backup after crash
This commit is contained in:
parent
6fad419599
commit
1bb5412c8d
1 changed files with 38 additions and 34 deletions
|
@ -244,12 +244,12 @@ xs \\ x = filter (¬? ∘ (x ≟_)) xs
|
|||
∷⊆∷ xs⊆ (here refl) = here refl
|
||||
∷⊆∷ xs⊆ (there ∈xs) = there (xs⊆ ∈xs)
|
||||
|
||||
[_]⊆ : ∀ {x xs} → [ x ] ⊆ xs → x ∈ xs
|
||||
[_]⊆ ⊆xs = ⊆xs (here refl)
|
||||
[]⊆ : ∀ {x xs} → [ x ] ⊆ xs → x ∈ xs
|
||||
[]⊆ ⊆xs = ⊆xs (here refl)
|
||||
|
||||
⊆[_] : ∀ {x xs} → x ∈ xs → [ x ] ⊆ xs
|
||||
⊆[_] x∈ (here refl) = x∈
|
||||
⊆[_] x∈ (there ())
|
||||
⊆[] : ∀ {x xs} → x ∈ xs → [ x ] ⊆ xs
|
||||
⊆[] x∈ (here refl) = x∈
|
||||
⊆[] x∈ (there ())
|
||||
|
||||
bind : ∀ {x xs} → xs \\ x ⊆ xs
|
||||
bind {x} {[]} ()
|
||||
|
@ -311,14 +311,14 @@ _,_↦_ : (Id → Term) → Id → Term → (Id → Term)
|
|||
|
||||
\begin{code}
|
||||
subst : List Id → (Id → Term) → Term → Term
|
||||
subst xs ρ ⌊ x ⌋ = ρ x
|
||||
subst xs ρ (ƛ x ⦂ A ⇒ N) = ƛ y ⦂ A ⇒ subst (y ∷ xs) (ρ , x ↦ ⌊ y ⌋) N
|
||||
subst ys ρ ⌊ x ⌋ = ρ x
|
||||
subst ys ρ (ƛ x ⦂ A ⇒ N) = ƛ y ⦂ A ⇒ subst (y ∷ ys) (ρ , x ↦ ⌊ y ⌋) N
|
||||
where
|
||||
y = fresh xs
|
||||
subst xs ρ (L · M) = subst xs ρ L · subst xs ρ M
|
||||
y = fresh ys
|
||||
subst ys ρ (L · M) = subst ys ρ L · subst ys ρ M
|
||||
|
||||
_[_:=_] : Term → Id → Term → Term
|
||||
N [ x := M ] = subst (free M ∪ free N) (∅ , x ↦ M) N
|
||||
N [ x := M ] = subst (free M ∪ (free N \\ x)) (∅ , x ↦ M) N
|
||||
\end{code}
|
||||
|
||||
|
||||
|
@ -470,7 +470,7 @@ j {x} {xs} {ys} ⊆ys {w} w∈ with x ≟ w
|
|||
(∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A)
|
||||
⊢rename ⊢σ ⊆xs (⌊ ⊢x ⌋) = ⌊ ⊢σ ∈xs ⊢x ⌋
|
||||
where
|
||||
∈xs = [_]⊆ ⊆xs
|
||||
∈xs = []⊆ ⊆xs
|
||||
⊢rename {Γ} {Δ} {xs} ⊢σ ⊆xs (ƛ_ {x = x} {A = A} {N = N} ⊢N)
|
||||
= ƛ (⊢rename {Γ′} {Δ′} {xs′} ⊢σ′ ⊆xs′ ⊢N) -- ⊆xs : free N \\ x ⊆ xs
|
||||
where
|
||||
|
@ -493,28 +493,29 @@ j {x} {xs} {ys} ⊆ys {w} w∈ with x ≟ w
|
|||
### Substitution preserves types
|
||||
|
||||
\begin{code}
|
||||
⊢subst : ∀ {Γ Δ xs ρ} →
|
||||
(∀ {x} → x ∈ xs → free (ρ x) ⊆ xs) →
|
||||
⊢subst : ∀ {Γ Δ xs ys ρ} →
|
||||
(∀ {x} → x ∈ xs → free (ρ x) ⊆ ys) →
|
||||
(∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ⊢ ρ x ⦂ A) →
|
||||
(∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ subst xs ρ M ⦂ A)
|
||||
(∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ subst ys ρ M ⦂ A)
|
||||
⊢subst Σ ⊢ρ ⊆xs ⌊ ⊢x ⌋ = ⊢ρ (⊆xs (here refl)) ⊢x
|
||||
⊢subst {Γ} {Δ} {xs} {ρ} Σ ⊢ρ ⊆xs (ƛ_ {x = x} {A = A} {N = N} ⊢N)
|
||||
= ƛ ⊢subst {Γ′} {Δ′} {xs′} {ρ′} Σ′ ⊢ρ′ ⊆xs′ ⊢N
|
||||
⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (ƛ_ {x = x} {A = A} {N = N} ⊢N)
|
||||
= ƛ_ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs′} {ys′} {ρ′} Σ′ ⊢ρ′ ⊆xs′ ⊢N)
|
||||
where
|
||||
y = fresh xs
|
||||
y = fresh ys
|
||||
Γ′ = Γ , x ⦂ A
|
||||
Δ′ = Δ , y ⦂ A
|
||||
xs′ = y ∷ xs
|
||||
xs′ = x ∷ xs
|
||||
ys′ = y ∷ ys
|
||||
ρ′ = ρ , x ↦ ⌊ y ⌋
|
||||
|
||||
Σ′ : ∀ {z} → z ∈ xs′ → free (ρ′ z) ⊆ xs′
|
||||
Σ′ (here refl) = {!!}
|
||||
Σ′ (there x∈) = {!!}
|
||||
Σ′ : ∀ {z} → z ∈ xs′ → free (ρ′ z) ⊆ ys′
|
||||
Σ′ (here refl) = {!⊆[] here!}
|
||||
Σ′ (there x∈) = {!there ∘ (Σ x∈)!}
|
||||
|
||||
⊆xs′ : free N ⊆ xs′
|
||||
⊆xs′ = {!!}
|
||||
|
||||
⊢σ : ∀ {z C} → z ∈ xs → Δ ∋ z ⦂ C → Δ′ ∋ z ⦂ C
|
||||
⊢σ : ∀ {z C} → z ∈ ys → Δ ∋ z ⦂ C → Δ′ ∋ z ⦂ C
|
||||
⊢σ z∈ ⊢z = S (fresh-lemma z∈) ⊢z
|
||||
|
||||
⊢ρ′ : ∀ {z C} → z ∈ xs′ → Γ′ ∋ z ⦂ C → Δ′ ⊢ ρ′ z ⦂ C
|
||||
|
@ -523,14 +524,14 @@ j {x} {xs} {ys} ⊆ys {w} w∈ with x ≟ w
|
|||
... | no x≢x = ⊥-elim (x≢x refl)
|
||||
⊢ρ′ {z} z∈ (S x≢z ⊢z) with x ≟ z
|
||||
... | yes x≡z = ⊥-elim (x≢z x≡z)
|
||||
... | no _ = ⊢rename {Δ} {Δ′} {xs} ⊢σ (Σ (prev {!!} z∈)) (⊢ρ {!!} ⊢z)
|
||||
... | no _ = ⊢rename {Δ} {Δ′} {ys} ⊢σ {!!} (⊢ρ {!!} ⊢z)
|
||||
|
||||
⊢subst {xs = xs} Σ ⊢ρ {L · M} ⊆xs (⊢L · ⊢M) = ⊢subst Σ ⊢ρ L⊆xs ⊢L · ⊢subst Σ ⊢ρ M⊆xs ⊢M
|
||||
where
|
||||
L⊆xs : free L ⊆ xs
|
||||
L⊆xs = {!!}
|
||||
L⊆xs = ⊆xs ∘ left
|
||||
M⊆xs : free M ⊆ xs
|
||||
M⊆xs = {!!}
|
||||
M⊆xs = ⊆xs ∘ right
|
||||
|
||||
⊢substitution : ∀ {Γ x A N B M} →
|
||||
Γ , x ⦂ A ⊢ N ⦂ B →
|
||||
|
@ -538,16 +539,19 @@ j {x} {xs} {ys} ⊆ys {w} w∈ with x ≟ w
|
|||
--------------------
|
||||
Γ ⊢ N [ x := M ] ⦂ B
|
||||
⊢substitution {Γ} {x} {A} {N} {B} {M} ⊢N ⊢M =
|
||||
⊢subst {Γ′} {Γ} {xs} {ρ} Σ ⊢ρ {N} {B} ⊆xs ⊢N
|
||||
⊢subst {Γ′} {Γ} {xs} {ys} {ρ} Σ ⊢ρ {N} {B} ⊆xs ⊢N
|
||||
where
|
||||
Γ′ = Γ , x ⦂ A
|
||||
xs = free M ∪ free N
|
||||
xs = free N
|
||||
ys = free M ∪ (free N \\ x)
|
||||
ρ = ∅ , x ↦ M
|
||||
|
||||
Σ : ∀ {x} → x ∈ xs → free (ρ x) ⊆ xs
|
||||
Σ {y} y∈ with x ≟ y
|
||||
... | no _ = ⊆[_] y∈
|
||||
... | yes _ = {!!} -- left
|
||||
Σ : ∀ {w} → w ∈ xs → free (ρ w) ⊆ ys
|
||||
Σ {w} w∈ y∈ with x ≟ w
|
||||
... | yes _ = left y∈
|
||||
... | no x≢w with y∈
|
||||
... | here refl = right (i {w} {x} {free N} w∈ x≢w)
|
||||
... | there ()
|
||||
|
||||
⊢ρ : ∀ {z C} → z ∈ xs → Γ′ ∋ z ⦂ C → Γ ⊢ ρ z ⦂ C
|
||||
⊢ρ {.x} z∈ Z with x ≟ x
|
||||
|
@ -558,7 +562,7 @@ j {x} {xs} {ys} ⊆ys {w} w∈ with x ≟ w
|
|||
... | no _ = ⌊ ⊢z ⌋
|
||||
|
||||
⊆xs : free N ⊆ xs
|
||||
⊆xs = {!!}
|
||||
⊆xs x∈ = x∈
|
||||
\end{code}
|
||||
|
||||
Can I falsify the theorem? Consider the case where the renamed variable
|
||||
|
|
Loading…
Reference in a new issue