalink : /Collections
|
||||
---
|
||||
|
@ -44,9 +44,7 @@ infix 0 _↔_
|
|||
_↔_ : Set → Set → Set
|
||||
A ↔ B = (A → B) × (B → A)
|
||||
|
||||
module Collection (A : Set) (_≟_ : ∀ (x y : A) → Dec (x ≡ y)) where
|
||||
|
||||
-- abstract
|
||||
module CollectionDec (A : Set) (_≟_ : ∀ (x y : A) → Dec (x ≡ y)) where
|
||||
|
||||
Coll : Set → Set
|
||||
Coll A = List A
|
||||
|
@ -79,11 +77,22 @@ module Collection (A : Set) (_≟_ : ∀ (x y : A) → Dec (x ≡ y)) where
|
|||
_\\_ : Coll A → A → Coll A
|
||||
xs \\ x = filter (¬? ∘ (_≟ x)) xs
|
||||
|
||||
⊆-refl : ∀ {xs} → xs ⊆ xs
|
||||
⊆-refl ∈xs = ∈xs
|
||||
refl-⊆ : ∀ {xs} → xs ⊆ xs
|
||||
refl-⊆ ∈xs = ∈xs
|
||||
|
||||
⊆-trans : ∀ {xs ys zs} → xs ⊆ ys → ys ⊆ zs → xs ⊆ zs
|
||||
⊆-trans xs⊆ ys⊆ = ys⊆ ∘ xs⊆
|
||||
trans-⊆ : ∀ {xs ys zs} → xs ⊆ ys → ys ⊆ zs → xs ⊆ zs
|
||||
trans-⊆ xs⊆ ys⊆ = ys⊆ ∘ xs⊆
|
||||
|
||||
lemma-[_] : ∀ {w xs} → w ∈ xs ↔ [ w ] ⊆ xs
|
||||
lemma-[_] = ⟨ forward , backward ⟩
|
||||
where
|
||||
|
||||
forward : ∀ {w xs} → w ∈ xs → [ w ] ⊆ xs
|
||||
forward ∈xs here = ∈xs
|
||||
forward ∈xs (there ())
|
||||
|
||||
backward : ∀ {w xs} → [ w ] ⊆ xs → w ∈ xs
|
||||
backward ⊆xs = ⊆xs here
|
||||
|
||||
lemma-\\-∈-≢ : ∀ {w x xs} → w ∈ xs \\ x ↔ w ∈ xs × w ≢ x
|
||||
lemma-\\-∈-≢ = ⟨ forward , backward ⟩
|
||||
|
@ -129,32 +138,21 @@ module Collection (A : Set) (_≟_ : ∀ (x y : A) → Dec (x ≡ y)) where
|
|||
... | here = ⊥-elim (≢x refl)
|
||||
... | there ∈ys = ∈ys
|
||||
|
||||
lemma₁ : ∀ {w xs} → w ∈ xs ↔ [ w ] ⊆ xs
|
||||
lemma₁ = ⟨ forward , backward ⟩
|
||||
where
|
||||
lemma-∪₁ : ∀ {xs ys} → xs ⊆ xs ∪ ys
|
||||
lemma-∪₁ here = here
|
||||
lemma-∪₁ (there ∈xs) = there (lemma-∪₁ ∈xs)
|
||||
|
||||
forward : ∀ {w xs} → w ∈ xs → [ w ] ⊆ xs
|
||||
forward ∈xs here = ∈xs
|
||||
forward ∈xs (there ())
|
||||
lemma-∪₂ : ∀ {xs ys} → ys ⊆ xs ∪ ys
|
||||
lemma-∪₂ {[]} ∈ys = ∈ys
|
||||
lemma-∪₂ {x ∷ xs} ∈ys = there (lemma-∪₂ {xs} ∈ys)
|
||||
|
||||
backward : ∀ {w xs} → [ w ] ⊆ xs → w ∈ xs
|
||||
backward ⊆xs = ⊆xs here
|
||||
|
||||
lemma₂ : ∀ {xs ys} → xs ⊆ xs ∪ ys
|
||||
lemma₂ here = here
|
||||
lemma₂ (there ∈xs) = there (lemma₂ ∈xs)
|
||||
|
||||
lemma₃ : ∀ {xs ys} → ys ⊆ xs ∪ ys
|
||||
lemma₃ {[]} ∈ys = ∈ys
|
||||
lemma₃ {x ∷ xs} ∈ys = there (lemma₃ {xs} ∈ys)
|
||||
|
||||
lemma₄ : ∀ {w xs ys} → w ∈ xs ⊎ w ∈ ys ↔ w ∈ xs ∪ ys
|
||||
lemma₄ = ⟨ forward , backward ⟩
|
||||
lemma-⊎-∪ : ∀ {w xs ys} → w ∈ xs ⊎ w ∈ ys ↔ w ∈ xs ∪ ys
|
||||
lemma-⊎-∪ = ⟨ forward , backward ⟩
|
||||
where
|
||||
|
||||
forward : ∀ {w xs ys} → w ∈ xs ⊎ w ∈ ys → w ∈ xs ∪ ys
|
||||
forward (inj₁ ∈xs) = lemma₂ ∈xs
|
||||
forward (inj₂ ∈ys) = lemma₃ ∈ys
|
||||
forward (inj₁ ∈xs) = lemma-∪₁ ∈xs
|
||||
forward (inj₂ ∈ys) = lemma-∪₂ ∈ys
|
||||
|
||||
backward : ∀ {xs ys w} → w ∈ xs ∪ ys → w ∈ xs ⊎ w ∈ ys
|
||||
backward {[]} ∈ys = inj₂ ∈ys
|
||||
|
|
230
src/Typed.lagda
230
src/Typed.lagda
|
@ -14,11 +14,12 @@ module Typed where
|
|||
import Relation.Binary.PropositionalEquality as Eq
|
||||
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.List using (List; []; _∷_; [_]; _++_; map; foldr; filter)
|
||||
open import Data.List using (List; []; _∷_; _++_; map; foldr; filter)
|
||||
open import Data.List.Any using (Any; here; there)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_; _≤_; _⊔_; _≟_)
|
||||
open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n)
|
||||
open import Data.Product using (_×_; proj₁; proj₂; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Product using (_×_; proj₁; proj₂; ∃; ∃-syntax)
|
||||
renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Data.Unit using (⊤; tt)
|
||||
open import Function using (_∘_)
|
||||
|
@ -27,6 +28,7 @@ open import Function.Equivalence using (_⇔_; equivalence)
|
|||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Relation.Nullary.Negation using (contraposition; ¬?)
|
||||
open import Relation.Nullary.Product using (_×-dec_)
|
||||
open import Collections using (_↔_)
|
||||
\end{code}
|
||||
|
||||
|
||||
|
@ -216,58 +218,20 @@ erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (er
|
|||
### Lists as sets
|
||||
|
||||
\begin{code}
|
||||
infix 4 _∈_
|
||||
infix 4 _⊆_
|
||||
infixl 5 _∪_
|
||||
infixl 5 _\\_
|
||||
|
||||
_∈_ : Id → List Id → Set
|
||||
x ∈ xs = Any (x ≡_) xs
|
||||
|
||||
_⊆_ : List Id → List Id → Set
|
||||
xs ⊆ ys = ∀ {w} → w ∈ xs → w ∈ ys
|
||||
|
||||
_∪_ : List Id → List Id → List Id
|
||||
xs ∪ ys = xs ++ ys
|
||||
|
||||
_\\_ : List Id → Id → List Id
|
||||
xs \\ x = filter (¬? ∘ (x ≟_)) xs
|
||||
open Collections.CollectionDec (Id) (_≟_)
|
||||
\end{code}
|
||||
|
||||
### Properties of sets
|
||||
|
||||
\begin{code}
|
||||
⊆∷ : ∀ {y xs ys} → xs ⊆ ys → xs ⊆ y ∷ ys
|
||||
⊆∷ xs⊆ ∈xs = there (xs⊆ ∈xs)
|
||||
|
||||
∷⊆∷ : ∀ {x xs ys} → xs ⊆ ys → (x ∷ xs) ⊆ (x ∷ ys)
|
||||
∷⊆∷ xs⊆ (here refl) = here refl
|
||||
∷⊆∷ xs⊆ (there ∈xs) = there (xs⊆ ∈xs)
|
||||
|
||||
[]⊆ : ∀ {x xs} → [ x ] ⊆ xs → x ∈ xs
|
||||
[]⊆ ⊆xs = ⊆xs (here refl)
|
||||
|
||||
⊆[] : ∀ {x xs} → x ∈ xs → [ x ] ⊆ xs
|
||||
⊆[] x∈ (here refl) = x∈
|
||||
⊆[] x∈ (there ())
|
||||
|
||||
bind : ∀ {x xs} → xs \\ x ⊆ xs
|
||||
bind {x} {[]} ()
|
||||
bind {x} {y ∷ ys} with x ≟ y
|
||||
... | yes refl = ⊆∷ (bind {x} {ys})
|
||||
... | no _ = ∷⊆∷ (bind {x} {ys})
|
||||
|
||||
left : ∀ {xs ys} → xs ⊆ xs ∪ ys
|
||||
left (here refl) = here refl
|
||||
left (there x∈) = there (left x∈)
|
||||
|
||||
right : ∀ {xs ys} → ys ⊆ xs ∪ ys
|
||||
right {[]} y∈ = y∈
|
||||
right {x ∷ xs} y∈ = there (right {xs} y∈)
|
||||
|
||||
prev : ∀ {z y xs} → y ≢ z → z ∈ y ∷ xs → z ∈ xs
|
||||
prev y≢z (here z≡y) = ⊥-elim (y≢z (sym z≡y))
|
||||
prev _ (there z∈) = z∈
|
||||
-- ⊆∷ : ∀ {y xs ys} → xs ⊆ ys → xs ⊆ y ∷ ys
|
||||
-- ∷⊆∷ : ∀ {x xs ys} → xs ⊆ ys → (x ∷ xs) ⊆ (x ∷ ys)
|
||||
-- []⊆ : ∀ {x xs} → [ x ] ⊆ xs → x ∈ xs
|
||||
-- ⊆[] : ∀ {x xs} → x ∈ xs → [ x ] ⊆ xs
|
||||
-- bind : ∀ {x xs} → xs \\ x ⊆ xs
|
||||
-- left : ∀ {xs ys} → xs ⊆ xs ∪ ys
|
||||
-- right : ∀ {xs ys} → ys ⊆ xs ∪ ys
|
||||
-- prev : ∀ {z y xs} → y ≢ z → z ∈ y ∷ xs → z ∈ xs
|
||||
\end{code}
|
||||
|
||||
### Free variables
|
||||
|
@ -287,7 +251,7 @@ fresh : List Id → Id
|
|||
fresh = foldr _⊔_ 0 ∘ map suc
|
||||
|
||||
⊔-lemma : ∀ {x xs} → x ∈ xs → suc x ≤ fresh xs
|
||||
⊔-lemma {x} {.x ∷ xs} (here refl) = m≤m⊔n (suc x) (fresh xs)
|
||||
⊔-lemma {x} {.x ∷ xs} here = m≤m⊔n (suc x) (fresh xs)
|
||||
⊔-lemma {x} {y ∷ xs} (there x∈) = ≤-trans (⊔-lemma {x} {xs} x∈)
|
||||
(n≤m⊔n (suc y) (fresh xs))
|
||||
|
||||
|
@ -302,9 +266,9 @@ fresh-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)
|
|||
∅ x = ⌊ x ⌋
|
||||
|
||||
_,_↦_ : (Id → Term) → Id → Term → (Id → Term)
|
||||
(ρ , x ↦ M) y with x ≟ y
|
||||
(ρ , x ↦ M) w with w ≟ x
|
||||
... | yes _ = M
|
||||
... | no _ = ρ y
|
||||
... | no _ = ρ w
|
||||
\end{code}
|
||||
|
||||
### Substitution
|
||||
|
@ -408,85 +372,58 @@ dom ε = []
|
|||
dom (Γ , x ⦂ A) = x ∷ dom Γ
|
||||
|
||||
dom-lemma : ∀ {Γ y B} → Γ ∋ y ⦂ B → y ∈ dom Γ
|
||||
dom-lemma Z = here refl
|
||||
dom-lemma Z = here
|
||||
dom-lemma (S x≢y ⊢y) = there (dom-lemma ⊢y)
|
||||
|
||||
f : ∀ {x y} → y ∈ [ x ] → y ≡ x
|
||||
f (here y≡x) = y≡x
|
||||
f (there ())
|
||||
|
||||
g : ∀ {w xs ys} → w ∈ xs ∪ ys → w ∈ xs ⊎ w ∈ ys
|
||||
g {_} {[]} {ys} w∈ = inj₂ w∈
|
||||
g {_} {x ∷ xs} {ys} (here px) = inj₁ (here px)
|
||||
g {_} {x ∷ xs} {ys} (there w∈) with g w∈
|
||||
... | inj₁ ∈xs = inj₁ (there ∈xs)
|
||||
... | inj₂ ∈ys = inj₂ ∈ys
|
||||
|
||||
k : ∀ {w x xs} → w ∈ xs \\ x → x ≢ w
|
||||
k {w} {x} {[]} ()
|
||||
k {w} {x} {x′ ∷ xs′} w∈ with x ≟ x′
|
||||
k {w} {x} {x′ ∷ xs′} w∈ | yes refl = k {w} {x} {xs′} w∈
|
||||
k {w} {x} {x′ ∷ xs′} (here w≡x′) | no x≢x′ = λ x≡w → x≢x′ (trans x≡w w≡x′)
|
||||
k {w} {x} {x′ ∷ xs′} (there w∈) | no x≢x′ = k {w} {x} {xs′} w∈
|
||||
|
||||
h : ∀ {x xs ys} → xs ⊆ x ∷ ys → xs \\ x ⊆ ys
|
||||
h {x} {xs} {ys} xs⊆ {w} w∈ with xs⊆ (bind w∈)
|
||||
... | here w≡x = ⊥-elim (k {w} {x} {xs} w∈ (sym w≡x))
|
||||
... | there w∈′ = w∈′
|
||||
|
||||
free-lemma : ∀ {Γ M A} → Γ ⊢ M ⦂ A → free M ⊆ dom Γ
|
||||
free-lemma ⌊ ⊢x ⌋ w∈ rewrite f w∈ = dom-lemma ⊢x
|
||||
free-lemma {Γ} (ƛ_ {x = x} {N = N} ⊢N) = h ih
|
||||
where
|
||||
ih : free N ⊆ x ∷ dom Γ
|
||||
ih = free-lemma ⊢N
|
||||
free-lemma (⊢L · ⊢M) w∈ with g w∈
|
||||
... | inj₁ ∈L = free-lemma ⊢L ∈L
|
||||
... | inj₂ ∈M = free-lemma ⊢M ∈M
|
||||
\end{code}
|
||||
free-lemma ⌊ ⊢x ⌋ w∈ with w∈
|
||||
... | here = dom-lemma ⊢x
|
||||
... | there ()
|
||||
free-lemma {Γ} (ƛ_ {x = x} {N = N} ⊢N) = proj₂ lemma-\\-∷ (free-lemma ⊢N)
|
||||
free-lemma (⊢L · ⊢M) w∈ with proj₂ lemma-⊎-∪ w∈
|
||||
... | inj₁ ∈L = free-lemma ⊢L ∈L
|
||||
... | inj₂ ∈M = free-lemma ⊢M ∈M
|
||||
|
||||
Wow! A lot of work to prove stuff that is obvious. Gulp!
|
||||
|
||||
-- f : ∀ {x y} → y ∈ [ x ] → y ≡ x
|
||||
-- g : ∀ {w xs ys} → w ∈ xs ∪ ys → w ∈ xs ⊎ w ∈ ys
|
||||
-- k : ∀ {w x xs} → w ∈ xs \\ x → x ≢ w
|
||||
-- h : ∀ {x xs ys} → xs ⊆ x ∷ ys → xs \\ x ⊆ ys
|
||||
|
||||
\end{code}
|
||||
|
||||
### Renaming
|
||||
|
||||
\begin{code}
|
||||
∷drop : ∀ {v vs ys} → v ∷ vs ⊆ ys → vs ⊆ ys
|
||||
∷drop ⊆ys ∈vs = ⊆ys (there ∈vs)
|
||||
|
||||
i : ∀ {w x xs} → w ∈ xs → x ≢ w → w ∈ xs \\ x
|
||||
i {w} {x} {.w ∷ xs} (here refl) x≢w with x ≟ w
|
||||
... | yes refl = ⊥-elim (x≢w refl)
|
||||
... | no _ = here refl
|
||||
i {w} {x} {y ∷ xs} (there w∈) x≢w with x ≟ y
|
||||
... | yes refl = (i {w} {x} {xs} w∈ x≢w)
|
||||
... | no _ = there (i {w} {x} {xs} w∈ x≢w)
|
||||
|
||||
j : ∀ {x xs ys} → xs \\ x ⊆ ys → xs ⊆ x ∷ ys
|
||||
j {x} {xs} {ys} ⊆ys {w} w∈ with x ≟ w
|
||||
... | yes refl = here refl
|
||||
... | no x≢w = there (⊆ys (i w∈ x≢w))
|
||||
-- ∷drop : ∀ {v vs ys} → v ∷ vs ⊆ ys → vs ⊆ ys
|
||||
-- i : ∀ {w x xs} → w ∈ xs → x ≢ w → w ∈ xs \\ x
|
||||
-- j : ∀ {x xs ys} → xs \\ x ⊆ ys → xs ⊆ x ∷ ys
|
||||
|
||||
⊢rename : ∀ {Γ Δ xs} → (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A) →
|
||||
(∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A)
|
||||
⊢rename ⊢σ ⊆xs (⌊ ⊢x ⌋) = ⌊ ⊢σ ∈xs ⊢x ⌋
|
||||
⊢rename ⊢σ ⊆xs (⌊ ⊢x ⌋) = ⌊ ⊢σ ∈xs ⊢x ⌋
|
||||
where
|
||||
∈xs = []⊆ ⊆xs
|
||||
∈xs = proj₂ lemma-[_] ⊆xs
|
||||
⊢rename {Γ} {Δ} {xs} ⊢σ ⊆xs (ƛ_ {x = x} {A = A} {N = N} ⊢N)
|
||||
= ƛ (⊢rename {Γ′} {Δ′} {xs′} ⊢σ′ ⊆xs′ ⊢N) -- ⊆xs : free N \\ x ⊆ xs
|
||||
= ƛ (⊢rename {Γ′} {Δ′} {xs′} ⊢σ′ ⊆xs′ ⊢N)
|
||||
where
|
||||
Γ′ = Γ , x ⦂ A
|
||||
Δ′ = Δ , x ⦂ A
|
||||
xs′ = x ∷ xs
|
||||
|
||||
⊢σ′ : ∀ {y B} → y ∈ xs′ → Γ′ ∋ y ⦂ B → Δ′ ∋ y ⦂ B
|
||||
⊢σ′ ∈xs′ Z = Z
|
||||
⊢σ′ ∈xs′ (S x≢y k) with ∈xs′
|
||||
... | here refl = ⊥-elim (x≢y refl)
|
||||
... | there ∈xs = S x≢y (⊢σ ∈xs k)
|
||||
⊢σ′ ∈xs′ Z = Z
|
||||
⊢σ′ ∈xs′ (S x≢y ⊢y) with ∈xs′
|
||||
... | here = ⊥-elim (x≢y refl)
|
||||
... | there ∈xs = S x≢y (⊢σ ∈xs ⊢y)
|
||||
|
||||
⊆xs′ : free N ⊆ xs′
|
||||
⊆xs′ = j ⊆xs
|
||||
⊢rename {xs = xs} ⊢σ {L · M} ⊆xs (⊢L · ⊢M) = ⊢rename ⊢σ (⊆xs ∘ left) ⊢L · ⊢rename ⊢σ (⊆xs ∘ right) ⊢M
|
||||
⊆xs′ = proj₁ lemma-\\-∷ ⊆xs
|
||||
⊢rename {xs = xs} ⊢σ {L · M} ⊆xs (⊢L · ⊢M)
|
||||
= ⊢rename ⊢σ L⊆ ⊢L · ⊢rename ⊢σ M⊆ ⊢M
|
||||
where
|
||||
L⊆ = trans-⊆ (proj₁ lemma-⊎-∪ ∘ inj₁) ⊆xs
|
||||
M⊆ = trans-⊆ (proj₁ lemma-⊎-∪ ∘ inj₂) ⊆xs
|
||||
\end{code}
|
||||
|
||||
|
||||
|
@ -494,20 +431,20 @@ j {x} {xs} {ys} ⊆ys {w} w∈ with x ≟ w
|
|||
|
||||
\begin{code}
|
||||
lemma₁ : ∀ {y ys} → [ y ] ⊆ y ∷ ys
|
||||
lemma₁ (here refl) = here refl
|
||||
lemma₁ (there ())
|
||||
lemma₁ = proj₁ lemma-[_] here
|
||||
|
||||
lemma₂ : ∀ {z x xs} → x ≢ z → z ∈ x ∷ xs → z ∈ xs
|
||||
lemma₂ x≢z (here refl) = ⊥-elim (x≢z refl)
|
||||
lemma₂ _ (there z∈xs) = z∈xs
|
||||
lemma₂ : ∀ {w x xs} → x ≢ w → w ∈ x ∷ xs → w ∈ xs
|
||||
lemma₂ x≢ here = ⊥-elim (x≢ refl)
|
||||
lemma₂ _ (there w∈) = w∈
|
||||
|
||||
⊢subst : ∀ {Γ Δ xs ys ρ} →
|
||||
(∀ {x} → x ∈ xs → free (ρ x) ⊆ ys) →
|
||||
(∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ⊢ ρ x ⦂ A) →
|
||||
(∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ subst ys ρ M ⦂ A)
|
||||
⊢subst Σ ⊢ρ ⊆xs ⌊ ⊢x ⌋ = ⊢ρ (⊆xs (here refl)) ⊢x
|
||||
⊢subst Σ ⊢ρ ⊆xs ⌊ ⊢x ⌋
|
||||
= ⊢ρ (⊆xs here) ⊢x
|
||||
⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (ƛ_ {x = x} {A = A} {N = N} ⊢N)
|
||||
= ƛ_ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs′} {ys′} {ρ′} Σ′ ⊢ρ′ ⊆xs′ ⊢N)
|
||||
= ƛ_ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs′} {ys′} {ρ′} Σ′ ⊢ρ′ ⊆xs′ ⊢N)
|
||||
where
|
||||
y = fresh ys
|
||||
Γ′ = Γ , x ⦂ A
|
||||
|
@ -516,43 +453,35 @@ lemma₂ _ (there z∈xs) = z∈xs
|
|||
ys′ = y ∷ ys
|
||||
ρ′ = ρ , x ↦ ⌊ y ⌋
|
||||
|
||||
Σ′ : ∀ {z} → z ∈ xs′ → free (ρ′ z) ⊆ ys′
|
||||
Σ′ {z} (here refl) with x ≟ z
|
||||
Σ′ : ∀ {w} → w ∈ xs′ → free (ρ′ w) ⊆ ys′
|
||||
Σ′ {w} here with w ≟ x
|
||||
... | yes refl = lemma₁
|
||||
... | no x≢z = ⊥-elim (x≢z refl)
|
||||
Σ′ {z} (there x∈) with x ≟ z
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
Σ′ {w} (there w∈) with w ≟ x
|
||||
... | yes refl = lemma₁
|
||||
... | no _ = there ∘ (Σ x∈)
|
||||
... | no _ = there ∘ (Σ w∈)
|
||||
|
||||
⊆xs′ : free N ⊆ xs′
|
||||
⊆xs′ = j ⊆xs
|
||||
{-
|
||||
free (ƛ x ⦂ A ⇒ N) ⊆ xs
|
||||
= def'n
|
||||
free N \\ x ⊆ xs
|
||||
= adjoint
|
||||
free N ⊆ x ∷ xs
|
||||
-}
|
||||
⊆xs′ = proj₁ lemma-\\-∷ ⊆xs
|
||||
|
||||
⊢σ : ∀ {z C} → z ∈ ys → Δ ∋ z ⦂ C → Δ′ ∋ z ⦂ C
|
||||
⊢σ z∈ ⊢z = S (fresh-lemma z∈) ⊢z
|
||||
⊢σ : ∀ {w C} → w ∈ ys → Δ ∋ w ⦂ C → Δ′ ∋ w ⦂ C
|
||||
⊢σ w∈ ⊢w = S (fresh-lemma w∈) ⊢w
|
||||
|
||||
⊢ρ′ : ∀ {z C} → z ∈ xs′ → Γ′ ∋ z ⦂ C → Δ′ ⊢ ρ′ z ⦂ C
|
||||
⊢ρ′ : ∀ {w C} → w ∈ xs′ → Γ′ ∋ w ⦂ C → Δ′ ⊢ ρ′ w ⦂ C
|
||||
⊢ρ′ _ Z with x ≟ x
|
||||
... | yes _ = ⌊ Z ⌋
|
||||
... | no x≢x = ⊥-elim (x≢x refl)
|
||||
⊢ρ′ {z} z∈′ (S x≢z ⊢z) with x ≟ z
|
||||
... | yes x≡z = ⊥-elim (x≢z x≡z)
|
||||
... | no _ = ⊢rename {Δ} {Δ′} {ys} ⊢σ (Σ z∈) (⊢ρ z∈ ⊢z)
|
||||
⊢ρ′ {w} w∈′ (S x≢w ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (x≢w refl)
|
||||
... | no _ = ⊢rename {Δ} {Δ′} {ys} ⊢σ (Σ w∈) (⊢ρ w∈ ⊢w)
|
||||
where
|
||||
z∈ = lemma₂ x≢z z∈′
|
||||
w∈ = lemma₂ x≢w w∈′
|
||||
|
||||
⊢subst {xs = xs} Σ ⊢ρ {L · M} ⊆xs (⊢L · ⊢M) = ⊢subst Σ ⊢ρ L⊆xs ⊢L · ⊢subst Σ ⊢ρ M⊆xs ⊢M
|
||||
⊢subst {xs = xs} Σ ⊢ρ {L · M} ⊆xs (⊢L · ⊢M)
|
||||
= ⊢subst Σ ⊢ρ L⊆ ⊢L · ⊢subst Σ ⊢ρ M⊆ ⊢M
|
||||
where
|
||||
L⊆xs : free L ⊆ xs
|
||||
L⊆xs = ⊆xs ∘ left
|
||||
M⊆xs : free M ⊆ xs
|
||||
M⊆xs = ⊆xs ∘ right
|
||||
L⊆ = trans-⊆ (proj₁ lemma-⊎-∪ ∘ inj₁) ⊆xs
|
||||
M⊆ = trans-⊆ (proj₁ lemma-⊎-∪ ∘ inj₂) ⊆xs
|
||||
|
||||
⊢substitution : ∀ {Γ x A N B M} →
|
||||
Γ , x ⦂ A ⊢ N ⦂ B →
|
||||
|
@ -568,19 +497,20 @@ lemma₂ _ (there z∈xs) = z∈xs
|
|||
ρ = ∅ , x ↦ M
|
||||
|
||||
Σ : ∀ {w} → w ∈ xs → free (ρ w) ⊆ ys
|
||||
Σ {w} w∈ y∈ with x ≟ w
|
||||
... | yes _ = left y∈
|
||||
... | no x≢w with y∈
|
||||
... | here refl = right (i {w} {x} {free N} w∈ x≢w)
|
||||
... | there ()
|
||||
Σ {w} w∈ y∈ with w ≟ x
|
||||
... | yes _ = lemma-∪₁ y∈
|
||||
... | no w≢ with y∈
|
||||
... | here = lemma-∪₂
|
||||
(proj₂ (lemma-\\-∈-≢ {w} {x} {free N}) ⟨ w∈ , w≢ ⟩)
|
||||
... | there ()
|
||||
|
||||
⊢ρ : ∀ {z C} → z ∈ xs → Γ′ ∋ z ⦂ C → Γ ⊢ ρ z ⦂ C
|
||||
⊢ρ {.x} z∈ Z with x ≟ x
|
||||
... | yes _ = ⊢M
|
||||
... | no x≢x = ⊥-elim (x≢x refl)
|
||||
⊢ρ {z} z∈ (S x≢z ⊢z) with x ≟ z
|
||||
... | yes x≡z = ⊥-elim (x≢z x≡z)
|
||||
... | no _ = ⌊ ⊢z ⌋
|
||||
⊢ρ {z} z∈ (S x≢z ⊢z) with z ≟ x
|
||||
... | yes refl = ⊥-elim (x≢z refl)
|
||||
... | no _ = ⌊ ⊢z ⌋
|
||||
|
||||
⊆xs : free N ⊆ xs
|
||||
⊆xs x∈ = x∈
|
||||
|
|
Loading…
Reference in a new issue