diff --git a/extra/extra/ComposeSubst.lagda b/extra/extra/ComposeSubst.lagda deleted file mode 100644 index 2dd2f5a0..00000000 --- a/extra/extra/ComposeSubst.lagda +++ /dev/null @@ -1,208 +0,0 @@ -\begin{code} -module extra.ComposeSubst where -\end{code} - -I was having trouble proving a lemma about composition of subsitution. -To find the proof, I had to strip away the well-scoping requirements -for terms. Next I'm going to see if I can do the proof with -well-scoped terms. -Jeremy - - -## Imports - -\begin{code} -import Relation.Binary.PropositionalEquality as Eq -open Eq using (_≡_; _≢_; refl; trans; sym; cong; cong₂; cong-app) -open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎) -open import Data.Nat -open import Function using (_∘_) -\end{code} - -\begin{code} -postulate - extensionality : ∀ {A B : Set} {f g : A → B} - → (∀ (x : A) → f x ≡ g x) - ----------------------- - → f ≡ g -\end{code} - -## Untyped Lambda Calculus - -\begin{code} -Var : Set -Var = ℕ - -data Term : Set where - - `_ : - Var - ---- - → Term - - ƛ_ : - Term - ---- - → Term - - _·_ : - Term - → Term - ---- - → Term - -ext : (Var → Var) - ----------- - → (Var → Var) -ext ρ zero = zero -ext ρ (suc x) = suc (ρ x) - -rename : - (Var → Var) - ------------- - → (Term → Term) -rename ρ (` x) = ` (ρ x) -rename ρ (ƛ N) = ƛ (rename (ext ρ) N) -rename ρ (L · M) = (rename ρ L) · (rename ρ M) - -exts : (Var → Term) - ------------ - → (Var → Term) -exts σ zero = ` zero -exts σ (suc x) = rename suc (σ x) - -subst : - (Var → Term) - ------------- - → (Term → Term) -subst σ (` k) = σ k -subst σ (ƛ N) = ƛ (subst (exts σ) N) -subst σ (L · M) = (subst σ L) · (subst σ M) - - -same-subst : (Var → Term) → (Var → Term) → Set -same-subst σ σ' = ∀{x : Var} → σ x ≡ σ' x - - -same-subst-ext : {σ σ' : Var → Term} - → same-subst σ σ' - → same-subst (exts σ) (exts σ' ) -same-subst-ext ss {x = zero} = refl -same-subst-ext ss {x = suc x} = cong (rename suc) ss - - -subst-equal : {σ σ' : Var → Term}{M : Term} - → same-subst σ σ' - → subst σ M ≡ subst σ' M -subst-equal {σ} {σ'} {` x} ss = ss -subst-equal {σ} {σ'} {ƛ M} ss = - let ih = subst-equal {σ = exts σ}{σ' = exts σ'} {M = M} - (λ {x} → same-subst-ext{σ}{σ'} ss {x}) in - cong ƛ_ ih -subst-equal {σ} {σ'} {L · M} ss = - let ih1 = subst-equal {σ} {σ'} {L} ss in - let ih2 = subst-equal {σ} {σ'} {M} ss in - cong₂ _·_ ih1 ih2 - - -compose-ext : ∀{ρ ρ' : Var → Var} - → (ext ρ) ∘ (ext ρ') ≡ ext (ρ ∘ ρ') -compose-ext{ρ}{ρ'} = extensionality lemma - where - lemma : (x : Var) → ext ρ (ext ρ' x) ≡ ext (ρ ∘ ρ') x - lemma zero = refl - lemma (suc x) = refl - - -compose-rename : ∀{M : Term}{ρ ρ' : Var → Var} - → rename ρ (rename ρ' M) ≡ rename (ρ ∘ ρ') M -compose-rename {` x} {ρ} {ρ'} = refl -compose-rename {ƛ N} {ρ} {ρ'} = cong ƛ_ G - where IH : {ρ : Var → Var} {ρ' : Var → Var} → - rename ρ (rename ρ' N) ≡ rename (ρ ∘ ρ') N - IH = compose-rename {N} - G : rename (ext ρ) (rename (ext ρ') N) - ≡ rename (ext (ρ ∘ ρ')) N - G = - begin - rename (ext ρ) (rename (ext ρ') N) - ≡⟨ IH ⟩ - rename ((ext ρ) ∘ (ext ρ')) N - ≡⟨ cong₂ rename compose-ext refl ⟩ - rename (ext (ρ ∘ ρ')) N - ∎ -compose-rename {L · M} {ρ} {ρ'} = cong₂ _·_ compose-rename compose-rename - - -commute-subst-rename : ∀{M : Term}{σ : Var → Term}{ρ : Var → Var} - → (∀{x : Var} → exts σ (ρ x) ≡ rename ρ (σ x)) - → subst (exts σ) (rename ρ M) ≡ rename ρ (subst σ M) -commute-subst-rename {` x} {σ}{ρ} r = r -commute-subst-rename {ƛ N} {σ}{ρ} r = cong ƛ_ G - where - IH : ∀ {σ : Var → Term}{ρ : Var → Var} - → (∀{x : Var} → exts σ (ρ x) ≡ rename ρ (σ x)) - → subst (exts σ) (rename ρ N) ≡ rename ρ (subst σ N) - IH = commute-subst-rename {N} - - H : ∀{x : Var} → - exts (exts σ) (ext ρ x) ≡ rename (ext ρ) (exts σ x) - H {zero} = refl - H {suc x} = - begin - rename suc (exts σ (ρ x)) - ≡⟨ cong₂ rename (extensionality (λ x₁ → refl)) r ⟩ - rename suc (rename ρ (σ x)) - ≡⟨ compose-rename ⟩ - rename (suc ∘ ρ) (σ x) - ≡⟨ cong₂ rename (extensionality λ x₁ → refl) refl ⟩ - rename ((ext ρ) ∘ suc) (σ x) - ≡⟨ sym compose-rename ⟩ - rename (ext ρ) (rename suc (σ x)) - ∎ - G : subst (exts (exts σ)) (rename (ext ρ) N) ≡ - rename (ext ρ) (subst (exts σ) N) - G = IH{σ = exts σ}{ρ = ext ρ} (λ {x} → H{x}) -commute-subst-rename {L · M} {σ} r = - cong₂ _·_ (commute-subst-rename{L} r) (commute-subst-rename{M} r) - - -subst-exts : ∀{x : Var} {σ₁ σ₂ : Var → Term} - → ((subst (exts σ₂)) ∘ (exts σ₁)) x ≡ exts ((subst σ₂) ∘ σ₁) x -subst-exts {zero} = refl -subst-exts {suc x}{σ₁}{σ₂} = G - where - G : ((subst (exts σ₂)) ∘ exts σ₁) (suc x) ≡ rename suc (((subst σ₂) ∘ σ₁) x) - G = - begin - ((subst (exts σ₂)) ∘ exts σ₁) (suc x) - ≡⟨⟩ - subst (exts σ₂) (rename suc (σ₁ x)) - ≡⟨ commute-subst-rename{σ₁ x}{σ₂}{suc} (λ {x₁} → refl) ⟩ - rename suc (subst σ₂ (σ₁ x)) - ≡⟨⟩ - rename suc (((subst σ₂) ∘ σ₁) x) - ∎ - - -subst-subst : ∀{M : Term} {σ₁ σ₂ : Var → Term} - → ((subst σ₂) ∘ (subst σ₁)) M ≡ subst (subst σ₂ ∘ σ₁) M -subst-subst {` x} {σ₁} {σ₂} = refl -subst-subst {ƛ N} {σ₁} {σ₂} = G - where - IH : ∀ {σ₁ σ₂ : ℕ → Term} → - ((subst σ₂) ∘ (subst σ₁)) N ≡ subst ((subst σ₂) ∘ σ₁) N - IH = subst-subst {N} - - G : ((subst σ₂) ∘ subst σ₁) (ƛ N) ≡ (ƛ subst (exts ((subst σ₂) ∘ σ₁)) N) - G = - begin - ((subst σ₂) ∘ subst σ₁) (ƛ N) - ≡⟨⟩ - ƛ ((subst (exts σ₂)) ∘ (subst (exts σ₁))) N - ≡⟨ cong ƛ_ (IH{σ₁ = exts σ₁}{σ₂ = exts σ₂}) ⟩ - ƛ subst ((subst (exts σ₂)) ∘ (exts σ₁)) N - ≡⟨ cong ƛ_ (subst-equal{M = N} λ {x} → subst-exts{x}) ⟩ - (ƛ subst (exts ((subst σ₂) ∘ σ₁)) N) - ∎ -subst-subst {L · M} {σ₁} {σ₂} = cong₂ _·_ (subst-subst{L}) (subst-subst{M}) -\end{code}