updated typed to PCF
This commit is contained in:
parent
c6c0f4912c
commit
1a8001e0b6
1 changed files with 301 additions and 59 deletions
360
src/Typed.lagda
360
src/Typed.lagda
|
@ -42,8 +42,10 @@ infix 4 _∋_⦂_
|
|||
infix 4 _⊢_⦂_
|
||||
infix 5 `λ_⇒_
|
||||
infix 5 `λ_
|
||||
infixl 6 _·_
|
||||
infix 7 `_
|
||||
infixl 6 `if0_then_else_
|
||||
infix 7 `suc_ `pred_ `Y_
|
||||
infixl 8 _·_
|
||||
infix 9 `_
|
||||
|
||||
Id : Set
|
||||
Id = ℕ
|
||||
|
@ -57,9 +59,14 @@ data Env : Set where
|
|||
_,_⦂_ : Env → Id → Type → Env
|
||||
|
||||
data Term : Set where
|
||||
`_ : Id → Term
|
||||
`λ_⇒_ : Id → Term → Term
|
||||
_·_ : Term → Term → Term
|
||||
`_ : Id → Term
|
||||
`λ_⇒_ : Id → Term → Term
|
||||
_·_ : Term → Term → Term
|
||||
`zero : Term
|
||||
`suc_ : Term → Term
|
||||
`pred_ : Term → Term
|
||||
`if0_then_else_ : Term → Term → Term → Term
|
||||
`Y_ : Term → Term
|
||||
|
||||
data _∋_⦂_ : Env → Id → Type → Set where
|
||||
|
||||
|
@ -80,7 +87,7 @@ data _⊢_⦂_ : Env → Term → Type → Set where
|
|||
---------------------
|
||||
→ Γ ⊢ ` x ⦂ A
|
||||
|
||||
`λ_ : ∀ {Γ x A N B}
|
||||
`λ_ : ∀ {Γ x N A B}
|
||||
→ Γ , x ⦂ A ⊢ N ⦂ B
|
||||
------------------------
|
||||
→ Γ ⊢ (`λ x ⇒ N) ⦂ A ⟹ B
|
||||
|
@ -90,6 +97,32 @@ data _⊢_⦂_ : Env → Term → Type → Set where
|
|||
→ Γ ⊢ M ⦂ A
|
||||
--------------
|
||||
→ Γ ⊢ L · M ⦂ B
|
||||
|
||||
`zero : ∀ {Γ}
|
||||
--------------
|
||||
→ Γ ⊢ `zero ⦂ `ℕ
|
||||
|
||||
`suc_ : ∀ {Γ M}
|
||||
→ Γ ⊢ M ⦂ `ℕ
|
||||
---------------
|
||||
→ Γ ⊢ `suc M ⦂ `ℕ
|
||||
|
||||
`pred_ : ∀ {Γ M}
|
||||
→ Γ ⊢ M ⦂ `ℕ
|
||||
----------------
|
||||
→ Γ ⊢ `pred M ⦂ `ℕ
|
||||
|
||||
`if0_then_else_ : ∀ {Γ L M N A}
|
||||
→ Γ ⊢ L ⦂ `ℕ
|
||||
→ Γ ⊢ M ⦂ A
|
||||
→ Γ ⊢ N ⦂ A
|
||||
----------------------------
|
||||
→ Γ ⊢ `if0 L then M else N ⦂ A
|
||||
|
||||
`Y_ : ∀ {Γ M A}
|
||||
→ Γ ⊢ M ⦂ A ⟹ A
|
||||
---------------
|
||||
→ Γ ⊢ `Y M ⦂ A
|
||||
\end{code}
|
||||
|
||||
## Test examples
|
||||
|
@ -122,40 +155,49 @@ m≢n ()
|
|||
Ch : Type
|
||||
Ch = (`ℕ ⟹ `ℕ) ⟹ `ℕ ⟹ `ℕ
|
||||
|
||||
two : Term
|
||||
two = `λ s ⇒ `λ z ⇒ (` s · (` s · ` z))
|
||||
twoCh : Term
|
||||
twoCh = `λ s ⇒ `λ z ⇒ (` s · (` s · ` z))
|
||||
|
||||
⊢two : ε ⊢ two ⦂ Ch
|
||||
⊢two = `λ `λ ` ⊢s · (` ⊢s · ` ⊢z)
|
||||
⊢twoCh : ε ⊢ twoCh ⦂ Ch
|
||||
⊢twoCh = `λ `λ ` ⊢s · (` ⊢s · ` ⊢z)
|
||||
where
|
||||
⊢s = S s≢z Z
|
||||
⊢z = Z
|
||||
|
||||
four : Term
|
||||
four = `λ s ⇒ `λ z ⇒ ` s · (` s · (` s · (` s · ` z)))
|
||||
fourCh : Term
|
||||
fourCh = `λ s ⇒ `λ z ⇒ ` s · (` s · (` s · (` s · ` z)))
|
||||
|
||||
⊢four : ε ⊢ four ⦂ Ch
|
||||
⊢four = `λ `λ ` ⊢s · (` ⊢s · (` ⊢s · (` ⊢s · ` ⊢z)))
|
||||
⊢fourCh : ε ⊢ fourCh ⦂ Ch
|
||||
⊢fourCh = `λ `λ ` ⊢s · (` ⊢s · (` ⊢s · (` ⊢s · ` ⊢z)))
|
||||
where
|
||||
⊢s = S s≢z Z
|
||||
⊢z = Z
|
||||
|
||||
plus : Term
|
||||
plus = `λ m ⇒ `λ n ⇒ `λ s ⇒ `λ z ⇒ ` m · ` s · (` n · ` s · ` z)
|
||||
plusCh : Term
|
||||
plusCh = `λ m ⇒ `λ n ⇒ `λ s ⇒ `λ z ⇒ ` m · ` s · (` n · ` s · ` z)
|
||||
|
||||
⊢plus : ε ⊢ plus ⦂ Ch ⟹ Ch ⟹ Ch
|
||||
⊢plus = `λ `λ `λ `λ ` ⊢m · ` ⊢s · (` ⊢n · ` ⊢s · ` ⊢z)
|
||||
⊢plusCh : ε ⊢ plusCh ⦂ Ch ⟹ Ch ⟹ Ch
|
||||
⊢plusCh = `λ `λ `λ `λ ` ⊢m · ` ⊢s · (` ⊢n · ` ⊢s · ` ⊢z)
|
||||
where
|
||||
⊢z = Z
|
||||
⊢s = S s≢z Z
|
||||
⊢n = S n≢z (S n≢s Z)
|
||||
⊢m = S m≢z (S m≢s (S m≢n Z))
|
||||
|
||||
four′ : Term
|
||||
four′ = plus · two · two
|
||||
fourCh′ : Term
|
||||
fourCh′ = plusCh · twoCh · twoCh
|
||||
|
||||
⊢four′ : ε ⊢ four′ ⦂ Ch
|
||||
⊢four′ = ⊢plus · ⊢two · ⊢two
|
||||
⊢fourCh′ : ε ⊢ fourCh′ ⦂ Ch
|
||||
⊢fourCh′ = ⊢plusCh · ⊢twoCh · ⊢twoCh
|
||||
|
||||
fromCh : Term
|
||||
fromCh = `λ m ⇒ ` m · (`λ s ⇒ `suc ` s) · `zero
|
||||
|
||||
⊢fromCh : ε ⊢ fromCh ⦂ Ch ⟹ `ℕ
|
||||
⊢fromCh = `λ ` ⊢m · (`λ `suc ` ⊢s) · `zero
|
||||
where
|
||||
⊢m = Z
|
||||
⊢s = Z
|
||||
\end{code}
|
||||
|
||||
|
||||
|
@ -163,7 +205,7 @@ four′ = plus · two · two
|
|||
|
||||
\begin{code}
|
||||
⟦_⟧ᵀ : Type → Set
|
||||
⟦ `ℕ ⟧ᵀ = ℕ
|
||||
⟦ `ℕ ⟧ᵀ = ℕ
|
||||
⟦ A ⟹ B ⟧ᵀ = ⟦ A ⟧ᵀ → ⟦ B ⟧ᵀ
|
||||
|
||||
⟦_⟧ᴱ : Env → Set
|
||||
|
@ -175,14 +217,27 @@ four′ = plus · two · two
|
|||
⟦ S _ x ⟧ⱽ ⟨ ρ , v ⟩ = ⟦ x ⟧ⱽ ρ
|
||||
|
||||
⟦_⟧ : ∀ {Γ M A} → Γ ⊢ M ⦂ A → ⟦ Γ ⟧ᴱ → ⟦ A ⟧ᵀ
|
||||
⟦ ` x ⟧ ρ = ⟦ x ⟧ⱽ ρ
|
||||
⟦ `λ ⊢N ⟧ ρ = λ{ v → ⟦ ⊢N ⟧ ⟨ ρ , v ⟩ }
|
||||
⟦ ⊢L · ⊢M ⟧ ρ = (⟦ ⊢L ⟧ ρ) (⟦ ⊢M ⟧ ρ)
|
||||
⟦ ` x ⟧ ρ = ⟦ x ⟧ⱽ ρ
|
||||
⟦ `λ ⊢N ⟧ ρ = λ{ v → ⟦ ⊢N ⟧ ⟨ ρ , v ⟩ }
|
||||
⟦ ⊢L · ⊢M ⟧ ρ = (⟦ ⊢L ⟧ ρ) (⟦ ⊢M ⟧ ρ)
|
||||
⟦ `zero ⟧ ρ = zero
|
||||
⟦ `Y ⊢M ⟧ ρ = {!!}
|
||||
⟦ `suc ⊢M ⟧ ρ = suc (⟦ ⊢M ⟧ ρ)
|
||||
⟦ `pred ⊢M ⟧ ρ = pred (⟦ ⊢M ⟧ ρ)
|
||||
where
|
||||
pred : ℕ → ℕ
|
||||
pred zero = zero
|
||||
pred (suc n) = n
|
||||
⟦ `if0 ⊢L then ⊢M else ⊢N ⟧ ρ = if0 ⟦ ⊢L ⟧ ρ then ⟦ ⊢M ⟧ ρ else ⟦ ⊢N ⟧ ρ
|
||||
where
|
||||
if0_then_else_ : ∀ {A} → ℕ → A → A → A
|
||||
if0 zero then m else n = m
|
||||
if0 suc _ then m else n = n
|
||||
|
||||
_ : ⟦ ⊢four′ ⟧ tt ≡ ⟦ ⊢four ⟧ tt
|
||||
_ : ⟦ ⊢fourCh′ ⟧ tt ≡ ⟦ ⊢fourCh ⟧ tt
|
||||
_ = refl
|
||||
|
||||
_ : ⟦ ⊢four ⟧ tt suc zero ≡ 4
|
||||
_ : ⟦ ⊢fourCh ⟧ tt suc zero ≡ 4
|
||||
_ = refl
|
||||
\end{code}
|
||||
|
||||
|
@ -195,9 +250,15 @@ lookup {Γ , x ⦂ A} Z = x
|
|||
lookup {Γ , x ⦂ A} (S _ k) = lookup {Γ} k
|
||||
|
||||
erase : ∀ {Γ M A} → Γ ⊢ M ⦂ A → Term
|
||||
erase (` k) = ` lookup k
|
||||
erase (`λ_ {x = x} ⊢N) = `λ x ⇒ erase ⊢N
|
||||
erase (⊢L · ⊢M) = erase ⊢L · erase ⊢M
|
||||
erase (` k) = ` lookup k
|
||||
erase (`λ_ {x = x} ⊢N) = `λ x ⇒ erase ⊢N
|
||||
erase (⊢L · ⊢M) = erase ⊢L · erase ⊢M
|
||||
erase (`zero) = `zero
|
||||
erase (`suc ⊢M) = `suc (erase ⊢M)
|
||||
erase (`pred ⊢M) = `pred (erase ⊢M)
|
||||
erase (`if0 ⊢L then ⊢M else ⊢N)
|
||||
= `if0 (erase ⊢L) then (erase ⊢M) else (erase ⊢N)
|
||||
erase (`Y ⊢M) = `Y (erase ⊢M)
|
||||
\end{code}
|
||||
|
||||
### Properties of erasure
|
||||
|
@ -211,6 +272,16 @@ erase-lemma : ∀ {Γ M A} → (⊢M : Γ ⊢ M ⦂ A) → erase ⊢M ≡ M
|
|||
erase-lemma (` ⊢x) = cong `_ (lookup-lemma ⊢x)
|
||||
erase-lemma (`λ_ {x = x} ⊢N) = cong (`λ x ⇒_) (erase-lemma ⊢N)
|
||||
erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (erase-lemma ⊢M)
|
||||
erase-lemma (`zero) = refl
|
||||
erase-lemma (`suc ⊢M) = cong `suc_ (erase-lemma ⊢M)
|
||||
erase-lemma (`pred ⊢M) = cong `pred_ (erase-lemma ⊢M)
|
||||
erase-lemma (`if0 ⊢L then ⊢M else ⊢N)
|
||||
= cong₃ `if0_then_else_ (erase-lemma ⊢L) (erase-lemma ⊢M) (erase-lemma ⊢N)
|
||||
where
|
||||
cong₃ : ∀ {A B C D : Set} (f : A → B → C → D) {s t u v x y} →
|
||||
s ≡ t → u ≡ v → x ≡ y → f s u x ≡ f t v y
|
||||
cong₃ f refl refl refl = refl
|
||||
erase-lemma (`Y ⊢M) = cong `Y_ (erase-lemma ⊢M)
|
||||
\end{code}
|
||||
|
||||
|
||||
|
@ -229,6 +300,12 @@ free : Term → List Id
|
|||
free (` x) = [ x ]
|
||||
free (`λ x ⇒ N) = free N \\ x
|
||||
free (L · M) = free L ++ free M
|
||||
free (`zero) = []
|
||||
free (`suc M) = free M
|
||||
free (`pred M) = free M
|
||||
free (`if0 L then M else N)
|
||||
= free L ++ free M ++ free N
|
||||
free (`Y M) = free M
|
||||
\end{code}
|
||||
|
||||
### Fresh identifier
|
||||
|
@ -263,12 +340,18 @@ _,_↦_ : (Id → Term) → Id → Term → (Id → Term)
|
|||
|
||||
\begin{code}
|
||||
subst : List Id → (Id → Term) → Term → Term
|
||||
subst ys ρ (` x) = ρ x
|
||||
subst ys ρ (`λ x ⇒ N) = `λ y ⇒ subst (y ∷ ys) (ρ , x ↦ ` y) N
|
||||
subst ys ρ (` x) = ρ x
|
||||
subst ys ρ (`λ x ⇒ N) = `λ y ⇒ subst (y ∷ ys) (ρ , x ↦ ` y) N
|
||||
where
|
||||
y = fresh ys
|
||||
subst ys ρ (L · M) = subst ys ρ L · subst ys ρ M
|
||||
|
||||
subst ys ρ (L · M) = subst ys ρ L · subst ys ρ M
|
||||
subst ys ρ (`zero) = `zero
|
||||
subst ys ρ (`suc M) = `suc (subst ys ρ M)
|
||||
subst ys ρ (`pred M) = `pred (subst ys ρ M)
|
||||
subst ys ρ (`if0 L then M else N)
|
||||
= `if0 (subst ys ρ L) then (subst ys ρ M) else (subst ys ρ N)
|
||||
subst ys ρ (`Y M) = `Y (subst ys ρ M)
|
||||
|
||||
_[_:=_] : Term → Id → Term → Term
|
||||
N [ x := M ] = subst (free M ++ (free N \\ x)) (∅ , x ↦ M) N
|
||||
\end{code}
|
||||
|
@ -279,6 +362,15 @@ N [ x := M ] = subst (free M ++ (free N \\ x)) (∅ , x ↦ M) N
|
|||
\begin{code}
|
||||
data Value : Term → Set where
|
||||
|
||||
Zero :
|
||||
----------
|
||||
Value `zero
|
||||
|
||||
Suc : ∀ {V}
|
||||
→ Value V
|
||||
--------------
|
||||
→ Value (`suc V)
|
||||
|
||||
Fun : ∀ {x N}
|
||||
---------------
|
||||
→ Value (`λ x ⇒ N)
|
||||
|
@ -291,21 +383,65 @@ infix 4 _⟶_
|
|||
|
||||
data _⟶_ : Term → Term → Set where
|
||||
|
||||
β-⟹ : ∀ {x N V}
|
||||
→ Value V
|
||||
------------------------------
|
||||
→ (`λ x ⇒ N) · V ⟶ N [ x := V ]
|
||||
|
||||
ξ-⟹₁ : ∀ {L L′ M}
|
||||
→ L ⟶ L′
|
||||
----------------
|
||||
→ L · M ⟶ L′ · M
|
||||
|
||||
ξ-⟹₂ : ∀ {V M M′} →
|
||||
Value V →
|
||||
M ⟶ M′ →
|
||||
----------------
|
||||
V · M ⟶ V · M′
|
||||
ξ-⟹₂ : ∀ {V M M′}
|
||||
→ Value V
|
||||
→ M ⟶ M′
|
||||
----------------
|
||||
→ V · M ⟶ V · M′
|
||||
|
||||
β-⟹ : ∀ {x N V}
|
||||
→ Value V
|
||||
------------------------------
|
||||
→ (`λ x ⇒ N) · V ⟶ N [ x := V ]
|
||||
|
||||
ξ-suc : ∀ {M M′}
|
||||
→ M ⟶ M′
|
||||
------------------
|
||||
→ `suc M ⟶ `suc M′
|
||||
|
||||
ξ-pred : ∀ {M M′}
|
||||
→ M ⟶ M′
|
||||
--------------------
|
||||
→ `pred M ⟶ `pred M′
|
||||
|
||||
β-pred-zero :
|
||||
---------------------
|
||||
`pred `zero ⟶ `zero
|
||||
|
||||
β-pred-suc : ∀ {V}
|
||||
→ Value V
|
||||
--------------------
|
||||
→ `pred (`suc V) ⟶ V
|
||||
|
||||
ξ-if0 : ∀ {L L′ M N}
|
||||
→ L ⟶ L′
|
||||
----------------------------------------------
|
||||
→ `if0 L then M else N ⟶ `if0 L′ then M else N
|
||||
|
||||
β-if0-zero : ∀ {M N}
|
||||
------------------------------
|
||||
→ `if0 `zero then M else N ⟶ M
|
||||
|
||||
β-if0-suc : ∀ {V M N}
|
||||
→ Value V
|
||||
---------------------------------
|
||||
→ `if0 (`suc V) then M else N ⟶ N
|
||||
|
||||
ξ-Y : ∀ {M M′}
|
||||
→ M ⟶ M′
|
||||
--------------
|
||||
→ `Y M ⟶ `Y M′
|
||||
|
||||
β-Y : ∀ {V x N}
|
||||
→ Value V
|
||||
→ V ≡ `λ x ⇒ N
|
||||
------------------------
|
||||
→ `Y V ⟶ N [ x := `Y V ]
|
||||
\end{code}
|
||||
|
||||
## Reflexive and transitive closure
|
||||
|
@ -332,6 +468,51 @@ begin_ : ∀ {M N} → (M ⟶* N) → (M ⟶* N)
|
|||
begin M⟶*N = M⟶*N
|
||||
\end{code}
|
||||
|
||||
## Canonical forms
|
||||
|
||||
\begin{code}
|
||||
data Canonical : Term → Type → Set where
|
||||
|
||||
Zero :
|
||||
------------------
|
||||
Canonical `zero `ℕ
|
||||
|
||||
Suc : ∀ {V}
|
||||
→ Canonical V `ℕ
|
||||
---------------------
|
||||
→ Canonical (`suc V) `ℕ
|
||||
|
||||
Fun : ∀ {x N A B}
|
||||
→ ε , x ⦂ A ⊢ N ⦂ B
|
||||
------------------------------
|
||||
→ Canonical (`λ x ⇒ N) (A ⟹ B)
|
||||
\end{code}
|
||||
|
||||
## Canonical forms lemma
|
||||
|
||||
\begin{code}
|
||||
canonical : ∀ {V A}
|
||||
→ ε ⊢ V ⦂ A
|
||||
→ Value V
|
||||
-------------
|
||||
→ Canonical V A
|
||||
canonical `zero Zero = Zero
|
||||
canonical (`suc ⊢V) (Suc VV) = Suc (canonical ⊢V VV)
|
||||
canonical (`λ ⊢N) Fun = Fun ⊢N
|
||||
\end{code}
|
||||
|
||||
## Every canonical form is a value
|
||||
|
||||
\begin{code}
|
||||
value : ∀ {V A}
|
||||
→ Canonical V A
|
||||
-------------
|
||||
→ Value V
|
||||
value Zero = Zero
|
||||
value (Suc CM) = Suc (value CM)
|
||||
value (Fun ⊢N) = Fun
|
||||
\end{code}
|
||||
|
||||
## Progress
|
||||
|
||||
\begin{code}
|
||||
|
@ -347,12 +528,32 @@ data Progress (M : Term) : Set where
|
|||
|
||||
progress : ∀ {M A} → ε ⊢ M ⦂ A → Progress M
|
||||
progress (` ())
|
||||
progress (`λ_ ⊢N) = done Fun
|
||||
progress (`λ ⊢N) = done Fun
|
||||
progress (⊢L · ⊢M) with progress ⊢L
|
||||
... | step L⟶L′ = step (ξ-⟹₁ L⟶L′)
|
||||
... | done Fun with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-⟹₂ Fun M⟶M′)
|
||||
... | done valM = step (β-⟹ valM)
|
||||
... | step L⟶L′ = step (ξ-⟹₁ L⟶L′)
|
||||
... | done VL with canonical ⊢L VL
|
||||
... | Fun _ with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-⟹₂ Fun M⟶M′)
|
||||
... | done VM = step (β-⟹ VM)
|
||||
progress `zero = done Zero
|
||||
progress (`suc ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-suc M⟶M′)
|
||||
... | done VM = done (Suc VM)
|
||||
progress (`pred ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-pred M⟶M′)
|
||||
... | done VM with canonical ⊢M VM
|
||||
... | Zero = step β-pred-zero
|
||||
... | Suc CM = step (β-pred-suc (value CM))
|
||||
progress (`if0 ⊢L then ⊢M else ⊢N)
|
||||
with progress ⊢L
|
||||
... | step L⟶L′ = step (ξ-if0 L⟶L′)
|
||||
... | done VL with canonical ⊢L VL
|
||||
... | Zero = step β-if0-zero
|
||||
... | Suc CM = step (β-if0-suc (value CM))
|
||||
progress (`Y ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-Y M⟶M′)
|
||||
... | done VM with canonical ⊢M VM
|
||||
... | Fun _ = step (β-Y VM refl)
|
||||
\end{code}
|
||||
|
||||
|
||||
|
@ -373,10 +574,20 @@ free-lemma : ∀ {Γ M A} → Γ ⊢ M ⦂ A → free M ⊆ dom Γ
|
|||
free-lemma (` ⊢x) w∈ with w∈
|
||||
... | here = dom-lemma ⊢x
|
||||
... | there ()
|
||||
free-lemma {Γ} (`λ_ {x = x} {N = N} ⊢N) = ∷-to-\\ (free-lemma ⊢N)
|
||||
free-lemma {Γ} (`λ_ {N = N} ⊢N) = ∷-to-\\ (free-lemma ⊢N)
|
||||
free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
||||
... | inj₁ ∈L = free-lemma ⊢L ∈L
|
||||
... | inj₂ ∈M = free-lemma ⊢M ∈M
|
||||
free-lemma `zero ()
|
||||
free-lemma (`suc ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
free-lemma (`pred ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
free-lemma (`if0 ⊢L then ⊢M else ⊢N) w∈
|
||||
with ++-to-⊎ w∈
|
||||
... | inj₁ ∈L = free-lemma ⊢L ∈L
|
||||
... | inj₂ ∈MN with ++-to-⊎ ∈MN
|
||||
... | inj₁ ∈M = free-lemma ⊢M ∈M
|
||||
... | inj₂ ∈N = free-lemma ⊢N ∈N
|
||||
free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
\end{code}
|
||||
|
||||
### Renaming
|
||||
|
@ -386,11 +597,11 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
|||
→ (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A)
|
||||
--------------------------------------------------
|
||||
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A)
|
||||
⊢rename ⊢σ ⊆xs (` ⊢x) = ` ⊢σ ∈xs ⊢x
|
||||
⊢rename ⊢σ ⊆xs (` ⊢x) = ` ⊢σ ∈xs ⊢x
|
||||
where
|
||||
∈xs = ⊆xs here
|
||||
⊢rename {Γ} {Δ} {xs} ⊢σ ⊆xs (`λ_ {x = x} {A = A} {N = N} ⊢N)
|
||||
= `λ (⊢rename {Γ′} {Δ′} {xs′} ⊢σ′ ⊆xs′ ⊢N)
|
||||
⊢rename {Γ} {Δ} {xs} ⊢σ ⊆xs (`λ_ {x = x} {N = N} {A = A} ⊢N)
|
||||
= `λ (⊢rename {Γ′} {Δ′} {xs′} ⊢σ′ ⊆xs′ ⊢N)
|
||||
where
|
||||
Γ′ = Γ , x ⦂ A
|
||||
Δ′ = Δ , x ⦂ A
|
||||
|
@ -404,10 +615,21 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
|||
|
||||
⊆xs′ : free N ⊆ xs′
|
||||
⊆xs′ = \\-to-∷ ⊆xs
|
||||
⊢rename ⊢σ ⊆xs (⊢L · ⊢M) = ⊢rename ⊢σ L⊆ ⊢L · ⊢rename ⊢σ M⊆ ⊢M
|
||||
⊢rename ⊢σ ⊆xs (⊢L · ⊢M) = ⊢rename ⊢σ L⊆ ⊢L · ⊢rename ⊢σ M⊆ ⊢M
|
||||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
|
||||
⊢rename ⊢σ ⊆xs (`zero) = `zero
|
||||
⊢rename ⊢σ ⊆xs (`suc ⊢M) = `suc (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
⊢rename ⊢σ ⊆xs (`pred ⊢M) = `pred (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
⊢rename ⊢σ ⊆xs (`if0_then_else_ {L = L} ⊢L ⊢M ⊢N)
|
||||
= `if0 ⊢rename ⊢σ L⊆ ⊢L then ⊢rename ⊢σ M⊆ ⊢M else ⊢rename ⊢σ N⊆ ⊢N
|
||||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
⊢rename ⊢σ ⊆xs (`Y ⊢M) = `Y (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
|
||||
\end{code}
|
||||
|
||||
|
||||
|
@ -421,7 +643,7 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
|||
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ subst ys ρ M ⦂ A)
|
||||
⊢subst Σ ⊢ρ ⊆xs (` ⊢x)
|
||||
= ⊢ρ (⊆xs here) ⊢x
|
||||
⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (`λ_ {x = x} {A = A} {N = N} ⊢N)
|
||||
⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (`λ_ {x = x} {N = N} {A = A} ⊢N)
|
||||
= `λ_ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs′} {ys′} {ρ′} Σ′ ⊢ρ′ ⊆xs′ ⊢N)
|
||||
where
|
||||
y = fresh ys
|
||||
|
@ -457,6 +679,16 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
|||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
|
||||
⊢subst Σ ⊢ρ ⊆xs `zero = `zero
|
||||
⊢subst Σ ⊢ρ ⊆xs (`suc ⊢M) = `suc (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
⊢subst Σ ⊢ρ ⊆xs (`pred ⊢M) = `pred (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
⊢subst Σ ⊢ρ ⊆xs (`if0_then_else_ {L = L} ⊢L ⊢M ⊢N)
|
||||
= `if0 (⊢subst Σ ⊢ρ L⊆ ⊢L) then (⊢subst Σ ⊢ρ M⊆ ⊢M) else (⊢subst Σ ⊢ρ N⊆ ⊢N)
|
||||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
⊢subst Σ ⊢ρ ⊆xs (`Y ⊢M) = `Y (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
|
||||
⊢substitution : ∀ {Γ x A N B M} →
|
||||
Γ , x ⦂ A ⊢ N ⦂ B →
|
||||
|
@ -498,9 +730,19 @@ preservation : ∀ {Γ M N A}
|
|||
→ Γ ⊢ N ⦂ A
|
||||
preservation (` ⊢x) ()
|
||||
preservation (`λ ⊢N) ()
|
||||
preservation (⊢L · ⊢M) (ξ-⟹₁ L⟶L′) = preservation ⊢L L⟶L′ · ⊢M
|
||||
preservation (⊢V · ⊢M) (ξ-⟹₂ valV M⟶M′) = ⊢V · preservation ⊢M M⟶M′
|
||||
preservation ((`λ ⊢N) · ⊢W) (β-⟹ valW) = ⊢substitution ⊢N ⊢W
|
||||
preservation (⊢L · ⊢M) (ξ-⟹₁ L⟶L′) = preservation ⊢L L⟶L′ · ⊢M
|
||||
preservation (⊢V · ⊢M) (ξ-⟹₂ _ M⟶M′) = ⊢V · preservation ⊢M M⟶M′
|
||||
preservation ((`λ ⊢N) · ⊢W) (β-⟹ _) = ⊢substitution ⊢N ⊢W
|
||||
preservation (`zero) ()
|
||||
preservation (`suc ⊢M) (ξ-suc M⟶M′) = `suc (preservation ⊢M M⟶M′)
|
||||
preservation (`pred ⊢M) (ξ-pred M⟶M′) = `pred (preservation ⊢M M⟶M′)
|
||||
preservation (`pred `zero) (β-pred-zero) = `zero
|
||||
preservation (`pred (`suc ⊢M)) (β-pred-suc _) = ⊢M
|
||||
preservation (`if0 ⊢L then ⊢M else ⊢N) (ξ-if0 L⟶L′) = `if0 (preservation ⊢L L⟶L′) then ⊢M else ⊢N
|
||||
preservation (`if0 `zero then ⊢M else ⊢N) β-if0-zero = ⊢M
|
||||
preservation (`if0 (`suc ⊢V) then ⊢M else ⊢N) (β-if0-suc _) = ⊢N
|
||||
preservation (`Y ⊢M) (ξ-Y M⟶M′) = `Y (preservation ⊢M M⟶M′)
|
||||
preservation (`Y (`λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (`Y (`λ ⊢N))
|
||||
\end{code}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue