undoing bad fix
This commit is contained in:
parent
af869c7b3d
commit
24d7713648
1 changed files with 722 additions and 0 deletions
722
src/extra/Typed-badfix.lagda
Normal file
722
src/extra/Typed-badfix.lagda
Normal file
|
@ -0,0 +1,722 @@
|
|||
---
|
||||
title : "Typed: Typed Lambda term representation"
|
||||
layout : page
|
||||
permalink : /Typed
|
||||
---
|
||||
|
||||
|
||||
## Imports
|
||||
|
||||
\begin{code}
|
||||
module Typed where
|
||||
\end{code}
|
||||
|
||||
\begin{code}
|
||||
import Relation.Binary.PropositionalEquality as Eq
|
||||
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.List using (List; []; _∷_; [_]; _++_; map; foldr; filter)
|
||||
open import Data.List.Any using (Any; here; there)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_; _≤_; _⊔_; _≟_)
|
||||
open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n)
|
||||
open import Data.Product using (_×_; proj₁; proj₂; ∃; ∃-syntax)
|
||||
renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Data.Unit using (⊤; tt)
|
||||
open import Function using (_∘_)
|
||||
open import Function.Equality using (≡-setoid)
|
||||
open import Function.Equivalence using (_⇔_; equivalence)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Relation.Nullary.Negation using (contraposition; ¬?)
|
||||
open import Relation.Nullary.Product using (_×-dec_)
|
||||
open import Collections using (_↔_)
|
||||
\end{code}
|
||||
|
||||
|
||||
## Syntax
|
||||
|
||||
\begin{code}
|
||||
infixr 5 _⟹_
|
||||
infixl 5 _,_⦂_
|
||||
infix 4 _∋_⦂_
|
||||
infix 4 _⊢_⦂_
|
||||
infix 5 `λ_⇒_
|
||||
infix 5 `λ_
|
||||
infixl 6 _·_
|
||||
infix 7 `_
|
||||
|
||||
Id : Set
|
||||
Id = ℕ
|
||||
|
||||
data Type : Set where
|
||||
`ℕ : Type
|
||||
_⟹_ : Type → Type → Type
|
||||
|
||||
data Env : Set where
|
||||
ε : Env
|
||||
_,_⦂_ : Env → Id → Type → Env
|
||||
|
||||
data Term : Set where
|
||||
`_ : Id → Term
|
||||
`λ_⇒_ : Id → Term → Term
|
||||
_·_ : Term → Term → Term
|
||||
|
||||
data _∋_⦂_ : Env → Id → Type → Set where
|
||||
|
||||
Z : ∀ {Γ A x}
|
||||
-----------------
|
||||
→ Γ , x ⦂ A ∋ x ⦂ A
|
||||
|
||||
S : ∀ {Γ A B x w}
|
||||
→ w ≢ x
|
||||
→ Γ ∋ w ⦂ B
|
||||
-----------------
|
||||
→ Γ , x ⦂ A ∋ w ⦂ B
|
||||
|
||||
data _⊢_⦂_ : Env → Term → Type → Set where
|
||||
|
||||
`_ : ∀ {Γ A x}
|
||||
→ Γ ∋ x ⦂ A
|
||||
---------------------
|
||||
→ Γ ⊢ ` x ⦂ A
|
||||
|
||||
`λ_ : ∀ {Γ x A N B}
|
||||
→ Γ , x ⦂ A ⊢ N ⦂ B
|
||||
------------------------
|
||||
→ Γ ⊢ (`λ x ⇒ N) ⦂ A ⟹ B
|
||||
|
||||
_·_ : ∀ {Γ L M A B}
|
||||
→ Γ ⊢ L ⦂ A ⟹ B
|
||||
→ Γ ⊢ M ⦂ A
|
||||
--------------
|
||||
→ Γ ⊢ L · M ⦂ B
|
||||
\end{code}
|
||||
|
||||
## Test examples
|
||||
|
||||
\begin{code}
|
||||
m n s z : Id
|
||||
m = 0
|
||||
n = 1
|
||||
s = 2
|
||||
z = 3
|
||||
|
||||
s≢z : s ≢ z
|
||||
s≢z ()
|
||||
|
||||
n≢z : n ≢ z
|
||||
n≢z ()
|
||||
|
||||
n≢s : n ≢ s
|
||||
n≢s ()
|
||||
|
||||
m≢z : m ≢ z
|
||||
m≢z ()
|
||||
|
||||
m≢s : m ≢ s
|
||||
m≢s ()
|
||||
|
||||
m≢n : m ≢ n
|
||||
m≢n ()
|
||||
|
||||
Ch : Type
|
||||
Ch = (`ℕ ⟹ `ℕ) ⟹ `ℕ ⟹ `ℕ
|
||||
|
||||
two : Term
|
||||
two = `λ s ⇒ `λ z ⇒ (` s · (` s · ` z))
|
||||
|
||||
⊢two : ε ⊢ two ⦂ Ch
|
||||
⊢two = `λ `λ ` ⊢s · (` ⊢s · ` ⊢z)
|
||||
where
|
||||
⊢s = S s≢z Z
|
||||
⊢z = Z
|
||||
|
||||
four : Term
|
||||
four = `λ s ⇒ `λ z ⇒ ` s · (` s · (` s · (` s · ` z)))
|
||||
|
||||
⊢four : ε ⊢ four ⦂ Ch
|
||||
⊢four = `λ `λ ` ⊢s · (` ⊢s · (` ⊢s · (` ⊢s · ` ⊢z)))
|
||||
where
|
||||
⊢s = S s≢z Z
|
||||
⊢z = Z
|
||||
|
||||
plus : Term
|
||||
plus = `λ m ⇒ `λ n ⇒ `λ s ⇒ `λ z ⇒ ` m · ` s · (` n · ` s · ` z)
|
||||
|
||||
⊢plus : ε ⊢ plus ⦂ Ch ⟹ Ch ⟹ Ch
|
||||
⊢plus = `λ `λ `λ `λ ` ⊢m · ` ⊢s · (` ⊢n · ` ⊢s · ` ⊢z)
|
||||
where
|
||||
⊢z = Z
|
||||
⊢s = S s≢z Z
|
||||
⊢n = S n≢z (S n≢s Z)
|
||||
⊢m = S m≢z (S m≢s (S m≢n Z))
|
||||
|
||||
four′ : Term
|
||||
four′ = plus · two · two
|
||||
|
||||
⊢four′ : ε ⊢ four′ ⦂ Ch
|
||||
⊢four′ = ⊢plus · ⊢two · ⊢two
|
||||
\end{code}
|
||||
|
||||
|
||||
# Denotational semantics
|
||||
|
||||
\begin{code}
|
||||
⟦_⟧ᵀ : Type → Set
|
||||
⟦ `ℕ ⟧ᵀ = ℕ
|
||||
⟦ A ⟹ B ⟧ᵀ = ⟦ A ⟧ᵀ → ⟦ B ⟧ᵀ
|
||||
|
||||
⟦_⟧ᴱ : Env → Set
|
||||
⟦ ε ⟧ᴱ = ⊤
|
||||
⟦ Γ , x ⦂ A ⟧ᴱ = ⟦ Γ ⟧ᴱ × ⟦ A ⟧ᵀ
|
||||
|
||||
⟦_⟧ⱽ : ∀ {Γ x A} → Γ ∋ x ⦂ A → ⟦ Γ ⟧ᴱ → ⟦ A ⟧ᵀ
|
||||
⟦ Z ⟧ⱽ ⟨ ρ , v ⟩ = v
|
||||
⟦ S _ x ⟧ⱽ ⟨ ρ , v ⟩ = ⟦ x ⟧ⱽ ρ
|
||||
|
||||
⟦_⟧ : ∀ {Γ M A} → Γ ⊢ M ⦂ A → ⟦ Γ ⟧ᴱ → ⟦ A ⟧ᵀ
|
||||
⟦ ` x ⟧ ρ = ⟦ x ⟧ⱽ ρ
|
||||
⟦ `λ ⊢N ⟧ ρ = λ{ v → ⟦ ⊢N ⟧ ⟨ ρ , v ⟩ }
|
||||
⟦ ⊢L · ⊢M ⟧ ρ = (⟦ ⊢L ⟧ ρ) (⟦ ⊢M ⟧ ρ)
|
||||
|
||||
_ : ⟦ ⊢four′ ⟧ tt ≡ ⟦ ⊢four ⟧ tt
|
||||
_ = refl
|
||||
|
||||
_ : ⟦ ⊢four ⟧ tt suc zero ≡ 4
|
||||
_ = refl
|
||||
\end{code}
|
||||
|
||||
|
||||
## Erasure
|
||||
|
||||
\begin{code}
|
||||
lookup : ∀ {Γ x A} → Γ ∋ x ⦂ A → Id
|
||||
lookup {Γ , x ⦂ A} Z = x
|
||||
lookup {Γ , x ⦂ A} (S _ k) = lookup {Γ} k
|
||||
|
||||
erase : ∀ {Γ M A} → Γ ⊢ M ⦂ A → Term
|
||||
erase (` k) = ` lookup k
|
||||
erase (`λ_ {x = x} ⊢N) = `λ x ⇒ erase ⊢N
|
||||
erase (⊢L · ⊢M) = erase ⊢L · erase ⊢M
|
||||
\end{code}
|
||||
|
||||
### Properties of erasure
|
||||
|
||||
\begin{code}
|
||||
lookup-lemma : ∀ {Γ x A} → (⊢x : Γ ∋ x ⦂ A) → lookup ⊢x ≡ x
|
||||
lookup-lemma Z = refl
|
||||
lookup-lemma (S _ k) = lookup-lemma k
|
||||
|
||||
erase-lemma : ∀ {Γ M A} → (⊢M : Γ ⊢ M ⦂ A) → erase ⊢M ≡ M
|
||||
erase-lemma (` ⊢x) = cong `_ (lookup-lemma ⊢x)
|
||||
erase-lemma (`λ_ {x = x} ⊢N) = cong (`λ x ⇒_) (erase-lemma ⊢N)
|
||||
erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (erase-lemma ⊢M)
|
||||
\end{code}
|
||||
|
||||
|
||||
## Substitution
|
||||
|
||||
### Lists as sets
|
||||
|
||||
\begin{code}
|
||||
open Collections.CollectionDec (Id) (_≟_)
|
||||
\end{code}
|
||||
|
||||
### Free variables
|
||||
|
||||
\begin{code}
|
||||
free : Term → List Id
|
||||
free (` x) = [ x ]
|
||||
free (`λ x ⇒ N) = free N \\ x
|
||||
free (L · M) = free L ++ free M
|
||||
\end{code}
|
||||
|
||||
### Fresh identifier
|
||||
|
||||
\begin{code}
|
||||
fresh : List Id → Id
|
||||
fresh = foldr _⊔_ 0 ∘ map suc
|
||||
|
||||
⊔-lemma : ∀ {w xs} → w ∈ xs → suc w ≤ fresh xs
|
||||
⊔-lemma {_} {_ ∷ xs} here = m≤m⊔n _ (fresh xs)
|
||||
⊔-lemma {_} {_ ∷ xs} (there x∈) = ≤-trans (⊔-lemma x∈) (n≤m⊔n _ (fresh xs))
|
||||
|
||||
fresh-lemma : ∀ {x xs} → x ∈ xs → x ≢ fresh xs
|
||||
fresh-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)
|
||||
\end{code}
|
||||
|
||||
### Identifier maps
|
||||
|
||||
\begin{code}
|
||||
∅ : Id → Term
|
||||
∅ x = ` x
|
||||
|
||||
infixl 5 _,_↦_
|
||||
|
||||
_,_↦_ : (Id → Term) → Id → Term → (Id → Term)
|
||||
(ρ , x ↦ M) w with w ≟ x
|
||||
... | yes _ = M
|
||||
... | no _ = ρ w
|
||||
\end{code}
|
||||
|
||||
### Substitution
|
||||
|
||||
\begin{code}
|
||||
subst : List Id → (Id → Term) → Term → Term
|
||||
subst ys ρ (` x) = ρ x
|
||||
subst ys ρ (`λ x ⇒ N) = `λ y ⇒ subst (y ∷ ys) (ρ , x ↦ ` y) N
|
||||
where
|
||||
y = fresh ys
|
||||
subst ys ρ (L · M) = subst ys ρ L · subst ys ρ M
|
||||
|
||||
_[_:=_] : Term → Id → Term → Term
|
||||
N [ x := M ] = subst (free M ++ (free N \\ x)) (∅ , x ↦ M) N
|
||||
\end{code}
|
||||
|
||||
|
||||
## Values
|
||||
|
||||
\begin{code}
|
||||
data Value : Term → Set where
|
||||
|
||||
Fun : ∀ {x N}
|
||||
---------------
|
||||
→ Value (`λ x ⇒ N)
|
||||
\end{code}
|
||||
|
||||
## Reduction
|
||||
|
||||
\begin{code}
|
||||
infix 4 _⟶_
|
||||
|
||||
data _⟶_ : Term → Term → Set where
|
||||
|
||||
β-⟹ : ∀ {x N V}
|
||||
→ Value V
|
||||
------------------------------
|
||||
→ (`λ x ⇒ N) · V ⟶ N [ x := V ]
|
||||
|
||||
ξ-⟹₁ : ∀ {L L′ M}
|
||||
→ L ⟶ L′
|
||||
----------------
|
||||
→ L · M ⟶ L′ · M
|
||||
|
||||
ξ-⟹₂ : ∀ {V M M′} →
|
||||
Value V →
|
||||
M ⟶ M′ →
|
||||
----------------
|
||||
V · M ⟶ V · M′
|
||||
\end{code}
|
||||
|
||||
## Reflexive and transitive closure
|
||||
|
||||
\begin{code}
|
||||
infix 2 _⟶*_
|
||||
infix 1 begin_
|
||||
infixr 2 _⟶⟨_⟩_
|
||||
infix 3 _∎
|
||||
|
||||
data _⟶*_ : Term → Term → Set where
|
||||
|
||||
_∎ : ∀ {M}
|
||||
-------------
|
||||
→ M ⟶* M
|
||||
|
||||
_⟶⟨_⟩_ : ∀ (L : Term) {M N}
|
||||
→ L ⟶ M
|
||||
→ M ⟶* N
|
||||
---------
|
||||
→ L ⟶* N
|
||||
|
||||
begin_ : ∀ {M N} → (M ⟶* N) → (M ⟶* N)
|
||||
begin M⟶*N = M⟶*N
|
||||
\end{code}
|
||||
|
||||
## Progress
|
||||
|
||||
\begin{code}
|
||||
data Progress (M : Term) : Set where
|
||||
step : ∀ {N}
|
||||
→ M ⟶ N
|
||||
----------
|
||||
→ Progress M
|
||||
done :
|
||||
Value M
|
||||
----------
|
||||
→ Progress M
|
||||
|
||||
progress : ∀ {M A} → ε ⊢ M ⦂ A → Progress M
|
||||
progress (` ())
|
||||
progress (`λ_ ⊢N) = done Fun
|
||||
progress (⊢L · ⊢M) with progress ⊢L
|
||||
... | step L⟶L′ = step (ξ-⟹₁ L⟶L′)
|
||||
... | done Fun with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-⟹₂ Fun M⟶M′)
|
||||
... | done valM = step (β-⟹ valM)
|
||||
\end{code}
|
||||
|
||||
|
||||
## Preservation
|
||||
|
||||
### Domain of an environment
|
||||
|
||||
\begin{code}
|
||||
dom : Env → List Id
|
||||
dom ε = []
|
||||
dom (Γ , x ⦂ A) = x ∷ dom Γ
|
||||
|
||||
dom-lemma : ∀ {Γ y B} → Γ ∋ y ⦂ B → y ∈ dom Γ
|
||||
dom-lemma Z = here
|
||||
dom-lemma (S x≢y ⊢y) = there (dom-lemma ⊢y)
|
||||
|
||||
free-lemma : ∀ {Γ M A} → Γ ⊢ M ⦂ A → free M ⊆ dom Γ
|
||||
free-lemma (` ⊢x) w∈ with w∈
|
||||
... | here = dom-lemma ⊢x
|
||||
... | there ()
|
||||
free-lemma {Γ} (`λ_ {x = x} {N = N} ⊢N) = ∷-to-\\ (free-lemma ⊢N)
|
||||
free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
||||
... | inj₁ ∈L = free-lemma ⊢L ∈L
|
||||
... | inj₂ ∈M = free-lemma ⊢M ∈M
|
||||
\end{code}
|
||||
|
||||
### Weakening
|
||||
|
||||
\begin{code}
|
||||
⊢weaken : ∀ {Γ Δ}
|
||||
→ (∀ {x A} → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A)
|
||||
--------------------------------------------------
|
||||
→ (∀ {M A} → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A)
|
||||
⊢weaken ⊢σ (` ⊢x) = ` ⊢σ ⊢x
|
||||
⊢weaken {Γ} {Δ} ⊢σ (`λ_ {x = x} {A = A} {N = N} ⊢N)
|
||||
= `λ (⊢weaken {Γ′} {Δ′} ⊢σ′ ⊢N)
|
||||
where
|
||||
Γ′ = Γ , x ⦂ A
|
||||
Δ′ = Δ , x ⦂ A
|
||||
|
||||
⊢σ′ : ∀ {w B} → Γ′ ∋ w ⦂ B → Δ′ ∋ w ⦂ B
|
||||
⊢σ′ Z = Z
|
||||
⊢σ′ (S w≢ ⊢w) = S w≢ (⊢σ ⊢w)
|
||||
|
||||
⊢weaken ⊢σ (⊢L · ⊢M) = ⊢weaken ⊢σ ⊢L · ⊢weaken ⊢σ ⊢M
|
||||
\end{code}
|
||||
|
||||
### Strengthening is old renaming
|
||||
|
||||
### Renaming
|
||||
|
||||
\begin{code}
|
||||
⊢rename : ∀ {Γ Δ xs}
|
||||
→ (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A)
|
||||
--------------------------------------------------
|
||||
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A)
|
||||
⊢rename ⊢σ ⊆xs (` ⊢x) = ` ⊢σ ∈xs ⊢x
|
||||
where
|
||||
∈xs = ⊆xs here
|
||||
⊢rename {Γ} {Δ} {xs} ⊢σ ⊆xs (`λ_ {x = x} {A = A} {N = N} ⊢N)
|
||||
= `λ (⊢rename {Γ′} {Δ′} {xs′} ⊢σ′ ⊆xs′ ⊢N)
|
||||
where
|
||||
Γ′ = Γ , x ⦂ A
|
||||
Δ′ = Δ , x ⦂ A
|
||||
xs′ = x ∷ xs
|
||||
|
||||
⊢σ′ : ∀ {w B} → w ∈ xs′ → Γ′ ∋ w ⦂ B → Δ′ ∋ w ⦂ B
|
||||
⊢σ′ w∈′ Z = Z
|
||||
⊢σ′ w∈′ (S w≢ ⊢w) = S w≢ (⊢σ ∈w ⊢w)
|
||||
where
|
||||
∈w = there⁻¹ w∈′ w≢
|
||||
|
||||
⊆xs′ : free N ⊆ xs′
|
||||
⊆xs′ = \\-to-∷ ⊆xs
|
||||
⊢rename ⊢σ ⊆xs (⊢L · ⊢M) = ⊢rename ⊢σ L⊆ ⊢L · ⊢rename ⊢σ M⊆ ⊢M
|
||||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
|
||||
\end{code}
|
||||
|
||||
|
||||
### Substitution preserves types, general case
|
||||
|
||||
\begin{code}
|
||||
map-≡ : ∀ {w x ρ M} → w ≡ x → (ρ , x ↦ M) w ≡ M
|
||||
map-≡ {w} {x} w≡ with w ≟ x
|
||||
... | yes _ = refl
|
||||
... | no w≢ = ⊥-elim (w≢ w≡)
|
||||
|
||||
map-≢ : ∀ {w x ρ M} → w ≢ x → (ρ , x ↦ M) w ≡ ρ w
|
||||
map-≢ {w} {x} w≢ with w ≟ x
|
||||
... | yes w≡ = ⊥-elim (w≢ w≡)
|
||||
... | no _ = refl
|
||||
\end{code}
|
||||
|
||||
\begin{code}
|
||||
⊢subst : ∀ {Γ Δ ys ρ}
|
||||
→ dom Δ ⊆ ys
|
||||
→ (∀ {x A} → Γ ∋ x ⦂ A → Δ ⊢ ρ x ⦂ A)
|
||||
--------------------------------------------------------------
|
||||
→ (∀ {M A} → Γ ⊢ M ⦂ A → Δ ⊢ subst ys ρ M ⦂ A)
|
||||
⊢subst ⊆ys ⊢ρ (` ⊢x)
|
||||
= ⊢ρ ⊢x
|
||||
⊢subst {Γ} {Δ} {ys} {ρ} ⊆ys ⊢ρ (`λ_ {x = x} {A = A} {N = N} ⊢N)
|
||||
= `λ_ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {ys′} {ρ′} ⊆ys′ ⊢ρ′ ⊢N)
|
||||
where
|
||||
y = fresh ys
|
||||
Γ′ = Γ , x ⦂ A
|
||||
Δ′ = Δ , y ⦂ A
|
||||
ys′ = y ∷ ys
|
||||
ρ′ = ρ , x ↦ ` y
|
||||
|
||||
⊆ys′ : dom Δ′ ⊆ ys′
|
||||
⊆ys′ {w} here = here
|
||||
⊆ys′ {w} (there w∈) = there (⊆ys w∈)
|
||||
|
||||
⊢σ : ∀ {w C} → Δ ∋ w ⦂ C → Δ′ ∋ w ⦂ C
|
||||
⊢σ {w} ⊢w = S w≢ ⊢w
|
||||
where
|
||||
w≢ : w ≢ y
|
||||
w≢ = fresh-lemma (⊆ys (dom-lemma ⊢w))
|
||||
|
||||
⊢ρ′ : ∀ {w C} → Γ′ ∋ w ⦂ C → Δ′ ⊢ ρ′ w ⦂ C
|
||||
⊢ρ′ {w} Z rewrite map-≡ {w} {x} {ρ} {` y} refl = ` Z
|
||||
⊢ρ′ {w} (S w≢ ⊢w) rewrite map-≢ {w} {x} {ρ} {` y} w≢ = ⊢weaken {Δ} {Δ′} ⊢σ (⊢ρ ⊢w)
|
||||
|
||||
⊢subst Σ ⊢ρ (⊢L · ⊢M)
|
||||
= ⊢subst Σ ⊢ρ ⊢L · ⊢subst Σ ⊢ρ ⊢M
|
||||
|
||||
{-
|
||||
⊢subst : ∀ {Γ Δ xs ys ρ}
|
||||
→ (∀ {x} → x ∈ xs → free (ρ x) ⊆ ys)
|
||||
→ (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ⊢ ρ x ⦂ A)
|
||||
--------------------------------------------------------------
|
||||
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ subst ys ρ M ⦂ A)
|
||||
⊢subst Σ ⊢ρ ⊆xs (` ⊢x)
|
||||
= ⊢ρ (⊆xs here) ⊢x
|
||||
⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (`λ_ {x = x} {A = A} {N = N} ⊢N)
|
||||
= `λ_ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs′} {ys′} {ρ′} Σ′ ⊢ρ′ ⊆xs′ ⊢N)
|
||||
where
|
||||
y = fresh ys
|
||||
Γ′ = Γ , x ⦂ A
|
||||
Δ′ = Δ , y ⦂ A
|
||||
xs′ = x ∷ xs
|
||||
ys′ = y ∷ ys
|
||||
ρ′ = ρ , x ↦ ` y
|
||||
|
||||
Σ′ : ∀ {w} → w ∈ xs′ → free (ρ′ w) ⊆ ys′
|
||||
Σ′ {w} w∈′ with w ≟ x
|
||||
... | yes refl = ⊆-++₁
|
||||
... | no w≢ = ⊆-++₂ ∘ Σ (there⁻¹ w∈′ w≢)
|
||||
|
||||
⊆xs′ : free N ⊆ xs′
|
||||
⊆xs′ = \\-to-∷ ⊆xs
|
||||
|
||||
⊢σ : ∀ {w C} → w ∈ ys → Δ ∋ w ⦂ C → Δ′ ∋ w ⦂ C
|
||||
⊢σ w∈ ⊢w = S (fresh-lemma w∈) ⊢w
|
||||
|
||||
⊢ρ′ : ∀ {w C} → w ∈ xs′ → Γ′ ∋ w ⦂ C → Δ′ ⊢ ρ′ w ⦂ C
|
||||
⊢ρ′ {w} _ Z with w ≟ x
|
||||
... | yes _ = ` Z
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ′ {w} w∈′ (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = ⊢rename {Δ} {Δ′} {ys} ⊢σ (Σ w∈) (⊢ρ w∈ ⊢w)
|
||||
where
|
||||
w∈ = there⁻¹ w∈′ w≢
|
||||
|
||||
⊢subst Σ ⊢ρ ⊆xs (⊢L · ⊢M)
|
||||
= ⊢subst Σ ⊢ρ L⊆ ⊢L · ⊢subst Σ ⊢ρ M⊆ ⊢M
|
||||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
|
||||
-}
|
||||
\end{code}
|
||||
|
||||
### Substitution preserves types, specific case
|
||||
|
||||
\begin{code}
|
||||
infixl 5 _//_
|
||||
_//_ : Env → List Id → Env
|
||||
Γ // [] = Γ
|
||||
ε // (y ∷ ys) = ε
|
||||
(Γ , x ⦂ A) // (y ∷ ys) with x ≟ y
|
||||
... | yes _ = Γ // ys , x ⦂ A
|
||||
... | no _ = Γ // ys
|
||||
|
||||
//-lemma : ∀ {Γ xs} → dom (Γ // xs) ≡ xs
|
||||
//-lemma = ?
|
||||
|
||||
⊢stronger : ∀ {Γ ys M A}
|
||||
→ free M ⊆ ys
|
||||
→ Γ ⊢ M ⦂ A
|
||||
-------------------
|
||||
→ Γ // ys ⊢ M ⦂ A
|
||||
⊢stronger = ?
|
||||
|
||||
⊢weaker : ∀ {Γ ys M A}
|
||||
→ free M ⊆ ys
|
||||
→ Γ // ys ⊢ M ⦂ A
|
||||
---------------
|
||||
→ Γ ⊢ M ⦂ A
|
||||
⊢weaker = ?
|
||||
|
||||
⊢substitution₀ : ∀ {Δ x A N B M}
|
||||
→ dom Δ ⊆ free M ++ (free N \\ x)
|
||||
→ Δ , x ⦂ A ⊢ N ⦂ B
|
||||
→ Δ ⊢ M ⦂ A
|
||||
---------------------
|
||||
→ Δ ⊢ N [ x := M ] ⦂ B
|
||||
⊢substitution₀ = ?
|
||||
|
||||
⊢substitution : ∀ {Γ x A N B M}
|
||||
→ Γ , x ⦂ A ⊢ N ⦂ B
|
||||
→ Γ ⊢ M ⦂ A
|
||||
--------------------
|
||||
→ Γ ⊢ N [ x := M ] ⦂ B
|
||||
⊢substitution {Γ} {x} {A} {N} {B} {M} ⊢N ⊢M =
|
||||
⊢weaker {Γ} {ys} ⊆N[x:=M]
|
||||
(⊢substitution₀
|
||||
(refl-⊆ (//-lemma {Γ} {ys}))
|
||||
(⊢stronger {Γ , x ⦂ A} {x ∷ ys} ⊆N ⊢N)
|
||||
(⊢stronger {Γ} {ys} ⊆M ⊢M))
|
||||
where
|
||||
ys = free M ++ (free N \\ x)
|
||||
⊆N : free N ⊆ x ∷ ys
|
||||
⊆N = ?
|
||||
⊆M : free M ⊆ ys
|
||||
⊆M = ?
|
||||
⊆N[x:=M] : free (N [ x := M ]) ⊆ ys
|
||||
⊆N[x:=M] = ?
|
||||
|
||||
{-
|
||||
⊢substitution : ∀ {Γ x A N B M} →
|
||||
Γ , x ⦂ A ⊢ N ⦂ B →
|
||||
Γ ⊢ M ⦂ A →
|
||||
--------------------
|
||||
Γ ⊢ N [ x := M ] ⦂ B
|
||||
⊢substitution {Γ} {x} {A} {N} {B} {M} ⊢N ⊢M =
|
||||
subst {Γ′ , x ⦂ A} {Γ′} {ys} {ρ} Σ ⊢ρ ⊢N′
|
||||
where
|
||||
ys = free M ++ (free N \\ x)
|
||||
Δ = Γ // ys
|
||||
⊢N′ = rename {Γ , x ⦂ A} {Δ , x ⦂ A} ? ⊢N
|
||||
⊢M′ = rename {Γ} {Δ} ? ⊢M
|
||||
|
||||
-- rename is no longer sufficiently powerful
|
||||
-- it can do weakening but not strengthening
|
||||
|
||||
-- not clear where and how def'n of ys gets used
|
||||
|
||||
⊢subst {Γ′} {Γ} {xs} {ys} {ρ} Σ ⊢ρ {N} {B} ⊆xs ⊢N
|
||||
where
|
||||
Γ′ = Γ , x ⦂ A
|
||||
xs = free N
|
||||
ρ = ∅ , x ↦ M
|
||||
|
||||
Σ : ∀ {w} → w ∈ xs → free (ρ w) ⊆ ys
|
||||
Σ {w} w∈ y∈ with w ≟ x
|
||||
... | yes _ = ⊆-++₁ y∈
|
||||
... | no w≢ rewrite ∈-[_] y∈ = ⊆-++₂ (∈-≢-to-\\ w∈ w≢)
|
||||
|
||||
⊢ρ : ∀ {w B} → w ∈ xs → Γ′ ∋ w ⦂ B → Γ ⊢ ρ w ⦂ B
|
||||
⊢ρ {w} w∈ Z with w ≟ x
|
||||
... | yes _ = ⊢M
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ {w} w∈ (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = ` ⊢w
|
||||
|
||||
⊆xs : free N ⊆ xs
|
||||
⊆xs x∈ = x∈
|
||||
-}
|
||||
|
||||
{-
|
||||
⊢substitution : ∀ {Γ x A N B M} →
|
||||
Γ , x ⦂ A ⊢ N ⦂ B →
|
||||
Γ ⊢ M ⦂ A →
|
||||
--------------------
|
||||
Γ ⊢ N [ x := M ] ⦂ B
|
||||
⊢substitution {Γ} {x} {A} {N} {B} {M} ⊢N ⊢M =
|
||||
subst {Γ′ , x ⦂ A} {Γ′} {ys} {ρ} Σ ⊢ρ ⊢N′
|
||||
where
|
||||
ys = free M ++ (free N \\ x)
|
||||
Γ′ = Γ // ys
|
||||
⊢N′ = rename {Γ , x ⦂ A} {Γ′ , x ⦂ A} ? ⊢N
|
||||
⊢M′ = rename {Γ} {Γ′} ? ⊢M
|
||||
|
||||
-- rename is no longer sufficiently powerful
|
||||
-- it can do weakening but not strengthening
|
||||
|
||||
-- not clear where and how def'n of ys gets used
|
||||
|
||||
⊢subst {Γ′} {Γ} {xs} {ys} {ρ} Σ ⊢ρ {N} {B} ⊆xs ⊢N
|
||||
where
|
||||
Γ′ = Γ , x ⦂ A
|
||||
xs = free N
|
||||
ρ = ∅ , x ↦ M
|
||||
|
||||
Σ : ∀ {w} → w ∈ xs → free (ρ w) ⊆ ys
|
||||
Σ {w} w∈ y∈ with w ≟ x
|
||||
... | yes _ = ⊆-++₁ y∈
|
||||
... | no w≢ rewrite ∈-[_] y∈ = ⊆-++₂ (∈-≢-to-\\ w∈ w≢)
|
||||
|
||||
⊢ρ : ∀ {w B} → w ∈ xs → Γ′ ∋ w ⦂ B → Γ ⊢ ρ w ⦂ B
|
||||
⊢ρ {w} w∈ Z with w ≟ x
|
||||
... | yes _ = ⊢M
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ {w} w∈ (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = ` ⊢w
|
||||
|
||||
⊆xs : free N ⊆ xs
|
||||
⊆xs x∈ = x∈
|
||||
-}
|
||||
|
||||
{-
|
||||
⊢substitution : ∀ {Γ x A N B M} →
|
||||
Γ , x ⦂ A ⊢ N ⦂ B →
|
||||
Γ ⊢ M ⦂ A →
|
||||
--------------------
|
||||
Γ ⊢ N [ x := M ] ⦂ B
|
||||
⊢substitution {Γ} {x} {A} {N} {B} {M} ⊢N ⊢M =
|
||||
⊢subst {Γ′} {Γ} {xs} {ys} {ρ} Σ ⊢ρ {N} {B} ⊆xs ⊢N
|
||||
where
|
||||
Γ′ = Γ , x ⦂ A
|
||||
xs = free N
|
||||
ys = free M ++ (free N \\ x)
|
||||
ρ = ∅ , x ↦ M
|
||||
|
||||
Σ : ∀ {w} → w ∈ xs → free (ρ w) ⊆ ys
|
||||
Σ {w} w∈ y∈ with w ≟ x
|
||||
... | yes _ = ⊆-++₁ y∈
|
||||
... | no w≢ rewrite ∈-[_] y∈ = ⊆-++₂ (∈-≢-to-\\ w∈ w≢)
|
||||
|
||||
⊢ρ : ∀ {w B} → w ∈ xs → Γ′ ∋ w ⦂ B → Γ ⊢ ρ w ⦂ B
|
||||
⊢ρ {w} w∈ Z with w ≟ x
|
||||
... | yes _ = ⊢M
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ {w} w∈ (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = ` ⊢w
|
||||
|
||||
⊆xs : free N ⊆ xs
|
||||
⊆xs x∈ = x∈
|
||||
-}
|
||||
\end{code}
|
||||
|
||||
### Preservation
|
||||
|
||||
\begin{code}
|
||||
{-
|
||||
preservation : ∀ {Γ M N A}
|
||||
→ Γ ⊢ M ⦂ A
|
||||
→ M ⟶ N
|
||||
---------
|
||||
→ Γ ⊢ N ⦂ A
|
||||
preservation (` ⊢x) ()
|
||||
preservation (`λ ⊢N) ()
|
||||
preservation (⊢L · ⊢M) (ξ-⟹₁ L⟶L′) = preservation ⊢L L⟶L′ · ⊢M
|
||||
preservation (⊢V · ⊢M) (ξ-⟹₂ valV M⟶M′) = ⊢V · preservation ⊢M M⟶M′
|
||||
preservation ((`λ ⊢N) · ⊢W) (β-⟹ valW) = ⊢substitution ⊢N ⊢W
|
||||
-}
|
||||
\end{code}
|
||||
|
||||
|
||||
|
Loading…
Reference in a new issue