Finished implementing Maps
This commit is contained in:
parent
044f4d0263
commit
1c9b86fb26
5 changed files with 246 additions and 785 deletions
20
Gemfile
20
Gemfile
|
@ -1,28 +1,10 @@
|
|||
source "https://rubygems.org"
|
||||
ruby RUBY_VERSION
|
||||
|
||||
# Hello! This is where you manage which Jekyll version is used to run.
|
||||
# When you want to use a different version, change it below, save the
|
||||
# file and run `bundle install`. Run Jekyll with `bundle exec`, like so:
|
||||
#
|
||||
# bundle exec jekyll serve
|
||||
#
|
||||
# This will help ensure the proper Jekyll version is running.
|
||||
# Happy Jekylling!
|
||||
gem "jekyll", "3.4.2"
|
||||
|
||||
# This is the default theme for new Jekyll sites. You may change this to anything you like.
|
||||
gem "minima", "~> 2.0"
|
||||
gem "github-pages", group: :jekyll_plugins
|
||||
|
||||
# If you want to use GitHub Pages, remove the "gem "jekyll"" above and
|
||||
# uncomment the line below. To upgrade, run `bundle update github-pages`.
|
||||
# gem "github-pages", group: :jekyll_plugins
|
||||
|
||||
# If you have any plugins, put them here!
|
||||
group :jekyll_plugins do
|
||||
gem "jekyll-feed", "~> 0.6"
|
||||
end
|
||||
|
||||
# Windows does not include zoneinfo files, so bundle the tzinfo-data gem
|
||||
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]
|
||||
|
||||
|
|
175
Gemfile.lock
175
Gemfile.lock
|
@ -1,12 +1,79 @@
|
|||
GEM
|
||||
remote: https://rubygems.org/
|
||||
specs:
|
||||
addressable (2.5.0)
|
||||
activesupport (4.2.8)
|
||||
i18n (~> 0.7)
|
||||
minitest (~> 5.1)
|
||||
thread_safe (~> 0.3, >= 0.3.4)
|
||||
tzinfo (~> 1.1)
|
||||
addressable (2.5.1)
|
||||
public_suffix (~> 2.0, >= 2.0.2)
|
||||
coffee-script (2.4.1)
|
||||
coffee-script-source
|
||||
execjs
|
||||
coffee-script-source (1.12.2)
|
||||
colorator (1.1.0)
|
||||
ethon (0.10.1)
|
||||
ffi (>= 1.3.0)
|
||||
execjs (2.7.0)
|
||||
faraday (0.12.1)
|
||||
multipart-post (>= 1.2, < 3)
|
||||
ffi (1.9.18)
|
||||
forwardable-extended (2.6.0)
|
||||
jekyll (3.4.2)
|
||||
gemoji (3.0.0)
|
||||
github-pages (140)
|
||||
activesupport (= 4.2.8)
|
||||
github-pages-health-check (= 1.3.4)
|
||||
jekyll (= 3.4.3)
|
||||
jekyll-avatar (= 0.4.2)
|
||||
jekyll-coffeescript (= 1.0.1)
|
||||
jekyll-default-layout (= 0.1.4)
|
||||
jekyll-feed (= 0.9.2)
|
||||
jekyll-gist (= 1.4.0)
|
||||
jekyll-github-metadata (= 2.3.1)
|
||||
jekyll-mentions (= 1.2.0)
|
||||
jekyll-optional-front-matter (= 0.1.2)
|
||||
jekyll-paginate (= 1.1.0)
|
||||
jekyll-readme-index (= 0.1.0)
|
||||
jekyll-redirect-from (= 0.12.1)
|
||||
jekyll-relative-links (= 0.4.0)
|
||||
jekyll-sass-converter (= 1.5.0)
|
||||
jekyll-seo-tag (= 2.2.3)
|
||||
jekyll-sitemap (= 1.0.0)
|
||||
jekyll-swiss (= 0.4.0)
|
||||
jekyll-theme-architect (= 0.0.4)
|
||||
jekyll-theme-cayman (= 0.0.4)
|
||||
jekyll-theme-dinky (= 0.0.4)
|
||||
jekyll-theme-hacker (= 0.0.4)
|
||||
jekyll-theme-leap-day (= 0.0.4)
|
||||
jekyll-theme-merlot (= 0.0.4)
|
||||
jekyll-theme-midnight (= 0.0.4)
|
||||
jekyll-theme-minimal (= 0.0.4)
|
||||
jekyll-theme-modernist (= 0.0.4)
|
||||
jekyll-theme-primer (= 0.2.1)
|
||||
jekyll-theme-slate (= 0.0.4)
|
||||
jekyll-theme-tactile (= 0.0.4)
|
||||
jekyll-theme-time-machine (= 0.0.4)
|
||||
jekyll-titles-from-headings (= 0.1.5)
|
||||
jemoji (= 0.8.0)
|
||||
kramdown (= 1.13.2)
|
||||
liquid (= 3.0.6)
|
||||
listen (= 3.0.6)
|
||||
mercenary (~> 0.3)
|
||||
minima (= 2.1.1)
|
||||
rouge (= 1.11.1)
|
||||
terminal-table (~> 1.4)
|
||||
github-pages-health-check (1.3.4)
|
||||
addressable (~> 2.3)
|
||||
net-dns (~> 0.8)
|
||||
octokit (~> 4.0)
|
||||
public_suffix (~> 2.0)
|
||||
typhoeus (~> 0.7)
|
||||
html-pipeline (2.6.0)
|
||||
activesupport (>= 2)
|
||||
nokogiri (>= 1.4)
|
||||
i18n (0.8.4)
|
||||
jekyll (3.4.3)
|
||||
addressable (~> 2.4)
|
||||
colorator (~> 1.0)
|
||||
jekyll-sass-converter (~> 1.0)
|
||||
|
@ -17,41 +84,119 @@ GEM
|
|||
pathutil (~> 0.9)
|
||||
rouge (~> 1.7)
|
||||
safe_yaml (~> 1.0)
|
||||
jekyll-feed (0.9.1)
|
||||
jekyll-avatar (0.4.2)
|
||||
jekyll (~> 3.0)
|
||||
jekyll-coffeescript (1.0.1)
|
||||
coffee-script (~> 2.2)
|
||||
jekyll-default-layout (0.1.4)
|
||||
jekyll (~> 3.0)
|
||||
jekyll-feed (0.9.2)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-gist (1.4.0)
|
||||
octokit (~> 4.2)
|
||||
jekyll-github-metadata (2.3.1)
|
||||
jekyll (~> 3.1)
|
||||
octokit (~> 4.0, != 4.4.0)
|
||||
jekyll-mentions (1.2.0)
|
||||
activesupport (~> 4.0)
|
||||
html-pipeline (~> 2.3)
|
||||
jekyll (~> 3.0)
|
||||
jekyll-optional-front-matter (0.1.2)
|
||||
jekyll (~> 3.0)
|
||||
jekyll-paginate (1.1.0)
|
||||
jekyll-readme-index (0.1.0)
|
||||
jekyll (~> 3.0)
|
||||
jekyll-redirect-from (0.12.1)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-relative-links (0.4.0)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-sass-converter (1.5.0)
|
||||
sass (~> 3.4)
|
||||
jekyll-seo-tag (2.2.3)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-sitemap (1.0.0)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-swiss (0.4.0)
|
||||
jekyll-theme-architect (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-cayman (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-dinky (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-hacker (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-leap-day (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-merlot (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-midnight (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-minimal (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-modernist (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-primer (0.2.1)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-slate (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-tactile (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-theme-time-machine (0.0.4)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-titles-from-headings (0.1.5)
|
||||
jekyll (~> 3.3)
|
||||
jekyll-watch (1.5.0)
|
||||
listen (~> 3.0, < 3.1)
|
||||
jemoji (0.8.0)
|
||||
activesupport (~> 4.0)
|
||||
gemoji (~> 3.0)
|
||||
html-pipeline (~> 2.2)
|
||||
jekyll (>= 3.0)
|
||||
kramdown (1.13.2)
|
||||
liquid (3.0.6)
|
||||
listen (3.0.8)
|
||||
rb-fsevent (~> 0.9, >= 0.9.4)
|
||||
rb-inotify (~> 0.9, >= 0.9.7)
|
||||
listen (3.0.6)
|
||||
rb-fsevent (>= 0.9.3)
|
||||
rb-inotify (>= 0.9.7)
|
||||
mercenary (0.3.6)
|
||||
minima (2.1.0)
|
||||
mini_portile2 (2.2.0)
|
||||
minima (2.1.1)
|
||||
jekyll (~> 3.3)
|
||||
minitest (5.10.2)
|
||||
multipart-post (2.0.0)
|
||||
net-dns (0.8.0)
|
||||
nokogiri (1.8.0)
|
||||
mini_portile2 (~> 2.2.0)
|
||||
octokit (4.7.0)
|
||||
sawyer (~> 0.8.0, >= 0.5.3)
|
||||
pathutil (0.14.0)
|
||||
forwardable-extended (~> 2.6)
|
||||
public_suffix (2.0.5)
|
||||
rb-fsevent (0.9.8)
|
||||
rb-inotify (0.9.8)
|
||||
ffi (>= 0.5.0)
|
||||
rb-inotify (0.9.10)
|
||||
ffi (>= 0.5.0, < 2)
|
||||
rouge (1.11.1)
|
||||
safe_yaml (1.0.4)
|
||||
sass (3.4.23)
|
||||
sass (3.4.24)
|
||||
sawyer (0.8.1)
|
||||
addressable (>= 2.3.5, < 2.6)
|
||||
faraday (~> 0.8, < 1.0)
|
||||
terminal-table (1.8.0)
|
||||
unicode-display_width (~> 1.1, >= 1.1.1)
|
||||
thread_safe (0.3.6)
|
||||
typhoeus (0.8.0)
|
||||
ethon (>= 0.8.0)
|
||||
tzinfo (1.2.3)
|
||||
thread_safe (~> 0.1)
|
||||
unicode-display_width (1.3.0)
|
||||
|
||||
PLATFORMS
|
||||
ruby
|
||||
|
||||
DEPENDENCIES
|
||||
jekyll (= 3.4.2)
|
||||
github-pages
|
||||
jekyll-feed (~> 0.6)
|
||||
minima (~> 2.0)
|
||||
tzinfo-data
|
||||
|
||||
RUBY VERSION
|
||||
ruby 2.4.0p0
|
||||
|
||||
BUNDLED WITH
|
||||
1.14.6
|
||||
1.15.0
|
||||
|
|
|
@ -4,7 +4,8 @@ layout : page
|
|||
permalink : /Basics
|
||||
---
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="113" class="Keyword"
|
||||
>open</a
|
||||
><a name="117"
|
||||
|
@ -34,7 +35,8 @@ permalink : /Basics
|
|||
><a name="179" class="Symbol"
|
||||
>)</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
The functional programming style brings programming closer to
|
||||
simple, everyday mathematics: If a procedure or method has no side
|
||||
|
@ -87,7 +89,8 @@ very simple example.
|
|||
The following declaration tells Agda that we are defining
|
||||
a new set of data values -- a *type*.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="2469" class="Keyword"
|
||||
>data</a
|
||||
><a name="2473"
|
||||
|
@ -198,7 +201,8 @@ a new set of data values -- a *type*.
|
|||
><a name="2612" href="Basics.html#2474" class="Datatype"
|
||||
>Day</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
The type is called `day`, and its members are `monday`,
|
||||
`tuesday`, etc. The second and following lines of the definition
|
||||
|
@ -207,7 +211,8 @@ can be read "`monday` is a `day`, `tuesday` is a `day`, etc."
|
|||
Having defined `day`, we can write functions that operate on
|
||||
days.
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="2894" href="Basics.html#2894" class="Function"
|
||||
>nextWeekday</a
|
||||
><a name="2905"
|
||||
|
@ -346,7 +351,8 @@ days.
|
|||
><a name="3135" href="Basics.html#2492" class="InductiveConstructor"
|
||||
>monday</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
One thing to note is that the argument and return types of
|
||||
this function are explicitly declared. Like most functional
|
||||
|
@ -369,7 +375,8 @@ above example to Agda, and observe the result.
|
|||
Second, we can record what we *expect* the result to be in the
|
||||
form of an Agda type:
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="4097" href="Basics.html#4097" class="Function Operator"
|
||||
>test_nextWeekday</a
|
||||
><a name="4113"
|
||||
|
@ -401,7 +408,8 @@ form of an Agda type:
|
|||
><a name="4153" href="Basics.html#2510" class="InductiveConstructor"
|
||||
>tuesday</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
This declaration does two things: it makes an assertion (that the second
|
||||
weekday after `saturday` is `tuesday`), and it gives the assertion a name
|
||||
|
@ -410,7 +418,8 @@ that can be used to refer to it later.
|
|||
Having made the assertion, we must also verify it. We do this by giving
|
||||
a term of the above type:
|
||||
|
||||
<pre class="Agda">{% raw %}
|
||||
<pre class="Agda">
|
||||
|
||||
<a name="4472" href="Basics.html#4097" class="Function Operator"
|
||||
>test_nextWeekday</a
|
||||
><a name="4488"
|
||||
|
@ -422,7 +431,8 @@ a term of the above type:
|
|||
><a name="4491" href="https://agda.github.io/agda-stdlib/Agda.Builtin.Equality.html#140" class="InductiveConstructor"
|
||||
>refl</a
|
||||
>
|
||||
{% endraw %}</pre>
|
||||
|
||||
</pre>
|
||||
|
||||
There is no essential difference between the definition for
|
||||
`test_nextWeekday` here and the definition for `nextWeekday` above,
|
||||
|
|
|
@ -143,6 +143,12 @@ function that behaves like the desired map.
|
|||
|
||||
We define handy abbreviations for updating a map two, three, or four times.
|
||||
|
||||
<div class="note hidden">
|
||||
Wen: you don't actually need to define these, you can simply declare `_,_↦_` to
|
||||
be a left-associative infix operator with an `infixl` statement, and then you'll
|
||||
be able to just evaluate `M , x ↦ y , z ↦ w` as `(M , x ↦ y) , z ↦ w`.
|
||||
</div>
|
||||
|
||||
\begin{code}
|
||||
_,_↦_,_↦_ : ∀ {A} → TotalMap A → Id → A → Id → A → TotalMap A
|
||||
ρ , x₁ ↦ v₁ , x₂ ↦ v₂ = (ρ , x₁ ↦ v₁), x₂ ↦ v₂
|
||||
|
@ -290,25 +296,65 @@ updates.
|
|||
\begin{code}
|
||||
update-permute′ : ∀ {A} (ρ : TotalMap A) (x : Id) (v : A) (y : Id) (w : A) (z : Id)
|
||||
→ x ≢ y → (ρ , x ↦ v , y ↦ w) z ≡ (ρ , y ↦ w , x ↦ v) z
|
||||
update-permute′ {A} ρ x v y w z x≢y with x ≟ z | y ≟ z
|
||||
... | yes x≡z | yes y≡z = ⊥-elim (x≢y (trans x≡z (sym y≡z)))
|
||||
... | no x≢z | yes y≡z rewrite y≡z = {! sym (update-eq′ ρ z w)!}
|
||||
... | yes x≡z | no y≢z rewrite x≡z = {! update-eq′ ρ z v!}
|
||||
... | no x≢z | no y≢z = {! trans (update-neq ρ y w z y≢z) (sym (update-neq ρ x v z x≢z))!}
|
||||
|
||||
{-
|
||||
Holes are typed as follows. What do the "| z ≟ z" mean, and how can I deal with them?
|
||||
Why does "λ y₁" appear in the final hole?
|
||||
|
||||
?0 : w ≡ ((ρ , z ↦ w) z | z ≟ z)
|
||||
?1 : ((ρ , z ↦ v) z | z ≟ z) ≡ v
|
||||
?2 : (((λ y₁ → (ρ , x ↦ v) y₁ | x ≟ y₁) , y ↦ w) z | no y≢z) ≡
|
||||
(((λ y₁ → (ρ , y ↦ w) y₁ | y ≟ y₁) , x ↦ v) z | no x≢z)
|
||||
|
||||
-}
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
with x ≟ z | y ≟ z
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
| yes x≡z | yes y≡z = ⊥-elim (x≢y (trans x≡z (sym y≡z)))
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
| no x≢z | yes y≡z rewrite y≡z
|
||||
with z ≟ z
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
| no x≢z | yes y≡z | yes z≡z = refl
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
| no x≢z | yes y≡z | no z≢z = ⊥-elim (z≢z refl)
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
| yes x≡z | no y≢z rewrite x≡z
|
||||
with z ≟ z
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
| yes x≡z | no y≢z | yes z≡z = refl
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
| yes x≡z | no y≢z | no z≢z = ⊥-elim (z≢z refl)
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
| no x≢z | no y≢z
|
||||
with x ≟ z | y ≟ z
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
| no _ | no _ | no x≢z | no y≢z
|
||||
= refl
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
| no x≢z | no y≢z | yes x≡z | _
|
||||
= ⊥-elim (x≢z x≡z)
|
||||
update-permute′ {A} ρ x v y w z x≢y
|
||||
| no x≢z | no y≢z | _ | yes y≡z
|
||||
= ⊥-elim (y≢z y≡z)
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
<div class="note hidden">
|
||||
Phil:
|
||||
Holes are typed as follows. What do the "| z ≟ z" mean, and how can I deal
|
||||
with them? Why does "λ y₁" appear in the final hole?
|
||||
|
||||
?0 : w ≡ ((ρ , z ↦ w) z | z ≟ z)
|
||||
?1 : ((ρ , z ↦ v) z | z ≟ z) ≡ v
|
||||
?2 : (((λ y₁ → (ρ , x ↦ v) y₁ | x ≟ y₁) , y ↦ w) z | no y≢z) ≡
|
||||
(((λ y₁ → (ρ , y ↦ w) y₁ | y ≟ y₁) , x ↦ v) z | no x≢z)
|
||||
|
||||
Wen:
|
||||
The "| z ≟ z" term appears because there is a comparison on the two strings z
|
||||
and z somewhere in the code. Because the decidable equality (and in fact all
|
||||
functions on strings) are postulate, they do not reduce during type checking.
|
||||
In order to stop this, you would have to insert a with clause at the location
|
||||
where you want the term to reduce, i.e. "with z ≟ z", so that you can cover
|
||||
both possible outputs, even if you already know that "z ≡ z", e.g. due to
|
||||
reflexivity. You can cover the other case with a ⊥-elim fairly easily, but
|
||||
it's not pretty. This is why I used naturals, because their equality test is
|
||||
implemented in Agda and therefore can reduce. However, I'm not sure if
|
||||
switching would in fact solve this problem, due to the fact that we're dealing
|
||||
with variables, but I think so. See the completed code above for the
|
||||
not-so-pretty way of actually implementing update-permute'.
|
||||
</div>
|
||||
|
||||
|
||||
## Partial maps
|
||||
|
||||
Finally, we define _partial maps_ on top of total maps. A partial
|
||||
|
|
|
@ -1,722 +0,0 @@
|
|||
---
|
||||
title : "StlcOld: The Simply Typed Lambda-Calculus (Old)"
|
||||
layout : page
|
||||
permalink : /StlcOld
|
||||
---
|
||||
|
||||
<div class="foldable">
|
||||
\begin{code}
|
||||
open import Maps using (Id; id; _≟_; PartialMap; module PartialMap)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.Maybe using (Maybe; just; nothing)
|
||||
open import Data.Nat using (ℕ; suc; zero; _+_)
|
||||
open import Data.Product using (∃; ∄; _,_)
|
||||
open import Function using (_∘_; _$_)
|
||||
open import Relation.Nullary using (Dec; yes; no)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
|
||||
The simply typed lambda-calculus (STLC) is a tiny core
|
||||
calculus embodying the key concept of _functional abstraction_,
|
||||
which shows up in pretty much every real-world programming
|
||||
language in some form (functions, procedures, methods, etc.).
|
||||
|
||||
We will follow exactly the same pattern as in the previous chapter
|
||||
when formalizing this calculus (syntax, small-step semantics,
|
||||
typing rules) and its main properties (progress and preservation).
|
||||
The new technical challenges arise from the mechanisms of
|
||||
_variable binding_ and _substitution_. It which will take some
|
||||
work to deal with these.
|
||||
|
||||
|
||||
## Overview
|
||||
|
||||
The STLC is built on some collection of _base types_:
|
||||
booleans, numbers, strings, etc. The exact choice of base types
|
||||
doesn't matter much---the construction of the language and its
|
||||
theoretical properties work out the same no matter what we
|
||||
choose---so for the sake of brevity let's take just $$bool$$ for
|
||||
the moment. At the end of the chapter we'll see how to add more
|
||||
base types, and in later chapters we'll enrich the pure STLC with
|
||||
other useful constructs like pairs, records, subtyping, and
|
||||
mutable state.
|
||||
|
||||
Starting from boolean constants and conditionals, we add three
|
||||
things:
|
||||
|
||||
- variables
|
||||
- function abstractions
|
||||
- application
|
||||
|
||||
This gives us the following collection of abstract syntax
|
||||
constructors (written out first in informal BNF notation---we'll
|
||||
formalize it below).
|
||||
|
||||
$$
|
||||
\begin{array}{rll}
|
||||
\text{Terms}\;s,t,u
|
||||
::= & x & \text{variable} \\
|
||||
\mid & \lambda x : A . t & \text{abstraction} \\
|
||||
\mid & s\;t & \text{application} \\
|
||||
\mid & true & \text{constant true} \\
|
||||
\mid & false & \text{constant false} \\
|
||||
\mid & \text{if }s\text{ then }t\text{ else }u & \text{conditional}
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
In a lambda abstraction $$\lambda x : A . t$$, the variable $$x$$ is called the
|
||||
_parameter_ to the function; the term $$t$$ is its _body_. The annotation $$:A$$
|
||||
specifies the type of arguments that the function can be applied to.
|
||||
|
||||
Some examples:
|
||||
|
||||
- The identity function for booleans:
|
||||
|
||||
$$\lambda x:bool. x$$.
|
||||
- The identity function for booleans, applied to the boolean $$true$$:
|
||||
|
||||
$$(\lambda x:bool. x)\;true$$.
|
||||
- The boolean "not" function:
|
||||
|
||||
$$\lambda x:bool. \text{if }x\text{ then }false\text{ else }true$$.
|
||||
- The constant function that takes every (boolean) argument to $$true$$:
|
||||
|
||||
$$\lambda x:bool. true$$.
|
||||
- A two-argument function that takes two booleans and returns the
|
||||
first one:
|
||||
|
||||
$$\lambda x:bool. \lambda y:bool. x$$.
|
||||
|
||||
As in Agda, a two-argument function is really a
|
||||
one-argument function whose body is also a one-argument function.
|
||||
- A two-argument function that takes two booleans and returns the
|
||||
first one, applied to the booleans $$false$$ and $$true$$:
|
||||
|
||||
$$(\lambda x:bool. \lambda y:bool. x)\;false\;true$$.
|
||||
|
||||
As in Agda, application associates to the left---i.e., this
|
||||
expression is parsed as
|
||||
|
||||
$$((\lambda x:bool. \lambda y:bool. x)\;false)\;true$$.
|
||||
|
||||
- A higher-order function that takes a _function_ $$f$$ (from booleans
|
||||
to booleans) as an argument, applies $$f$$ to $$true$$, and applies
|
||||
$$f$$ again to the result:
|
||||
|
||||
$$\lambda f:bool\rightarrow bool. f\;(f\;true)$$.
|
||||
|
||||
- The same higher-order function, applied to the constantly $$false$$
|
||||
function:
|
||||
|
||||
$$(\lambda f:bool\rightarrow bool. f\;(f\;true))\;(\lambda x:bool. false)$$.
|
||||
|
||||
As the last several examples show, the STLC is a language of
|
||||
_higher-order_ functions: we can write down functions that take
|
||||
other functions as arguments and/or return other functions as
|
||||
results.
|
||||
|
||||
The STLC doesn't provide any primitive syntax for defining _named_
|
||||
functions---all functions are "anonymous." We'll see in chapter
|
||||
`MoreStlc` that it is easy to add named functions to what we've
|
||||
got---indeed, the fundamental naming and binding mechanisms are
|
||||
exactly the same.
|
||||
|
||||
The _types_ of the STLC include $$bool$$, which classifies the
|
||||
boolean constants $$true$$ and $$false$$ as well as more complex
|
||||
computations that yield booleans, plus _arrow types_ that classify
|
||||
functions.
|
||||
|
||||
$$
|
||||
\text{Types}\;A,B ::= bool \mid A \rightarrow B
|
||||
$$
|
||||
|
||||
For example:
|
||||
|
||||
- $$\lambda x:bool. false$$ has type $$bool\rightarrow bool$$;
|
||||
- $$\lambda x:bool. x$$ has type $$bool\rightarrow bool$$;
|
||||
- $$(\lambda x:bool. x)\;true$$ has type $$bool$$;
|
||||
- $$\lambda x:bool. \lambda y:bool. x$$ has type
|
||||
$$bool\rightarrow bool\rightarrow bool$$
|
||||
(i.e., $$bool\rightarrow (bool\rightarrow bool)$$)
|
||||
- $$(\lambda x:bool. \lambda y:bool. x)\;false$$ has type $$bool\rightarrow bool$$
|
||||
- $$(\lambda x:bool. \lambda y:bool. x)\;false\;true$$ has type $$bool$$
|
||||
|
||||
## Syntax
|
||||
|
||||
We begin by formalizing the syntax of the STLC.
|
||||
Unfortunately, $$\rightarrow$$ is already used for Agda's function type,
|
||||
so we will STLC's function type as `_⇒_`.
|
||||
|
||||
|
||||
### Types
|
||||
|
||||
\begin{code}
|
||||
data Type : Set where
|
||||
bool : Type
|
||||
_⇒_ : Type → Type → Type
|
||||
|
||||
infixr 5 _⇒_
|
||||
\end{code}
|
||||
|
||||
|
||||
### Terms
|
||||
|
||||
\begin{code}
|
||||
data Term : Set where
|
||||
var : Id → Term
|
||||
app : Term → Term → Term
|
||||
abs : Id → Type → Term → Term
|
||||
true : Term
|
||||
false : Term
|
||||
if_then_else_ : Term → Term → Term → Term
|
||||
\end{code}
|
||||
|
||||
<div class="hidden">
|
||||
\begin{code}
|
||||
infixr 8 if_then_else_
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
Note that an abstraction $$\lambda x:A.t$$ (formally, `abs x A t`) is
|
||||
always annotated with the type $$A$$ of its parameter, in contrast
|
||||
to Agda (and other functional languages like ML, Haskell, etc.),
|
||||
which use _type inference_ to fill in missing annotations. We're
|
||||
not considering type inference here.
|
||||
|
||||
We introduce $$x, y, z$$ as names for variables. The pragmas ensure
|
||||
that $$id 0, id 1, id 2$$ display as $$x, y, z$$.
|
||||
|
||||
\begin{code}
|
||||
x = id 0
|
||||
y = id 1
|
||||
z = id 2
|
||||
|
||||
{-# DISPLAY id zero = x #-}
|
||||
{-# DISPLAY id (suc zero) = y #-}
|
||||
{-# DISPLAY id (suc (suc zero)) = z #-}
|
||||
\end{code}
|
||||
|
||||
Some examples...
|
||||
|
||||
$$\text{idB} = \lambda x:bool. x$$.
|
||||
|
||||
\begin{code}
|
||||
idB = (abs x bool (var x))
|
||||
\end{code}
|
||||
|
||||
$$\text{idBB} = \lambda x:bool\rightarrow bool. x$$.
|
||||
|
||||
\begin{code}
|
||||
idBB = (abs x (bool ⇒ bool) (var x))
|
||||
\end{code}
|
||||
|
||||
$$\text{idBBBB} = \lambda x:(bool\rightarrow bool)\rightarrow (bool\rightarrow bool). x$$.
|
||||
|
||||
\begin{code}
|
||||
idBBBB = (abs x ((bool ⇒ bool) ⇒ (bool ⇒ bool)) (var x))
|
||||
\end{code}
|
||||
|
||||
$$\text{k} = \lambda x:bool. \lambda y:bool. x$$.
|
||||
|
||||
\begin{code}
|
||||
k = (abs x bool (abs y bool (var x)))
|
||||
\end{code}
|
||||
|
||||
$$\text{notB} = \lambda x:bool. \text{if }x\text{ then }false\text{ else }true$$.
|
||||
|
||||
\begin{code}
|
||||
notB = (abs x bool (if (var x) then false else true))
|
||||
\end{code}
|
||||
|
||||
<div class="hidden">
|
||||
\begin{code}
|
||||
{-# DISPLAY abs 0 bool (var 0) = idB #-}
|
||||
{-# DISPLAY abs 0 (bool ⇒ bool) (var 0) = idBB #-}
|
||||
{-# DISPLAY abs 0 ((bool ⇒ bool) ⇒ (bool ⇒ bool)) (var 0) = idBBBB #-}
|
||||
{-# DISPLAY abs 0 bool (abs y bool (var 0)) = k #-}
|
||||
{-# DISPLAY abs 0 bool (if (var 0) then false else true) = notB #-}
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
|
||||
## Operational Semantics
|
||||
|
||||
To define the small-step semantics of STLC terms, we begin,
|
||||
as always, by defining the set of values. Next, we define the
|
||||
critical notions of _free variables_ and _substitution_, which are
|
||||
used in the reduction rule for application expressions. And
|
||||
finally we give the small-step relation itself.
|
||||
|
||||
### Values
|
||||
|
||||
To define the values of the STLC, we have a few cases to consider.
|
||||
|
||||
First, for the boolean part of the language, the situation is
|
||||
clear: $$true$$ and $$false$$ are the only values. An $$\text{if}$$
|
||||
expression is never a value.
|
||||
|
||||
Second, an application is clearly not a value: It represents a
|
||||
function being invoked on some argument, which clearly still has
|
||||
work left to do.
|
||||
|
||||
Third, for abstractions, we have a choice:
|
||||
|
||||
- We can say that $$\lambda x:A. t$$ is a value only when $$t$$ is a
|
||||
value---i.e., only if the function's body has been
|
||||
reduced (as much as it can be without knowing what argument it
|
||||
is going to be applied to).
|
||||
|
||||
- Or we can say that $$\lambda x:A. t$$ is always a value, no matter
|
||||
whether $$t$$ is one or not---in other words, we can say that
|
||||
reduction stops at abstractions.
|
||||
|
||||
Agda makes the first choice---for example,
|
||||
|
||||
\begin{code}
|
||||
test_normalizeUnderLambda : (λ (x : ℕ) → 3 + 4) ≡ (λ (x : ℕ) → 7)
|
||||
test_normalizeUnderLambda = refl
|
||||
\end{code}
|
||||
|
||||
Most real-world functional programming languages make the second
|
||||
choice---reduction of a function's body only begins when the
|
||||
function is actually applied to an argument. We also make the
|
||||
second choice here.
|
||||
|
||||
\begin{code}
|
||||
data Value : Term → Set where
|
||||
abs : ∀ {x A t}
|
||||
→ Value (abs x A t)
|
||||
true : Value true
|
||||
false : Value false
|
||||
\end{code}
|
||||
|
||||
Finally, we must consider what constitutes a _complete_ program.
|
||||
|
||||
Intuitively, a "complete program" must not refer to any undefined
|
||||
variables. We'll see shortly how to define the _free_ variables
|
||||
in a STLC term. A complete program is _closed_---that is, it
|
||||
contains no free variables.
|
||||
|
||||
Having made the choice not to reduce under abstractions, we don't
|
||||
need to worry about whether variables are values, since we'll
|
||||
always be reducing programs "from the outside in," and that means
|
||||
the small-step relation will always be working with closed terms.
|
||||
|
||||
|
||||
### Substitution
|
||||
|
||||
Now we come to the heart of the STLC: the operation of
|
||||
substituting one term for a variable in another term. This
|
||||
operation is used below to define the operational semantics of
|
||||
function application, where we will need to substitute the
|
||||
argument term for the function parameter in the function's body.
|
||||
For example, we reduce
|
||||
|
||||
$$(\lambda x:bool. \text{if }x\text{ then }true\text{ else }x)\;false$$
|
||||
|
||||
to
|
||||
|
||||
$$\text{if }false\text{ then }true\text{ else }false$$
|
||||
|
||||
by substituting $$false$$ for the parameter $$x$$ in the body of the
|
||||
function.
|
||||
|
||||
In general, we need to be able to substitute some given term $$s$$
|
||||
for occurrences of some variable $$x$$ in another term $$t$$. In
|
||||
informal discussions, this is usually written $$[x:=s]t$$ and
|
||||
pronounced "substitute $$x$$ with $$s$$ in $$t$$."
|
||||
|
||||
Here are some examples:
|
||||
|
||||
- $$[x:=true](\text{if }x\text{ then }x\text{ else }false)$$
|
||||
yields $$\text{if }true\text{ then }true\text{ else }false$$
|
||||
|
||||
- $$[x:=true]x$$
|
||||
yields $$true$$
|
||||
|
||||
- $$[x:=true](\text{if }x\text{ then }x\text{ else }y)$$
|
||||
yields $$\text{if }true\text{ then }true\text{ else }y$$
|
||||
|
||||
- $$[x:=true]y$$
|
||||
yields $$y$$
|
||||
|
||||
- $$[x:=true]false$$
|
||||
yields $$false$$ (vacuous substitution)
|
||||
|
||||
- $$[x:=true](\lambda y:bool. \text{if }y\text{ then }x\text{ else }false)$$
|
||||
yields $$\lambda y:bool. \text{if }y\text{ then }true\text{ else }false$$
|
||||
|
||||
- $$[x:=true](\lambda y:bool. x)$$
|
||||
yields $$\lambda y:bool. true$$
|
||||
|
||||
- $$[x:=true](\lambda y:bool. y)$$
|
||||
yields $$\lambda y:bool. y$$
|
||||
|
||||
- $$[x:=true](\lambda x:bool. x)$$
|
||||
yields $$\lambda x:bool. x$$
|
||||
|
||||
The last example is very important: substituting $$x$$ with $$true$$ in
|
||||
$$\lambda x:bool. x$$ does _not_ yield $$\lambda x:bool. true$$! The reason for
|
||||
this is that the $$x$$ in the body of $$\lambda x:bool. x$$ is _bound_ by the
|
||||
abstraction: it is a new, local name that just happens to be
|
||||
spelled the same as some global name $$x$$.
|
||||
|
||||
Here is the definition, informally...
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
&[x:=s]x &&= s \\
|
||||
&[x:=s]y &&= y \;\{\text{if }x\neq y\} \\
|
||||
&[x:=s](\lambda x:A. t) &&= \lambda x:A. t \\
|
||||
&[x:=s](\lambda y:A. t) &&= \lambda y:A. [x:=s]t \;\{\text{if }x\neq y\} \\
|
||||
&[x:=s](t1\;t2) &&= ([x:=s]t1) ([x:=s]t2) \\
|
||||
&[x:=s]true &&= true \\
|
||||
&[x:=s]false &&= false \\
|
||||
&[x:=s](\text{if }t1\text{ then }t2\text{ else }t3) &&=
|
||||
\text{if }[x:=s]t1\text{ then }[x:=s]t2\text{ else }[x:=s]t3
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
... and formally:
|
||||
|
||||
\begin{code}
|
||||
[_:=_]_ : Id -> Term -> Term -> Term
|
||||
[ x := v ] (var y) with x ≟ y
|
||||
... | yes x=y = v
|
||||
... | no x≠y = var y
|
||||
[ x := v ] (app s t) = app ([ x := v ] s) ([ x := v ] t)
|
||||
[ x := v ] (abs y A t) with x ≟ y
|
||||
... | yes x=y = abs y A t
|
||||
... | no x≠y = abs y A ([ x := v ] t)
|
||||
[ x := v ] true = true
|
||||
[ x := v ] false = false
|
||||
[ x := v ] (if s then t else u) =
|
||||
if [ x := v ] s then [ x := v ] t else [ x := v ] u
|
||||
\end{code}
|
||||
|
||||
<div class="hidden">
|
||||
\begin{code}
|
||||
infix 9 [_:=_]_
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
_Technical note_: Substitution becomes trickier to define if we
|
||||
consider the case where $$s$$, the term being substituted for a
|
||||
variable in some other term, may itself contain free variables.
|
||||
Since we are only interested here in defining the small-step relation
|
||||
on closed terms (i.e., terms like $$\lambda x:bool. x$$ that include
|
||||
binders for all of the variables they mention), we can avoid this
|
||||
extra complexity here, but it must be dealt with when formalizing
|
||||
richer languages.
|
||||
|
||||
|
||||
#### Exercise: 3 stars (subst-correct)
|
||||
The definition that we gave above defines substitution as a _function_.
|
||||
Suppose, instead, we wanted to define substitution as an inductive _relation_.
|
||||
We've begun the definition by providing the `data` header and
|
||||
one of the constructors; your job is to fill in the rest of the constructors
|
||||
and prove that the relation you've defined coincides with the function given
|
||||
above.
|
||||
\begin{code}
|
||||
data [_:=_]_==>_ (x : Id) (s : Term) : Term -> Term -> Set where
|
||||
var1 : [ x := s ] (var x) ==> s
|
||||
{- FILL IN HERE -}
|
||||
\end{code}
|
||||
|
||||
\begin{code}
|
||||
postulate
|
||||
subst-correct : ∀ s x t t'
|
||||
→ [ x := s ] t ≡ t'
|
||||
→ [ x := s ] t ==> t'
|
||||
\end{code}
|
||||
|
||||
### Reduction
|
||||
|
||||
The small-step reduction relation for STLC now follows the
|
||||
same pattern as the ones we have seen before. Intuitively, to
|
||||
reduce a function application, we first reduce its left-hand
|
||||
side (the function) until it becomes an abstraction; then we
|
||||
reduce its right-hand side (the argument) until it is also a
|
||||
value; and finally we substitute the argument for the bound
|
||||
variable in the body of the abstraction. This last rule, written
|
||||
informally as
|
||||
|
||||
$$
|
||||
(\lambda x : A . t) v \Longrightarrow [x:=v]t
|
||||
$$
|
||||
|
||||
is traditionally called "beta-reduction".
|
||||
|
||||
$$
|
||||
\begin{array}{cl}
|
||||
\frac{value(v)}{(\lambda x : A . t) v \Longrightarrow [x:=v]t}&(red)\\\\
|
||||
\frac{s \Longrightarrow s'}{s\;t \Longrightarrow s'\;t}&(app1)\\\\
|
||||
\frac{value(v)\quad t \Longrightarrow t'}{v\;t \Longrightarrow v\;t'}&(app2)
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
... plus the usual rules for booleans:
|
||||
|
||||
$$
|
||||
\begin{array}{cl}
|
||||
\frac{}{(\text{if }true\text{ then }t_1\text{ else }t_2) \Longrightarrow t_1}&(iftrue)\\\\
|
||||
\frac{}{(\text{if }false\text{ then }t_1\text{ else }t_2) \Longrightarrow t_2}&(iffalse)\\\\
|
||||
\frac{s \Longrightarrow s'}{\text{if }s\text{ then }t_1\text{ else }t_2
|
||||
\Longrightarrow \text{if }s\text{ then }t_1\text{ else }t_2}&(if)
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
Formally:
|
||||
|
||||
\begin{code}
|
||||
data _==>_ : Term → Term → Set where
|
||||
red : ∀ {x A s t}
|
||||
→ Value t
|
||||
→ app (abs x A s) t ==> [ x := t ] s
|
||||
app1 : ∀ {s s' t}
|
||||
→ s ==> s'
|
||||
→ app s t ==> app s' t
|
||||
app2 : ∀ {s t t'}
|
||||
→ Value s
|
||||
→ t ==> t'
|
||||
→ app s t ==> app s t'
|
||||
if : ∀ {s s' t u}
|
||||
→ s ==> s'
|
||||
→ if s then t else u ==> if s' then t else u
|
||||
iftrue : ∀ {s t}
|
||||
→ if true then s else t ==> s
|
||||
iffalse : ∀ {s t}
|
||||
→ if false then s else t ==> t
|
||||
\end{code}
|
||||
|
||||
<div class="hidden">
|
||||
\begin{code}
|
||||
infix 1 _==>_
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
\begin{code}
|
||||
data Multi (R : Term → Term → Set) : Term → Term → Set where
|
||||
refl : ∀ {x} -> Multi R x x
|
||||
step : ∀ {x y z} -> R x y -> Multi R y z -> Multi R x z
|
||||
\end{code}
|
||||
|
||||
\begin{code}
|
||||
_==>*_ : Term → Term → Set
|
||||
_==>*_ = Multi _==>_
|
||||
\end{code}
|
||||
|
||||
<div class="hidden">
|
||||
\begin{code}
|
||||
{-# DISPLAY Multi _==>_ = _==>*_ #-}
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
### Examples
|
||||
|
||||
Example:
|
||||
|
||||
$$((\lambda x:bool\rightarrow bool. x) (\lambda x:bool. x)) \Longrightarrow^* (\lambda x:bool. x)$$.
|
||||
|
||||
\begin{code}
|
||||
step-example1 : (app idBB idB) ==>* idB
|
||||
step-example1 = step (red abs)
|
||||
$ refl
|
||||
\end{code}
|
||||
|
||||
Example:
|
||||
|
||||
$$(\lambda x:bool\rightarrow bool. x) \;((\lambda x:bool\rightarrow bool. x)\;(\lambda x:bool. x))) \Longrightarrow^* (\lambda x:bool. x)$$.
|
||||
|
||||
\begin{code}
|
||||
step-example2 : (app idBB (app idBB idB)) ==>* idB
|
||||
step-example2 = step (app2 abs (red abs))
|
||||
$ step (red abs)
|
||||
$ refl
|
||||
\end{code}
|
||||
|
||||
Example:
|
||||
|
||||
$$((\lambda x:bool\rightarrow bool. x)\;(\lambda x:bool. \text{if }x\text{ then }false\text{ else }true))\;true\Longrightarrow^* false$$.
|
||||
|
||||
\begin{code}
|
||||
step-example3 : (app (app idBB notB) true) ==>* false
|
||||
step-example3 = step (app1 (red abs))
|
||||
$ step (red true)
|
||||
$ step iftrue
|
||||
$ refl
|
||||
\end{code}
|
||||
|
||||
Example:
|
||||
|
||||
$$((\lambda x:bool\rightarrow bool. x)\;((\lambda x:bool. \text{if }x\text{ then }false\text{ else }true)\;true))\Longrightarrow^* false$$.
|
||||
|
||||
\begin{code}
|
||||
step-example4 : (app idBB (app notB true)) ==>* false
|
||||
step-example4 = step (app2 abs (red true))
|
||||
$ step (app2 abs iftrue)
|
||||
$ step (red false)
|
||||
$ refl
|
||||
\end{code}
|
||||
|
||||
#### Exercise: 2 stars (step-example5)
|
||||
|
||||
\begin{code}
|
||||
postulate
|
||||
step-example5 : (app (app idBBBB idBB) idB) ==>* idB
|
||||
\end{code}
|
||||
|
||||
## Typing
|
||||
|
||||
Next we consider the typing relation of the STLC.
|
||||
|
||||
### Contexts
|
||||
|
||||
_Question_: What is the type of the term "$$x\;y$$"?
|
||||
|
||||
_Answer_: It depends on the types of $$x$$ and $$y$$!
|
||||
|
||||
I.e., in order to assign a type to a term, we need to know
|
||||
what assumptions we should make about the types of its free
|
||||
variables.
|
||||
|
||||
This leads us to a three-place _typing judgment_, informally
|
||||
written $$\Gamma\vdash t : A$$, where $$\Gamma$$ is a
|
||||
"typing context"---a mapping from variables to their types.
|
||||
|
||||
Informally, we'll write $$\Gamma , x:A$$ for "extend the partial function
|
||||
$$\Gamma$$ to also map $$x$$ to $$A$$." Formally, we use the function `_,_∶_`
|
||||
(or "update") to add a binding to a context.
|
||||
|
||||
\begin{code}
|
||||
Ctxt : Set
|
||||
Ctxt = PartialMap Type
|
||||
|
||||
∅ : Ctxt
|
||||
∅ = PartialMap.empty
|
||||
|
||||
_,_∶_ : Ctxt -> Id -> Type -> Ctxt
|
||||
_,_∶_ = PartialMap.update
|
||||
\end{code}
|
||||
|
||||
<div class="hidden">
|
||||
\begin{code}
|
||||
infixl 3 _,_∶_
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
|
||||
### Typing Relation
|
||||
|
||||
$$
|
||||
\begin{array}{cl}
|
||||
\frac{\Gamma\;x = A}{\Gamma\vdash{x:A}}&(var)\\\\
|
||||
\frac{\Gamma,x:A\vdash t:B}{\Gamma\vdash (\lambda x:A.t) : A\rightarrow B}&(abs)\\\\
|
||||
\frac{\Gamma\vdash s:A\rightarrow B\quad\Gamma\vdash t:A}{\Gamma\vdash (s\;t) : B}&(app)\\\\
|
||||
\frac{}{\Gamma\vdash true : bool}&(true)\\\\
|
||||
\frac{}{\Gamma\vdash false : bool}&(true)\\\\
|
||||
\frac{\Gamma\vdash s:bool \quad \Gamma\vdash t1:A \quad \Gamma\vdash t2:A}{\Gamma\vdash\text{if }s\text{ then }t1\text{ else }t2 : A}&(if)
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
We can read the three-place relation $$\Gamma\vdash (t : A)$$ as:
|
||||
"to the term $$t$$ we can assign the type $$A$$ using as types for
|
||||
the free variables of $$t$$ the ones specified in the context
|
||||
$$\Gamma$$."
|
||||
|
||||
\begin{code}
|
||||
data _⊢_∶_ : Ctxt -> Term -> Type -> Set where
|
||||
var : ∀ {Γ} x {A}
|
||||
→ Γ x ≡ just A
|
||||
→ Γ ⊢ var x ∶ A
|
||||
abs : ∀ {Γ} {x} {A} {B} {s}
|
||||
→ Γ , x ∶ A ⊢ s ∶ B
|
||||
→ Γ ⊢ abs x A s ∶ A ⇒ B
|
||||
app : ∀ {Γ} {A} {B} {s} {t}
|
||||
→ Γ ⊢ s ∶ A ⇒ B
|
||||
→ Γ ⊢ t ∶ A
|
||||
→ Γ ⊢ app s t ∶ B
|
||||
true : ∀ {Γ}
|
||||
→ Γ ⊢ true ∶ bool
|
||||
false : ∀ {Γ}
|
||||
→ Γ ⊢ false ∶ bool
|
||||
if_then_else_ : ∀ {Γ} {s} {t} {u} {A}
|
||||
→ Γ ⊢ s ∶ bool
|
||||
→ Γ ⊢ t ∶ A
|
||||
→ Γ ⊢ u ∶ A
|
||||
→ Γ ⊢ if s then t else u ∶ A
|
||||
\end{code}
|
||||
|
||||
<div class="hidden">
|
||||
\begin{code}
|
||||
infix 1 _⊢_∶_
|
||||
\end{code}
|
||||
</div>
|
||||
|
||||
|
||||
### Examples
|
||||
|
||||
\begin{code}
|
||||
typing-example1 : ∅ ⊢ idB ∶ bool ⇒ bool
|
||||
typing-example1 = abs (var x refl)
|
||||
\end{code}
|
||||
|
||||
Another example:
|
||||
|
||||
$$\varnothing\vdash \lambda x:A. \lambda y:A\rightarrow A. y\;(y\;x) : A\rightarrow (A\rightarrow A)\rightarrow A$$.
|
||||
|
||||
\begin{code}
|
||||
typing-example2 : ∅ ⊢
|
||||
(abs x bool
|
||||
(abs y (bool ⇒ bool)
|
||||
(app (var y)
|
||||
(app (var y) (var x)))))
|
||||
∶ (bool ⇒ (bool ⇒ bool) ⇒ bool)
|
||||
typing-example2 =
|
||||
(abs
|
||||
(abs
|
||||
(app (var y refl)
|
||||
(app (var y refl) (var x refl) ))))
|
||||
\end{code}
|
||||
|
||||
#### Exercise: 2 stars (typing-example3)
|
||||
Formally prove the following typing derivation holds:
|
||||
|
||||
$$\exists A, \varnothing\vdash \lambda x:bool\rightarrow B. \lambda y:bool\rightarrow bool. \lambda z:bool. y\;(x\;z) : A$$.
|
||||
|
||||
\begin{code}
|
||||
postulate
|
||||
typing-example3 : ∃ λ A → ∅ ⊢
|
||||
(abs x (bool ⇒ bool)
|
||||
(abs y (bool ⇒ bool)
|
||||
(abs z bool
|
||||
(app (var y) (app (var x) (var z)))))) ∶ A
|
||||
\end{code}
|
||||
|
||||
We can also show that terms are _not_ typable. For example, let's
|
||||
formally check that there is no typing derivation assigning a type
|
||||
to the term $$\lambda x:bool. \lambda y:bool. x\;y$$---i.e.,
|
||||
|
||||
|
||||
$$\nexists A, \varnothing\vdash \lambda x:bool. \lambda y:bool. x\;y : A$$.
|
||||
|
||||
\begin{code}
|
||||
postulate
|
||||
typing-nonexample1 : ∄ λ A → ∅ ⊢
|
||||
(abs x bool
|
||||
(abs y bool
|
||||
(app (var x) (var y)))) ∶ A
|
||||
\end{code}
|
||||
|
||||
#### Exercise: 3 stars, optional (typing-nonexample2)
|
||||
Another nonexample:
|
||||
|
||||
$$\nexists A, \exists B, \varnothing\vdash \lambda x:A. x\;x : B$$.
|
||||
|
||||
\begin{code}
|
||||
postulate
|
||||
typing-nonexample2 : ∄ λ A → ∃ λ B → ∅ ⊢
|
||||
(abs x B (app (var x) (var x))) ∶ A
|
||||
\end{code}
|
Loading…
Reference in a new issue