From 1d2068e4ad6a692b62da13e2eb94e2b22aa4b3c7 Mon Sep 17 00:00:00 2001 From: wadler Date: Tue, 3 Jul 2018 10:39:03 -0300 Subject: [PATCH] minor fixes --- src/plta/Connectives.lagda | 16 ++++++++-------- src/plta/Lambda.lagda | 6 +++--- src/plta/Properties.lagda | 2 +- 3 files changed, 12 insertions(+), 12 deletions(-) diff --git a/src/plta/Connectives.lagda b/src/plta/Connectives.lagda index 73130cbd..5b45d5a3 100644 --- a/src/plta/Connectives.lagda +++ b/src/plta/Connectives.lagda @@ -8,15 +8,15 @@ permalink : /Connectives/ module plta.Connectives where \end{code} -This chapter introduces the basic logical connectives, by observing -a correspondence between connectives of logic and data types, -a principle known as *Propositions as Types*. +This chapter introduces the basic logical connectives, by observing a +correspondence between connectives of logic and data types, a +principle known as _Propositions as Types_. -+ *conjunction* is *product* -+ *disjunction* is *sum* -+ *true* is *unit type* -+ *false* is *empty type* -+ *implication* is *function space* + * _conjunction_ is _product_ + * _disjunction_ is _sum_ + * _true_ is _unit type_ + * _false_ is _empty type_ + * _implication_ is _function space_ ## Imports diff --git a/src/plta/Lambda.lagda b/src/plta/Lambda.lagda index 51fb2dc7..b6c90214 100644 --- a/src/plta/Lambda.lagda +++ b/src/plta/Lambda.lagda @@ -4,18 +4,18 @@ layout : page permalink : /Lambda/ --- -*Add a couple of simpler examples* ``id · `zero`` and ``twoᶜ · sucᶜ · `zero``. - -*Experiment with defining variables* smart constructor `` ƛ`_⇒_ `` +*Todo: Experiment with defining variable names* smart constructor `` ƛ`_⇒_ `` \begin{code} module plta.Lambda where \end{code} + The _lambda-calculus_, first published by the logician Alonzo Church in 1932, is a core calculus with only three syntactic constructs: diff --git a/src/plta/Properties.lagda b/src/plta/Properties.lagda index fd35c10e..cf889d69 100644 --- a/src/plta/Properties.lagda +++ b/src/plta/Properties.lagda @@ -1369,7 +1369,7 @@ det β-zero β-zero = refl det (β-suc VL) (ξ-case L—→L″) = ⊥-elim (V¬—→ (V-suc VL) L—→L″) det (β-suc _) (β-suc _) = refl det β-μ β-μ = refl --- \end{code} +\end{code} The proof is by induction over possible reductions. We consider three typical cases.