checked derivations work with C-R
This commit is contained in:
parent
2cf5421261
commit
2c6d88c3ee
2 changed files with 55 additions and 54 deletions
|
@ -85,16 +85,16 @@ infix 10 _⟹_
|
|||
data _⟹_ : Term → Term → Set where
|
||||
β⇒ : ∀ {x A N V} → Value V →
|
||||
(λ[ x ∶ A ] N) · V ⟹ N [ x ∶= V ]
|
||||
γ⇒₀ : ∀ {L L' M} →
|
||||
γ⇒₁ : ∀ {L L' M} →
|
||||
L ⟹ L' →
|
||||
L · M ⟹ L' · M
|
||||
γ⇒₁ : ∀ {V M M'} →
|
||||
γ⇒₂ : ∀ {V M M'} →
|
||||
Value V →
|
||||
M ⟹ M' →
|
||||
V · M ⟹ V · M'
|
||||
β𝔹₀ : ∀ {M N} →
|
||||
if true then M else N ⟹ M
|
||||
β𝔹₁ : ∀ {M N} →
|
||||
if true then M else N ⟹ M
|
||||
β𝔹₂ : ∀ {M N} →
|
||||
if false then M else N ⟹ N
|
||||
γ𝔹 : ∀ {L L' M N} →
|
||||
L ⟹ L' →
|
||||
|
@ -133,32 +133,32 @@ _∎ : ∀ M → M ⟹* M
|
|||
M ∎ = ⟨⟩
|
||||
\end{code}
|
||||
|
||||
## Example reductions
|
||||
## Example reduction derivations
|
||||
|
||||
\begin{code}
|
||||
example₀ : not · true ⟹* false
|
||||
example₀ =
|
||||
reduction₁ : not · true ⟹* false
|
||||
reduction₁ =
|
||||
not · true
|
||||
⟹⟨ β⇒ value-true ⟩
|
||||
if true then false else true
|
||||
⟹⟨ β𝔹₀ ⟩
|
||||
⟹⟨ β𝔹₁ ⟩
|
||||
false
|
||||
∎
|
||||
|
||||
example₁ : two · not · true ⟹* true
|
||||
example₁ =
|
||||
reduction₂ : two · not · true ⟹* true
|
||||
reduction₂ =
|
||||
two · not · true
|
||||
⟹⟨ γ⇒₀ (β⇒ value-λ) ⟩
|
||||
⟹⟨ γ⇒₁ (β⇒ value-λ) ⟩
|
||||
(λ[ x ∶ 𝔹 ] not · (not · var x)) · true
|
||||
⟹⟨ β⇒ value-true ⟩
|
||||
not · (not · true)
|
||||
⟹⟨ γ⇒₁ value-λ (β⇒ value-true) ⟩
|
||||
⟹⟨ γ⇒₂ value-λ (β⇒ value-true) ⟩
|
||||
not · (if true then false else true)
|
||||
⟹⟨ γ⇒₁ value-λ β𝔹₀ ⟩
|
||||
⟹⟨ γ⇒₂ value-λ β𝔹₁ ⟩
|
||||
not · false
|
||||
⟹⟨ β⇒ value-false ⟩
|
||||
if false then false else true
|
||||
⟹⟨ β𝔹₁ ⟩
|
||||
⟹⟨ β𝔹₂ ⟩
|
||||
true
|
||||
∎
|
||||
\end{code}
|
||||
|
@ -182,9 +182,9 @@ data _⊢_∶_ : Context → Term → Type → Set where
|
|||
Γ ⊢ L ∶ A ⇒ B →
|
||||
Γ ⊢ M ∶ A →
|
||||
Γ ⊢ L · M ∶ B
|
||||
𝔹-I₀ : ∀ {Γ} →
|
||||
Γ ⊢ true ∶ 𝔹
|
||||
𝔹-I₁ : ∀ {Γ} →
|
||||
Γ ⊢ true ∶ 𝔹
|
||||
𝔹-I₂ : ∀ {Γ} →
|
||||
Γ ⊢ false ∶ 𝔹
|
||||
𝔹-E : ∀ {Γ L M N A} →
|
||||
Γ ⊢ L ∶ 𝔹 →
|
||||
|
@ -196,40 +196,45 @@ data _⊢_∶_ : Context → Term → Type → Set where
|
|||
## Example type derivations
|
||||
|
||||
\begin{code}
|
||||
example₂ : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹
|
||||
example₂ = ⇒-I (𝔹-E (Ax refl) 𝔹-I₁ 𝔹-I₀)
|
||||
typing₁ : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹
|
||||
typing₁ = ⇒-I (𝔹-E (Ax refl) 𝔹-I₂ 𝔹-I₁)
|
||||
|
||||
example₃ : ∅ ⊢ two ∶ (𝔹 ⇒ 𝔹) ⇒ 𝔹 ⇒ 𝔹
|
||||
example₃ = ⇒-I (⇒-I (⇒-E (Ax refl) (⇒-E (Ax refl) (Ax refl))))
|
||||
typing₂ : ∅ ⊢ two ∶ (𝔹 ⇒ 𝔹) ⇒ 𝔹 ⇒ 𝔹
|
||||
typing₂ = ⇒-I (⇒-I (⇒-E (Ax refl) (⇒-E (Ax refl) (Ax refl))))
|
||||
\end{code}
|
||||
|
||||
Construction of a type derivation is best done interactively.
|
||||
We start with the declaration:
|
||||
|
||||
`example₂ : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹`
|
||||
`example₂ = ?`
|
||||
`typing₁ : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹`
|
||||
`typing₁ = ?`
|
||||
|
||||
Typing control-L causes Agda to create a hole and tell us its expected type.
|
||||
|
||||
`example₂ = { }0`
|
||||
`typing₁ = { }0`
|
||||
`?0 : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹`
|
||||
|
||||
Now we fill in the hole, observing that the outermost term in `not` in a `λ`,
|
||||
which is typed using `⇒-I`. The `⇒-I` rule in turn takes one argument, which
|
||||
we again specify with a hole.
|
||||
|
||||
`example₂ = ⇒-I { }0`
|
||||
`typing₁ = ⇒-I { }0`
|
||||
`?0 : ∅ , x ∶ 𝔹 ⊢ if var x then false else true ∶ 𝔹`
|
||||
|
||||
Again we fill in the hole, observing that the outermost term is now
|
||||
`if_then_else_`, which is typed using `𝔹-E`. The `𝔹-E` rule in turn takes
|
||||
three arguments, which we again specify with holes.
|
||||
|
||||
`example₂ = ⇒-I (𝔹-E { }0 { }1 { }2)`
|
||||
`typing₁ = ⇒-I (𝔹-E { }0 { }1 { }2)`
|
||||
`?0 : ∅ , x ∶ 𝔹 ⊢ var x ∶ 𝔹`
|
||||
`?1 : ∅ , x ∶ 𝔹 ⊢ false ∶ 𝔹`
|
||||
`?2 : ∅ , x ∶ 𝔹 ⊢ true ∶ 𝔹`
|
||||
|
||||
Again we fill in the three holes, observing that `var x`, `false`, and `true`
|
||||
are typed using `Ax`, `𝔹-I₂`, and `𝔹-I₁` respectively. The `Ax` rule in turn
|
||||
takes an argument, to show that `(∅ , x ∶ 𝔹) x = just 𝔹`, which can in turn
|
||||
be computed with a hole.
|
||||
|
||||
Filling in the three holes gives the derivation above.
|
||||
|
||||
|
||||
|
|
|
@ -26,11 +26,11 @@ open import Stlc
|
|||
|
||||
## Canonical Forms
|
||||
|
||||
As we saw for the simple calculus in the [Stlc]({{ "Stlc" | relative_url }})
|
||||
chapter, the first step in establishing basic properties of reduction and types
|
||||
As we saw for the simple calculus in Chapter [Types]({{ "Types" | relative_url }}),
|
||||
the first step in establishing basic properties of reduction and typing
|
||||
is to identify the possible _canonical forms_ (i.e., well-typed closed values)
|
||||
belonging to each type. For `bool`, these are the boolean values `true` and
|
||||
`false`. For arrow types, the canonical forms are lambda-abstractions.
|
||||
belonging to each type. For function types the canonical forms are lambda-abstractions,
|
||||
while for boolean types they are values `true` and `false`.
|
||||
|
||||
\begin{code}
|
||||
data canonical_for_ : Term → Type → Set where
|
||||
|
@ -38,16 +38,12 @@ data canonical_for_ : Term → Type → Set where
|
|||
canonical-true : canonical true for 𝔹
|
||||
canonical-false : canonical false for 𝔹
|
||||
|
||||
-- canonical_for_ : Term → Type → Set
|
||||
-- canonical L for 𝔹 = L ≡ true ⊎ L ≡ false
|
||||
-- canonical L for (A ⇒ B) = ∃₂ λ x N → L ≡ λ[ x ∶ A ] N
|
||||
|
||||
canonicalFormsLemma : ∀ {L A} → ∅ ⊢ L ∶ A → Value L → canonical L for A
|
||||
canonicalFormsLemma (Ax ⊢x) ()
|
||||
canonicalFormsLemma (⇒-I ⊢N) value-λ = canonical-λ -- _ , _ , refl
|
||||
canonicalFormsLemma (⇒-I ⊢N) value-λ = canonical-λ
|
||||
canonicalFormsLemma (⇒-E ⊢L ⊢M) ()
|
||||
canonicalFormsLemma 𝔹-I₁ value-true = canonical-true -- inj₁ refl
|
||||
canonicalFormsLemma 𝔹-I₂ value-false = canonical-false -- inj₂ refl
|
||||
canonicalFormsLemma 𝔹-I₁ value-true = canonical-true
|
||||
canonicalFormsLemma 𝔹-I₂ value-false = canonical-false
|
||||
canonicalFormsLemma (𝔹-E ⊢L ⊢M ⊢N) ()
|
||||
\end{code}
|
||||
|
||||
|
@ -62,9 +58,9 @@ progress : ∀ {M A} → ∅ ⊢ M ∶ A → Value M ⊎ ∃ λ N → M ⟹ N
|
|||
\end{code}
|
||||
|
||||
The proof is a relatively
|
||||
straightforward extension of the progress proof we saw in the
|
||||
[Types]({{ "Types" | relative_url }}) chapter.
|
||||
We'll give the proof in English
|
||||
straightforward extension of the progress proof we saw in
|
||||
[Types]({{ "Types" | relative_url }}).
|
||||
We give the proof in English
|
||||
first, then the formal version.
|
||||
|
||||
_Proof_: By induction on the derivation of `∅ ⊢ M ∶ A`.
|
||||
|
@ -72,26 +68,26 @@ _Proof_: By induction on the derivation of `∅ ⊢ M ∶ A`.
|
|||
- The last rule of the derivation cannot be `var`,
|
||||
since a variable is never well typed in an empty context.
|
||||
|
||||
- The `true`, `false`, and `abs` cases are trivial, since in
|
||||
each of these cases we can see by inspecting the rule that `t`
|
||||
is a value.
|
||||
- The `λ`, `true`, and `false` cases are trivial, since in
|
||||
each of these cases we can see by inspecting the rule that
|
||||
the term is a value.
|
||||
|
||||
- If the last rule of the derivation is `app`, then `t` has the
|
||||
form `t_1\;t_2` for som e`t_1` and `t_2`, where we know that
|
||||
`t_1` and `t_2` are also well typed in the empty context; in particular,
|
||||
there exists a type `B` such that `\vdash t_1 : A\to T` and
|
||||
`\vdash t_2 : B`. By the induction hypothesis, either `t_1` is a
|
||||
- If the last rule of the derivation is `⇒-E`, then the term has the
|
||||
form `L · M` for some `L` and `M`, where we know that
|
||||
`L` and `M` are also well typed in the empty context; in particular,
|
||||
there exists types `A` and `B` such that `∅ ⊢ L ∶ A ⇒ B` and
|
||||
`∅ ⊢ M ∶ A`. By the induction hypothesis, either `L` is a
|
||||
value or it can take a reduction step.
|
||||
|
||||
- If `t_1` is a value, then consider `t_2`, which by the other
|
||||
- If `L` is a value, then consider `M`, which by the other
|
||||
induction hypothesis must also either be a value or take a step.
|
||||
|
||||
- Suppose `t_2` is a value. Since `t_1` is a value with an
|
||||
arrow type, it must be a lambda abstraction; hence `t_1\;t_2`
|
||||
can take a step by `red`.
|
||||
- Suppose `M` is a value. Since `L` is a value with a
|
||||
function type, it must be a lambda abstraction;
|
||||
hence `L · M` can take a step by `β⇒`.
|
||||
|
||||
- Otherwise, `t_2` can take a step, and hence so can `t_1\;t_2`
|
||||
by `app2`.
|
||||
- Otherwise, `M` can take a step to `M′`, and hence so
|
||||
can `L · M` by `γ⇒₂`.
|
||||
|
||||
- If `t_1` can take a step, then so can `t_1 t_2` by `app1`.
|
||||
|
||||
|
|
Loading…
Reference in a new issue