From 2f1f78d8b32074c1117bbc7c89e3f069bfa28eb8 Mon Sep 17 00:00:00 2001 From: Philip Wadler Date: Wed, 12 Jul 2017 15:52:31 +0100 Subject: [PATCH] fit to available space --- out/StlcProp.md | 4492 ++++++++++++++++++++++---------------------- src/StlcProp.lagda | 8 +- 2 files changed, 2252 insertions(+), 2248 deletions(-) diff --git a/out/StlcProp.md b/out/StlcProp.md index d98d62e2..9191fb82 100644 --- a/out/StlcProp.md +++ b/out/StlcProp.md @@ -4548,141 +4548,113 @@ _Proof_: By induction on the derivation of `Γ ⊢ M ∶ A`. >) + (context-lemma (Γ~Γ′ free-·₂) ⊢M) context-lemma Γ~Γ′ 𝔹-I₁ = 𝔹-I₁ context-lemma Γ~Γ′ 𝔹-I₂ = 𝔹-I₂ -context-lemma Γ~Γ′ (𝔹-E ⊢L ⊢M𝔹-I₂ ⊢N) - = 𝔹-E (𝔹-I₂ +context-lemma (Γ~Γ′ (𝔹-E ⊢L free-if₁⊢M ⊢N) = ⊢L)𝔹-E (Γ~Γ′ free-if₂free-if₁) ⊢M⊢L) + (context-lemma (Γ~Γ′ free-if₃free-if₂) ⊢M) + (context-lemma (Γ~Γ′ free-if₃) ⊢N) @@ -4762,162 +4764,162 @@ _Lemma_: If `Γ , x ∶ A ⊢ N ∶ B` and `∅ ⊢ V ∶ A`, then
 
-preservation-[:=] :  {Γ x A N B V}
-                  (Γ , x  A)  N  B
-                    V  A
-                  Γ  (N [ x := V: ]) {Γ x A N B V}
+                  (Γ , x  A)  N  B
+                    V  A
+                  Γ  (N [ x := V ])  B
 
@@ -4991,425 +4993,425 @@ we show that if `∅ ⊢ V ∶ A` then `Γ ⊢ N [ x := V ] ∶ B`.
 We need a couple of lemmas. A closed term can be weakened to any context, and `just` is injective.
 
 
-weaken-closed :  {V A Γ}    V  A  Γ  V  A
-weaken-closed {V} {A} {Γ} ⊢V = context-lemma Γ~Γ′ ⊢V
-  where
-  Γ~Γ′ :  {x}  x  V   x A Γ} x
-  Γ~Γ′   V {x} A x∈V Γ = ⊥-elimV (x∉V x∈V)A
-    where
-    x∉Vweaken-closed {V} {A} {Γ} ⊢V := ¬context-lemma (xΓ~Γ′  V)
-    x∉V = ∅⊢-closed ⊢V {x}
-
-just-injectivewhere
+  Γ~Γ′ :  {x}  x  V :  {X : Set} {x y Γ x
+  Γ~Γ′ : X}  _≡_ {Ax} x∈V = Maybe⊥-elim (x∉V X} x∈V(just x) (just y) 
+    where
+    x∉V x: ¬ (x  V)
+    x∉V = ∅⊢-closed ⊢V {x}
+
+just-injective :  {X : Set} {x y : X}  _≡_ {A = Maybe X} (just x) (just y)  x  y
 just-injective refl = refl
 
@@ -5417,937 +5419,937 @@ We need a couple of lemmas. A closed term can be weakened to any context, and `j
 
 
 
-preservation-[:=] {Γ} {x} {A} (Ax {Γ,x∶A} {x′} {B} [Γ,x∶A]x′≡B) ⊢V with x  x′
-...| yes x≡x′ rewrite just-injective [Γ,x∶A]x′≡B  =  weaken-closed ⊢V
-...| no  x≢x′  =  (Ax {Γ,x∶A} {x′} {B} [Γ,x∶A]x′≡B) ⊢V with x  x′
 preservation-[:=]...| {Γ}yes {x} {A}x≡x′ {λ[rewrite x′  A′ ] N′} {.A′just-injective  B′} {V} (⇒-I[Γ,x∶A]x′≡B  = ⊢N′) ⊢V with x  weaken-closed  x′⊢V
 ...| yes x≡x′ rewrite x≡x′ no  x≢x′  =  Ax context-lemma[Γ,x∶A]x′≡B
+preservation-[:=] Γ′~Γ (⇒-I{Γ} ⊢N′)
-  where
-  Γ′~Γ{x} {A} {λ[ x′  A′ :]  N′{y} {.A′ y B′} (λ[ x′{V}  A′(⇒-I ] N′⊢N′) ⊢V (Γ ,with x  x′  A) y 
+...| Γ y
-  Γ′~Γ {y} (free-λ x′≢y y∈N′) with x′  y
-  ...| yes x′≡y  x≡x′ rewrite x≡x′ = ⊥-elimcontext-lemma Γ′~Γ (⇒-I ⊢N′)
+  where
+  Γ′~Γ :  (x′≢y{y}  x′≡yy  )
-  ...|(λ[ x′  noA′  _     = refl
-...|] no  x≢x′N′) = ⇒-I ⊢N′V
-  where
-  x′x⊢N′ : (Γ , x′  A) y  Γ y
+  Γ′~Γ {y} (free-λ x′≢y y∈N′) with x′ A′ , x  Ay
+  ...| yes N′x′≡y  =  B′
-  x′x⊢N′⊥-elim rewrite(x′≢y update-permute Γ x A x′ A′ x≢x′ = ⊢N′x′≡y)
   ...| no  _     = refl
+...| no  x≢x′ = ⇒-I ⊢N′V : (Γ , x′  A′)
+  where  N′ [ x
+  x′x⊢N′ :=: VΓ ], x′  A′ , x  A  N′  B′
   ⊢N′V = preservation-[:=] x′x⊢N′ ⊢Vrewrite
-preservation-[:=] (⇒-Eupdate-permute ⊢LΓ ⊢M)x ⊢VA x′ A′ x≢x′ = ⇒-E⊢N′
+  ⊢N′V : (preservation-[:=]Γ ⊢L, x′  A′) ⊢V) (preservation-[:=]N′ ⊢M[ ⊢V)x := V ]  B′
-⊢N′V = preservation-[:=] 𝔹-I₁x′x⊢N′ ⊢V = 𝔹-I₁
 preservation-[:=] (⇒-E 𝔹-I₂⊢L ⊢M) ⊢V = 𝔹-I₂
-preservation-[:=]= ⇒-E (𝔹-Epreservation-[:=] ⊢L ⊢L ⊢M ⊢N) ⊢V) (preservation-[:=] ⊢M ⊢V)
+preservation-[:=] 𝔹-I₁ ⊢V = 𝔹-I₁
+preservation-[:=] 𝔹-I₂ ⊢V = 𝔹-I₂
+preservation-[:=] (𝔹-E ⊢L ⊢M ⊢N) ⊢V =
   𝔹-E (preservation-[:=] ⊢L ⊢V) (preservation-[:=] ⊢M ⊢V) (preservation-[:=] ⊢N ⊢V)
 
@@ -6363,95 +6365,95 @@ reduction preserves types.
 
 
 
-preservation :  {M N A}    M  A  M  N    N  A
 
@@ -6489,435 +6491,435 @@ _Proof_: By induction on the derivation of `∅ ⊢ M ∶ A`.
 
 
 
-preservation (Ax Γx≡A) ()
-preservation (⇒-I ⊢N) ()
-preservation (⇒-E (⇒-I ⊢N) ⊢V) (βλ· valueV) = preservation-[:=] ⊢N ⊢V
-preservation (⇒-E ⊢L ⊢M) (ξ·₁ L⟹L′) with preservation ⊢L L⟹L′()
 preservation (⇒-I ⊢N) ()
+preservation ...|(⇒-E ⊢L′(⇒-I ⊢N) ⊢V) (βλ· valueV) = ⇒-Epreservation-[:=] ⊢L′⊢N ⊢M⊢V
 preservation (⇒-E ⊢L ⊢M) (ξ·₂ valueL M⟹M′) with preservation ⊢M M⟹M′
-...| ⊢M′ = ⇒-E ⊢L ⊢M′
-preservation 𝔹-I₁ ()
-preservation 𝔹-I₂ ()
-preservation (𝔹-E⇒-E 𝔹-I₁⊢L ⊢M) (ξ·₁ L⟹L′) with preservation ⊢L L⟹L′
+...| ⊢L′ = ⇒-E ⊢L′ ⊢M
+preservation (⇒-E ⊢L ⊢M) (ξ·₂ valueL ⊢M ⊢NM⟹M′) βif-truewith =preservation ⊢M M⟹M′
 preservation...| (𝔹-E⊢M′ 𝔹-I₂= ⊢M⇒-E ⊢N)⊢L βif-false = ⊢N⊢M′
 preservation 𝔹-I₁ ()
+preservation 𝔹-I₂ ()
+preservation (𝔹-E ⊢L𝔹-I₁ ⊢M ⊢N) (ξif L⟹L′) with preservation ⊢L L⟹L′βif-true = ⊢M
 ...| ⊢L′ = 𝔹-E ⊢L′ ⊢Mpreservation (𝔹-E 𝔹-I₂ ⊢M ⊢N) βif-false = ⊢N
+preservation (𝔹-E ⊢L ⊢M ⊢N) (ξif L⟹L′) with preservation ⊢L L⟹L′
+...| ⊢L′ = 𝔹-E ⊢L′ ⊢M ⊢N
 
@@ -6941,207 +6943,49 @@ term can _never_ reach a stuck state.
 
 
 
-Normal : Term  Set
-Normal M =  {N}  ¬ (M  N)
-
-Stuck : Term  Set
-Stuck M = Normal M × ¬ Value M
-
-postulate
-  Soundness :  {M N A}  Set
+Normal  M = A  M ⟹* {N}  (StuckM  N)
+
+Stuck : Term  Set
+Stuck M = Normal M × ¬ Value M
+
+postulate
+  Soundness :  {M N A}    M  A  M ⟹* N  ¬ (Stuck N)
 
@@ -7169,342 +7171,342 @@ term can _never_ reach a stuck state.