updated derivations in Stlc
This commit is contained in:
parent
04797f1632
commit
2cf5421261
1 changed files with 79 additions and 62 deletions
141
src/Stlc.lagda
141
src/Stlc.lagda
|
@ -11,17 +11,9 @@ This chapter defines the simply-typed lambda calculus.
|
||||||
open import Maps using (Id; id; _≟_; PartialMap; module PartialMap)
|
open import Maps using (Id; id; _≟_; PartialMap; module PartialMap)
|
||||||
open PartialMap using (∅) renaming (_,_↦_ to _,_∶_)
|
open PartialMap using (∅) renaming (_,_↦_ to _,_∶_)
|
||||||
open import Data.String using (String)
|
open import Data.String using (String)
|
||||||
open import Data.Empty using (⊥; ⊥-elim)
|
|
||||||
open import Data.Maybe using (Maybe; just; nothing)
|
open import Data.Maybe using (Maybe; just; nothing)
|
||||||
open import Data.Nat using (ℕ; suc; zero; _+_)
|
|
||||||
open import Relation.Nullary using (Dec; yes; no)
|
open import Relation.Nullary using (Dec; yes; no)
|
||||||
open import Relation.Nullary.Decidable using (⌊_⌋)
|
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
|
||||||
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl)
|
|
||||||
open import Relation.Binary using (Preorder)
|
|
||||||
import Relation.Binary.PreorderReasoning as PreorderReasoning
|
|
||||||
-- open import Relation.Binary.Core using (Rel)
|
|
||||||
-- open import Data.Product using (∃; ∄; _,_)
|
|
||||||
-- open import Function using (_∘_; _$_)
|
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
|
|
||||||
|
@ -49,21 +41,15 @@ data Term : Set where
|
||||||
if_then_else_ : Term → Term → Term → Term
|
if_then_else_ : Term → Term → Term → Term
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
Some examples.
|
Example terms.
|
||||||
\begin{code}
|
\begin{code}
|
||||||
f x y : Id
|
f x : Id
|
||||||
f = id "f"
|
f = id "f"
|
||||||
x = id "x"
|
x = id "x"
|
||||||
y = id "y"
|
|
||||||
|
|
||||||
I I² K not : Term
|
not two : Term
|
||||||
I = λ[ x ∶ 𝔹 ] var x
|
|
||||||
I² = λ[ f ∶ 𝔹 ⇒ 𝔹 ] λ[ x ∶ 𝔹 ] var f · var x
|
|
||||||
K = λ[ x ∶ 𝔹 ] λ[ y ∶ 𝔹 ] var x
|
|
||||||
not = λ[ x ∶ 𝔹 ] (if var x then false else true)
|
not = λ[ x ∶ 𝔹 ] (if var x then false else true)
|
||||||
|
two = λ[ f ∶ 𝔹 ⇒ 𝔹 ] λ[ x ∶ 𝔹 ] var f · (var f · var x)
|
||||||
check : not ≡ λ[ x ∶ 𝔹 ] (if var x then false else true)
|
|
||||||
check = refl
|
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
## Values
|
## Values
|
||||||
|
@ -99,23 +85,23 @@ infix 10 _⟹_
|
||||||
data _⟹_ : Term → Term → Set where
|
data _⟹_ : Term → Term → Set where
|
||||||
β⇒ : ∀ {x A N V} → Value V →
|
β⇒ : ∀ {x A N V} → Value V →
|
||||||
(λ[ x ∶ A ] N) · V ⟹ N [ x ∶= V ]
|
(λ[ x ∶ A ] N) · V ⟹ N [ x ∶= V ]
|
||||||
γ⇒₁ : ∀ {L L' M} →
|
γ⇒₀ : ∀ {L L' M} →
|
||||||
L ⟹ L' →
|
L ⟹ L' →
|
||||||
L · M ⟹ L' · M
|
L · M ⟹ L' · M
|
||||||
γ⇒₂ : ∀ {V M M'} →
|
γ⇒₁ : ∀ {V M M'} →
|
||||||
Value V →
|
Value V →
|
||||||
M ⟹ M' →
|
M ⟹ M' →
|
||||||
V · M ⟹ V · M'
|
V · M ⟹ V · M'
|
||||||
β𝔹₁ : ∀ {M N} →
|
β𝔹₀ : ∀ {M N} →
|
||||||
if true then M else N ⟹ M
|
if true then M else N ⟹ M
|
||||||
β𝔹₂ : ∀ {M N} →
|
β𝔹₁ : ∀ {M N} →
|
||||||
if false then M else N ⟹ N
|
if false then M else N ⟹ N
|
||||||
γ𝔹 : ∀ {L L' M N} →
|
γ𝔹 : ∀ {L L' M N} →
|
||||||
L ⟹ L' →
|
L ⟹ L' →
|
||||||
if L then M else N ⟹ if L' then M else N
|
if L then M else N ⟹ if L' then M else N
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
## Reflexive and transitive closure of a relation
|
## Reflexive and transitive closure
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
Rel : Set → Set₁
|
Rel : Set → Set₁
|
||||||
|
@ -127,65 +113,54 @@ data _* {A : Set} (R : Rel A) : Rel A where
|
||||||
⟨⟩ : ∀ {x : A} → (R *) x x
|
⟨⟩ : ∀ {x : A} → (R *) x x
|
||||||
⟨_⟩ : ∀ {x y : A} → R x y → (R *) x y
|
⟨_⟩ : ∀ {x y : A} → R x y → (R *) x y
|
||||||
_>>_ : ∀ {x y z : A} → (R *) x y → (R *) y z → (R *) x z
|
_>>_ : ∀ {x y z : A} → (R *) x y → (R *) y z → (R *) x z
|
||||||
\end{code}
|
|
||||||
|
|
||||||
\begin{code}
|
|
||||||
infix 10 _⟹*_
|
infix 10 _⟹*_
|
||||||
|
|
||||||
_⟹*_ : Rel Term
|
_⟹*_ : Rel Term
|
||||||
_⟹*_ = (_⟹_) *
|
_⟹*_ = (_⟹_) *
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
|
## Notation for setting out reductions
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
⟹*-Preorder : Preorder _ _ _
|
infixr 2 _⟹⟨_⟩_
|
||||||
⟹*-Preorder = record
|
infix 3 _∎
|
||||||
{ Carrier = Term
|
|
||||||
; _≈_ = _≡_
|
|
||||||
; _∼_ = _⟹*_
|
|
||||||
; isPreorder = record
|
|
||||||
{ isEquivalence = P.isEquivalence
|
|
||||||
; reflexive = λ {refl → ⟨⟩}
|
|
||||||
; trans = _>>_
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
open PreorderReasoning ⟹*-Preorder
|
_⟹⟨_⟩_ : ∀ L {M N} → L ⟹ M → M ⟹* N → L ⟹* N
|
||||||
using (_IsRelatedTo_; begin_; _∎) renaming (_≈⟨_⟩_ to _≡⟨_⟩_; _∼⟨_⟩_ to _⟹*⟨_⟩_)
|
L ⟹⟨ L⟹M ⟩ M⟹*N = ⟨ L⟹M ⟩ >> M⟹*N
|
||||||
|
|
||||||
infixr 2 _⟹*⟪_⟫_
|
_∎ : ∀ M → M ⟹* M
|
||||||
|
M ∎ = ⟨⟩
|
||||||
_⟹*⟪_⟫_ : ∀ x {y z} → x ⟹ y → y IsRelatedTo z → x IsRelatedTo z
|
|
||||||
x ⟹*⟪ x⟹y ⟫ yz = x ⟹*⟨ ⟨ x⟹y ⟩ ⟩ yz
|
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
Example evaluation.
|
## Example reductions
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
example₀ : not · true ⟹* false
|
example₀ : not · true ⟹* false
|
||||||
example₀ =
|
example₀ =
|
||||||
begin
|
|
||||||
not · true
|
not · true
|
||||||
⟹*⟪ β⇒ value-true ⟫
|
⟹⟨ β⇒ value-true ⟩
|
||||||
if true then false else true
|
if true then false else true
|
||||||
⟹*⟪ β𝔹₁ ⟫
|
⟹⟨ β𝔹₀ ⟩
|
||||||
false
|
false
|
||||||
∎
|
∎
|
||||||
|
|
||||||
example₁ : I² · I · (not · false) ⟹* true
|
example₁ : two · not · true ⟹* true
|
||||||
example₁ =
|
example₁ =
|
||||||
begin
|
two · not · true
|
||||||
I² · I · (not · false)
|
⟹⟨ γ⇒₀ (β⇒ value-λ) ⟩
|
||||||
⟹*⟪ γ⇒₁ (β⇒ value-λ) ⟫
|
(λ[ x ∶ 𝔹 ] not · (not · var x)) · true
|
||||||
(λ[ x ∶ 𝔹 ] I · var x) · (not · false)
|
⟹⟨ β⇒ value-true ⟩
|
||||||
⟹*⟪ γ⇒₂ value-λ (β⇒ value-false) ⟫
|
not · (not · true)
|
||||||
(λ[ x ∶ 𝔹 ] I · var x) · (if false then false else true)
|
⟹⟨ γ⇒₁ value-λ (β⇒ value-true) ⟩
|
||||||
⟹*⟪ γ⇒₂ value-λ β𝔹₂ ⟫
|
not · (if true then false else true)
|
||||||
(λ[ x ∶ 𝔹 ] I · var x) · true
|
⟹⟨ γ⇒₁ value-λ β𝔹₀ ⟩
|
||||||
⟹*⟪ β⇒ value-true ⟫
|
not · false
|
||||||
I · true
|
⟹⟨ β⇒ value-false ⟩
|
||||||
⟹*⟪ β⇒ value-true ⟫
|
if false then false else true
|
||||||
|
⟹⟨ β𝔹₁ ⟩
|
||||||
true
|
true
|
||||||
∎
|
∎
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
## Type rules
|
## Type rules
|
||||||
|
@ -207,9 +182,9 @@ data _⊢_∶_ : Context → Term → Type → Set where
|
||||||
Γ ⊢ L ∶ A ⇒ B →
|
Γ ⊢ L ∶ A ⇒ B →
|
||||||
Γ ⊢ M ∶ A →
|
Γ ⊢ M ∶ A →
|
||||||
Γ ⊢ L · M ∶ B
|
Γ ⊢ L · M ∶ B
|
||||||
𝔹-I₁ : ∀ {Γ} →
|
𝔹-I₀ : ∀ {Γ} →
|
||||||
Γ ⊢ true ∶ 𝔹
|
Γ ⊢ true ∶ 𝔹
|
||||||
𝔹-I₂ : ∀ {Γ} →
|
𝔹-I₁ : ∀ {Γ} →
|
||||||
Γ ⊢ false ∶ 𝔹
|
Γ ⊢ false ∶ 𝔹
|
||||||
𝔹-E : ∀ {Γ L M N A} →
|
𝔹-E : ∀ {Γ L M N A} →
|
||||||
Γ ⊢ L ∶ 𝔹 →
|
Γ ⊢ L ∶ 𝔹 →
|
||||||
|
@ -217,3 +192,45 @@ data _⊢_∶_ : Context → Term → Type → Set where
|
||||||
Γ ⊢ N ∶ A →
|
Γ ⊢ N ∶ A →
|
||||||
Γ ⊢ if L then M else N ∶ A
|
Γ ⊢ if L then M else N ∶ A
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
|
## Example type derivations
|
||||||
|
|
||||||
|
\begin{code}
|
||||||
|
example₂ : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹
|
||||||
|
example₂ = ⇒-I (𝔹-E (Ax refl) 𝔹-I₁ 𝔹-I₀)
|
||||||
|
|
||||||
|
example₃ : ∅ ⊢ two ∶ (𝔹 ⇒ 𝔹) ⇒ 𝔹 ⇒ 𝔹
|
||||||
|
example₃ = ⇒-I (⇒-I (⇒-E (Ax refl) (⇒-E (Ax refl) (Ax refl))))
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
Construction of a type derivation is best done interactively.
|
||||||
|
We start with the declaration:
|
||||||
|
|
||||||
|
`example₂ : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹`
|
||||||
|
`example₂ = ?`
|
||||||
|
|
||||||
|
Typing control-L causes Agda to create a hole and tell us its expected type.
|
||||||
|
|
||||||
|
`example₂ = { }0`
|
||||||
|
`?0 : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹`
|
||||||
|
|
||||||
|
Now we fill in the hole, observing that the outermost term in `not` in a `λ`,
|
||||||
|
which is typed using `⇒-I`. The `⇒-I` rule in turn takes one argument, which
|
||||||
|
we again specify with a hole.
|
||||||
|
|
||||||
|
`example₂ = ⇒-I { }0`
|
||||||
|
`?0 : ∅ , x ∶ 𝔹 ⊢ if var x then false else true ∶ 𝔹`
|
||||||
|
|
||||||
|
Again we fill in the hole, observing that the outermost term is now
|
||||||
|
`if_then_else_`, which is typed using `𝔹-E`. The `𝔹-E` rule in turn takes
|
||||||
|
three arguments, which we again specify with holes.
|
||||||
|
|
||||||
|
`example₂ = ⇒-I (𝔹-E { }0 { }1 { }2)`
|
||||||
|
`?0 : ∅ , x ∶ 𝔹 ⊢ var x ∶ 𝔹`
|
||||||
|
`?1 : ∅ , x ∶ 𝔹 ⊢ false ∶ 𝔹`
|
||||||
|
`?2 : ∅ , x ∶ 𝔹 ⊢ true ∶ 𝔹`
|
||||||
|
|
||||||
|
Filling in the three holes gives the derivation above.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue