diff --git a/src/Equivalence.lagda b/src/Equivalence.lagda index 9dd88d46..f3e48235 100644 --- a/src/Equivalence.lagda +++ b/src/Equivalence.lagda @@ -281,11 +281,10 @@ that `even (n + m)` holds. Agda includes special notation to support just this kind of reasoning. To enable this notation, we use -pragmas to tell Agda which types and constructors -correspond to equivalence and refl. +pragmas to tell Agda which type +corresponds to equivalence. \begin{code} {-# BUILTIN EQUALITY _≡_ #-} -{-# BUILTIN REFL refl #-} \end{code} We can then prove the desired property as follows. diff --git a/src/Lists.lagda b/src/Lists.lagda index 047b2d0c..ff046a6e 100644 --- a/src/Lists.lagda +++ b/src/Lists.lagda @@ -14,7 +14,6 @@ import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_; _*_) -open import Data.Nat.Properties.Simple using (distribʳ-*-+; *-comm) \end{code} ## Lists @@ -72,8 +71,6 @@ of `List A` by `List ℕ`, say. Including the lines \begin{code} {-# BUILTIN LIST List #-} -{-# BUILTIN NIL [] #-} -{-# BUILTIN CONS _∷_ #-} \end{code} tells Agda that the type `List` corresponds to the Haskell type list, and the constructors `[]` and `_∷_` correspond to nil and