added TypedFresh and some comments

This commit is contained in:
wadler 2018-05-03 10:39:13 -03:00
parent eb8f85bca7
commit 155677811c
2 changed files with 130 additions and 105 deletions

View file

@ -46,7 +46,8 @@ fixes are encouraged.
New New
- [Collections](Collections) - [Collections](Collections)
- [Typed: Typed term representation](Typed) - [Typed: Raw terms with types (broken)](Typed)
- [TypedFresh: Raw terms with fresh names (broken)](TypedFresh)
- [TypedDB: Typed DeBruijn representation](TypedDB) - [TypedDB: Typed DeBruijn representation](TypedDB)
- [Extensions: Extensions to simply-typed lambda calculus](Extensions) - [Extensions: Extensions to simply-typed lambda calculus](Extensions)

View file

@ -1,9 +1,19 @@
--- ---
title : "Typed: Typed Lambda term representation" title : "Typed: Raw terms with types (broken)"
layout : page layout : page
permalink : /Typed permalink : /Typed
--- ---
This version uses raw terms. Substitution presumes that no
generation of fresh names is required.
The substitution algorithm is based on one by McBride.
It is given a map from names to terms. Say the mapping of a
name is trivial if it takes a name to a term consisting of
just the variable with that name. No fresh names are required
if the mapping on each variable is either trivial or to a
closed term. However, the proof of correctness currently
contains a hole, and may be difficult to repair.
## Imports ## Imports
@ -437,6 +447,123 @@ begin_ : ∀ {M N} → (M ⟶* N) → (M ⟶* N)
begin M⟶*N = M⟶*N begin M⟶*N = M⟶*N
\end{code} \end{code}
## Sample execution
\begin{code}
_ : plus · two · two ⟶* (`suc (`suc (`suc (`suc `zero))))
_ =
begin
plus · two · two
⟶⟨ ξ-·₁ (ξ-·₁ (β-Y refl)) ⟩
(`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
`suc (plus · (`pred (` "m")) · (` "n")))) · two · two
⟶⟨ ξ-·₁ (β-→ (Suc (Suc Zero))) ⟩
(`λ "n" `→ `if0 two then ` "n" else
`suc (plus · (`pred two) · (` "n"))) · two
⟶⟨ β-→ (Suc (Suc Zero)) ⟩
`if0 two then two else
`suc (plus · (`pred two) · two)
⟶⟨ β-if0-suc (Suc Zero) ⟩
`suc (plus · (`pred two) · two)
⟶⟨ ξ-suc (ξ-·₁ (ξ-·₁ (β-Y refl))) ⟩
`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
`suc (plus · (`pred (` "m")) · (` "n")))) · (`pred two) · two)
⟶⟨ ξ-suc (ξ-·₁ (ξ-·₂ Fun (β-pred-suc (Suc Zero)))) ⟩
`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
`suc (plus · (`pred (` "m")) · (` "n")))) · (`suc `zero) · two)
⟶⟨ ξ-suc (ξ-·₁ (β-→ (Suc Zero))) ⟩
`suc ((`λ "n" `→ `if0 `suc `zero then ` "n" else
`suc (plus · (`pred (`suc `zero)) · (` "n")))) · two
⟶⟨ ξ-suc (β-→ (Suc (Suc Zero))) ⟩
`suc (`if0 `suc `zero then two else
`suc (plus · (`pred (`suc `zero)) · two))
⟶⟨ ξ-suc (β-if0-suc Zero) ⟩
`suc (`suc (plus · (`pred (`suc `zero)) · two))
⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ (β-Y refl)))) ⟩
`suc (`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
`suc (plus · (`pred (` "m")) · (` "n")))) · (`pred (`suc `zero)) · two))
⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₂ Fun (β-pred-suc Zero)))) ⟩
`suc (`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
`suc (plus · (`pred (` "m")) · (` "n")))) · `zero · two))
⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (β-→ Zero))) ⟩
`suc (`suc ((`λ "n" `→ `if0 `zero then ` "n" else
`suc (plus · (`pred `zero) · (` "n"))) · two))
⟶⟨ ξ-suc (ξ-suc (β-→ (Suc (Suc Zero)))) ⟩
`suc (`suc (`if0 `zero then two else
`suc (plus · (`pred `zero) · two)))
⟶⟨ ξ-suc (ξ-suc β-if0-zero) ⟩
`suc (`suc (`suc (`suc `zero)))
\end{code}
## Values do not reduce
Values do not reduce.
\begin{code}
Val-⟶ : ∀ {M N} → Value M → ¬ (M ⟶ N)
Val-⟶ Fun ()
Val-⟶ Zero ()
Val-⟶ (Suc VM) (ξ-suc M⟶N) = Val-⟶ VM M⟶N
\end{code}
As a corollary, terms that reduce are not values.
\begin{code}
⟶-Val : ∀ {M N} → (M ⟶ N) → ¬ Value M
⟶-Val M⟶N VM = Val-⟶ VM M⟶N
\end{code}
## Reduction is deterministic
\begin{code}
det : ∀ {M M M″}
→ (M ⟶ M)
→ (M ⟶ M″)
----------
→ M ≡ M″
det (ξ-·₁ L⟶L) (ξ-·₁ L⟶L″) = cong₂ _·_ (det L⟶L L⟶L″) refl
det (ξ-·₁ L⟶L) (ξ-·₂ VL _) = ⊥-elim (Val-⟶ VL L⟶L)
det (ξ-·₁ L⟶L) (β-→ _) = ⊥-elim (Val-⟶ Fun L⟶L)
det (ξ-·₂ VL _) (ξ-·₁ L⟶L″) = ⊥-elim (Val-⟶ VL L⟶L″)
det (ξ-·₂ _ M⟶M) (ξ-·₂ _ M⟶M″) = cong₂ _·_ refl (det M⟶M M⟶M″)
det (ξ-·₂ _ M⟶M) (β-→ VM) = ⊥-elim (Val-⟶ VM M⟶M)
det (β-→ VM) (ξ-·₁ L⟶L″) = ⊥-elim (Val-⟶ Fun L⟶L″)
det (β-→ VM) (ξ-·₂ _ M⟶M″) = ⊥-elim (Val-⟶ VM M⟶M″)
det (β-→ _) (β-→ _) = refl
det (ξ-suc M⟶M) (ξ-suc M⟶M″) = cong `suc_ (det M⟶M M⟶M″)
det (ξ-pred M⟶M) (ξ-pred M⟶M″) = cong `pred_ (det M⟶M M⟶M″)
det (ξ-pred M⟶M) β-pred-zero = ⊥-elim (Val-⟶ Zero M⟶M)
det (ξ-pred M⟶M) (β-pred-suc VM) = ⊥-elim (Val-⟶ (Suc VM) M⟶M)
det β-pred-zero (ξ-pred M⟶M) = ⊥-elim (Val-⟶ Zero M⟶M)
det β-pred-zero β-pred-zero = refl
det (β-pred-suc VM) (ξ-pred M⟶M) = ⊥-elim (Val-⟶ (Suc VM) M⟶M)
det (β-pred-suc _) (β-pred-suc _) = refl
det (ξ-if0 L⟶L) (ξ-if0 L⟶L″) = cong₃ `if0_then_else_ (det L⟶L L⟶L″) refl refl
det (ξ-if0 L⟶L) β-if0-zero = ⊥-elim (Val-⟶ Zero L⟶L)
det (ξ-if0 L⟶L) (β-if0-suc VL) = ⊥-elim (Val-⟶ (Suc VL) L⟶L)
det β-if0-zero (ξ-if0 L⟶L″) = ⊥-elim (Val-⟶ Zero L⟶L″)
det β-if0-zero β-if0-zero = refl
det (β-if0-suc VL) (ξ-if0 L⟶L″) = ⊥-elim (Val-⟶ (Suc VL) L⟶L″)
det (β-if0-suc _) (β-if0-suc _) = refl
det (ξ-Y M⟶M) (ξ-Y M⟶M″) = cong `Y_ (det M⟶M M⟶M″)
det (ξ-Y M⟶M) (β-Y refl) = ⊥-elim (Val-⟶ Fun M⟶M)
det (β-Y refl) (ξ-Y M⟶M″) = ⊥-elim (Val-⟶ Fun M⟶M″)
det (β-Y refl) (β-Y refl) = refl
\end{code}
Almost half the lines in the above proof are redundant, for example
det (ξ-·₁ L⟶L) (ξ-·₂ VL _) = ⊥-elim (Val-⟶ VL L⟶L)
det (ξ-·₂ VL _) (ξ-·₁ L⟶L″) = ⊥-elim (Val-⟶ VL L⟶L″)
are essentially identical. What we might like to do is delete the
redundant lines and add
det M⟶M M⟶M″ = sym (det M⟶M″ M⟶M)
to the bottom of the proof. But this does not work. The termination
checker complains, because the arguments have merely switched order
and neither is smaller.
## Canonical forms ## Canonical forms
\begin{code} \begin{code}
@ -492,61 +619,6 @@ value (Suc CV) = Suc (value CV)
value (Fun ⊢N) = Fun value (Fun ⊢N) = Fun
\end{code} \end{code}
## Values do not reduce
Values do not reduce.
\begin{code}
Val-⟶ : ∀ {M N} → Value M → ¬ (M ⟶ N)
Val-⟶ Fun ()
Val-⟶ Zero ()
Val-⟶ (Suc VM) (ξ-suc M⟶N) = Val-⟶ VM M⟶N
\end{code}
As a corollary, terms that reduce are not values.
\begin{code}
⟶-Val : ∀ {M N} → (M ⟶ N) → ¬ Value M
⟶-Val M⟶N VM = Val-⟶ VM M⟶N
\end{code}
## Reduction is deterministic
\begin{code}
det : ∀ {M M M″}
→ (M ⟶ M)
→ (M ⟶ M″)
----------
→ M ≡ M″
det (ξ-·₁ L⟶L) (ξ-·₁ L⟶L″) = cong₂ _·_ (det L⟶L L⟶L″) refl
det (ξ-·₁ L⟶L) (ξ-·₂ VL _) = ⊥-elim (Val-⟶ VL L⟶L)
det (ξ-·₁ L⟶L) (β-→ _) = ⊥-elim (Val-⟶ Fun L⟶L)
det (ξ-·₂ VL _) (ξ-·₁ L⟶L″) = ⊥-elim (Val-⟶ VL L⟶L″)
det (ξ-·₂ _ M⟶M) (ξ-·₂ _ M⟶M″) = cong₂ _·_ refl (det M⟶M M⟶M″)
det (ξ-·₂ _ M⟶M) (β-→ VM) = ⊥-elim (Val-⟶ VM M⟶M)
det (β-→ VM) (ξ-·₁ L⟶L″) = ⊥-elim (Val-⟶ Fun L⟶L″)
det (β-→ VM) (ξ-·₂ _ M⟶M″) = ⊥-elim (Val-⟶ VM M⟶M″)
det (β-→ _) (β-→ _) = refl
det (ξ-suc M⟶M) (ξ-suc M⟶M″) = cong `suc_ (det M⟶M M⟶M″)
det (ξ-pred M⟶M) (ξ-pred M⟶M″) = cong `pred_ (det M⟶M M⟶M″)
det (ξ-pred M⟶M) β-pred-zero = ⊥-elim (Val-⟶ Zero M⟶M)
det (ξ-pred M⟶M) (β-pred-suc VM) = ⊥-elim (Val-⟶ (Suc VM) M⟶M)
det β-pred-zero (ξ-pred M⟶M) = ⊥-elim (Val-⟶ Zero M⟶M)
det β-pred-zero β-pred-zero = refl
det (β-pred-suc VM) (ξ-pred M⟶M) = ⊥-elim (Val-⟶ (Suc VM) M⟶M)
det (β-pred-suc _) (β-pred-suc _) = refl
det (ξ-if0 L⟶L) (ξ-if0 L⟶L″) = cong₃ `if0_then_else_ (det L⟶L L⟶L″) refl refl
det (ξ-if0 L⟶L) β-if0-zero = ⊥-elim (Val-⟶ Zero L⟶L)
det (ξ-if0 L⟶L) (β-if0-suc VL) = ⊥-elim (Val-⟶ (Suc VL) L⟶L)
det β-if0-zero (ξ-if0 L⟶L″) = ⊥-elim (Val-⟶ Zero L⟶L″)
det β-if0-zero β-if0-zero = refl
det (β-if0-suc VL) (ξ-if0 L⟶L″) = ⊥-elim (Val-⟶ (Suc VL) L⟶L″)
det (β-if0-suc _) (β-if0-suc _) = refl
det (ξ-Y M⟶M) (ξ-Y M⟶M″) = cong `Y_ (det M⟶M M⟶M″)
det (ξ-Y M⟶M) (β-Y refl) = ⊥-elim (Val-⟶ Fun M⟶M)
det (β-Y refl) (ξ-Y M⟶M″) = ⊥-elim (Val-⟶ Fun M⟶M″)
det (β-Y refl) (β-Y refl) = refl
\end{code}
## Progress ## Progress
\begin{code} \begin{code}
@ -760,51 +832,3 @@ normalise {L} (suc m) ⊢L with progress ⊢L
... | normal n CV M⟶*V = normal n CV (L ⟶⟨ L⟶M ⟩ M⟶*V) ... | normal n CV M⟶*V = normal n CV (L ⟶⟨ L⟶M ⟩ M⟶*V)
\end{code} \end{code}
## Sample execution
\begin{code}
_ : plus · two · two ⟶* (`suc (`suc (`suc (`suc `zero))))
_ =
begin
plus · two · two
⟶⟨ ξ-·₁ (ξ-·₁ (β-Y refl)) ⟩
(`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
`suc (plus · (`pred (` "m")) · (` "n")))) · two · two
⟶⟨ ξ-·₁ (β-→ (Suc (Suc Zero))) ⟩
(`λ "n" `→ `if0 two then ` "n" else
`suc (plus · (`pred two) · (` "n"))) · two
⟶⟨ β-→ (Suc (Suc Zero)) ⟩
`if0 two then two else
`suc (plus · (`pred two) · two)
⟶⟨ β-if0-suc (Suc Zero) ⟩
`suc (plus · (`pred two) · two)
⟶⟨ ξ-suc (ξ-·₁ (ξ-·₁ (β-Y refl))) ⟩
`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
`suc (plus · (`pred (` "m")) · (` "n")))) · (`pred two) · two)
⟶⟨ ξ-suc (ξ-·₁ (ξ-·₂ Fun (β-pred-suc (Suc Zero)))) ⟩
`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
`suc (plus · (`pred (` "m")) · (` "n")))) · (`suc `zero) · two)
⟶⟨ ξ-suc (ξ-·₁ (β-→ (Suc Zero))) ⟩
`suc ((`λ "n" `→ `if0 `suc `zero then ` "n" else
`suc (plus · (`pred (`suc `zero)) · (` "n")))) · two
⟶⟨ ξ-suc (β-→ (Suc (Suc Zero))) ⟩
`suc (`if0 `suc `zero then two else
`suc (plus · (`pred (`suc `zero)) · two))
⟶⟨ ξ-suc (β-if0-suc Zero) ⟩
`suc (`suc (plus · (`pred (`suc `zero)) · two))
⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₁ (β-Y refl)))) ⟩
`suc (`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
`suc (plus · (`pred (` "m")) · (` "n")))) · (`pred (`suc `zero)) · two))
⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (ξ-·₂ Fun (β-pred-suc Zero)))) ⟩
`suc (`suc ((`λ "m" `→ (`λ "n" `→ `if0 ` "m" then ` "n" else
`suc (plus · (`pred (` "m")) · (` "n")))) · `zero · two))
⟶⟨ ξ-suc (ξ-suc (ξ-·₁ (β-→ Zero))) ⟩
`suc (`suc ((`λ "n" `→ `if0 `zero then ` "n" else
`suc (plus · (`pred `zero) · (` "n"))) · two))
⟶⟨ ξ-suc (ξ-suc (β-→ (Suc (Suc Zero)))) ⟩
`suc (`suc (`if0 `zero then two else
`suc (plus · (`pred `zero) · two)))
⟶⟨ ξ-suc (ξ-suc β-if0-zero) ⟩
`suc (`suc (`suc (`suc `zero)))
\end{code}