lowercase constructors

This commit is contained in:
Jeremy Siek 2019-08-19 17:14:07 -04:00
parent 0e27b583c2
commit 3f9f9c3c00
5 changed files with 253 additions and 248 deletions

View file

@ -13,8 +13,8 @@ module plfa.part2.Confluence where
## Introduction
In this chapter we prove that beta reduction is _confluent_, a
property also known as _Church-Rosser_. That is, if there is a
reduction sequence from any term `L` to two different terms `M₁` and
property also known as _Church-Rosser_. That is, if there are
reduction sequences from any term `L` to two different terms `M₁` and
`M₂`, then there exist reduction sequences from those two terms to
some common term `N`. In pictures:
@ -315,8 +315,8 @@ par-subst-exts s {x = Z} = pvar
par-subst-exts s {x = S x} = par-rename s
```
The next lemma that we need to prove that substitution respects
parallel reduction is the following one, which states that
The next lemma that we need for proving that substitution respects
parallel reduction is the following which states that
simultaneoous substitution commutes with single substitution. We import this
lemma from Chapter [Substitution]({{ site.baseurl }}/Substitution/)
and restate it below.

View file

@ -90,9 +90,9 @@ open import plfa.part2.BigStep
using (Clos; clos; ClosEnv; ∅'; _,'_; _⊢_⇓_; ⇓-var; ⇓-lam; ⇓-app; ⇓-determ;
cbn→reduce)
open import plfa.part3.Denotational
using (Value; Env; `∅; _`,_; _↦_; _⊑_; _⊢_↓_; ⊥; Funs∈; _⊔_; ∈→⊑;
using (Value; Env; `∅; _`,_; _↦_; _⊑_; _⊢_↓_; ⊥; all-funs∈; _⊔_; ∈→⊑;
var; ↦-elim; ↦-intro; ⊔-intro; ⊥-intro; sub; ; _≃_; _iff_;
Trans⊑; ConjR1⊑; ConjR2⊑; ConjL⊑; Refl⊑; Fun⊑; Bot⊑; Dist⊑;
⊑-trans; ⊑-conj-R1; ⊑-conj-R2; ⊑-conj-L; ⊑-refl; ⊑-fun; ⊑-bot; ⊑-dist;
sub-inv-fun)
open import plfa.part3.Soundness using (soundness)
@ -105,29 +105,29 @@ We define the following short-hand for saying that a value is
greather-than or equal to a function value.
```
AboveFun : Value → Set
AboveFun u = Σ[ v ∈ Value ] Σ[ w ∈ Value ] v ↦ w ⊑ u
above-fun : Value → Set
above-fun u = Σ[ v ∈ Value ] Σ[ w ∈ Value ] v ↦ w ⊑ u
```
If a value `u` is greater than a function, then an even greater value `u'`
is too.
```
AboveFun-⊑ : ∀{u u' : Value}
AboveFun u → u ⊑ u'
above-fun-⊑ : ∀{u u' : Value}
above-fun u → u ⊑ u'
-------------------
AboveFun u'
AboveFun-⊑ ⟨ v , ⟨ w , lt' ⟩ ⟩ lt = ⟨ v , ⟨ w , Trans⊑ lt' lt ⟩ ⟩
above-fun u'
above-fun-⊑ ⟨ v , ⟨ w , lt' ⟩ ⟩ lt = ⟨ v , ⟨ w , ⊑-trans lt' lt ⟩ ⟩
```
The bottom value `⊥` is not greater than a function.
```
AboveFun⊥ : ¬ AboveFun ⊥
AboveFun⊥ ⟨ v , ⟨ w , lt ⟩ ⟩
above-fun⊥ : ¬ above-fun ⊥
above-fun⊥ ⟨ v , ⟨ w , lt ⟩ ⟩
with sub-inv-fun lt
... | ⟨ Γ , ⟨ f , ⟨ Γ⊆⊥ , ⟨ lt1 , lt2 ⟩ ⟩ ⟩ ⟩
with Funs∈ f
with all-funs∈ f
... | ⟨ A , ⟨ B , m ⟩ ⟩
with Γ⊆⊥ m
... | ()
@ -137,13 +137,13 @@ If the join of two values `u` and `u'` is greater than a function, then
at least one of them is too.
```
AboveFun-⊔ : ∀{u u'}
AboveFun (u ⊔ u')
AboveFun u ⊎ AboveFun u'
AboveFun-⊔{u}{u'} ⟨ v , ⟨ w , v↦w⊑u⊔u' ⟩ ⟩
above-fun-⊔ : ∀{u u'}
above-fun (u ⊔ u')
above-fun u ⊎ above-fun u'
above-fun-⊔{u}{u'} ⟨ v , ⟨ w , v↦w⊑u⊔u' ⟩ ⟩
with sub-inv-fun v↦w⊑u⊔u'
... | ⟨ Γ , ⟨ f , ⟨ Γ⊆u⊔u' , ⟨ lt1 , lt2 ⟩ ⟩ ⟩ ⟩
with Funs∈ f
with all-funs∈ f
... | ⟨ A , ⟨ B , m ⟩ ⟩
with Γ⊆u⊔u' m
... | inj₁ x = inj₁ ⟨ A , ⟨ B , (∈→⊑ x) ⟩ ⟩
@ -154,11 +154,11 @@ On the other hand, if neither of `u` and `u'` is greater than a function,
then their join is also not greater than a function.
```
not-AboveFun-⊔ : ∀{u u' : Value}
→ ¬ AboveFun u → ¬ AboveFun u'
→ ¬ AboveFun (u ⊔ u')
not-AboveFun-⊔ naf1 naf2 af12
with AboveFun-⊔ af12
not-above-fun-⊔ : ∀{u u' : Value}
→ ¬ above-fun u → ¬ above-fun u'
→ ¬ above-fun (u ⊔ u')
not-above-fun-⊔ naf1 naf2 af12
with above-fun-⊔ af12
... | inj₁ af1 = contradiction af1 naf1
... | inj₂ af2 = contradiction af2 naf2
```
@ -167,30 +167,30 @@ The converse is also true. If the join of two values is not above a
function, then neither of them is individually.
```
not-AboveFun-⊔-inv : ∀{u u' : Value} → ¬ AboveFun (u ⊔ u')
→ ¬ AboveFun u × ¬ AboveFun u'
not-AboveFun-⊔-inv af = ⟨ f af , g af ⟩
not-above-fun-⊔-inv : ∀{u u' : Value} → ¬ above-fun (u ⊔ u')
→ ¬ above-fun u × ¬ above-fun u'
not-above-fun-⊔-inv af = ⟨ f af , g af ⟩
where
f : ∀{u u' : Value} → ¬ AboveFun (u ⊔ u') → ¬ AboveFun u
f : ∀{u u' : Value} → ¬ above-fun (u ⊔ u') → ¬ above-fun u
f{u}{u'} af12 ⟨ v , ⟨ w , lt ⟩ ⟩ =
contradiction ⟨ v , ⟨ w , ConjR1⊑ lt ⟩ ⟩ af12
g : ∀{u u' : Value} → ¬ AboveFun (u ⊔ u') → ¬ AboveFun u'
contradiction ⟨ v , ⟨ w , ⊑-conj-R1 lt ⟩ ⟩ af12
g : ∀{u u' : Value} → ¬ above-fun (u ⊔ u') → ¬ above-fun u'
g{u}{u'} af12 ⟨ v , ⟨ w , lt ⟩ ⟩ =
contradiction ⟨ v , ⟨ w , ConjR2⊑ lt ⟩ ⟩ af12
contradiction ⟨ v , ⟨ w , ⊑-conj-R2 lt ⟩ ⟩ af12
```
The property of being greater than a function value is decidable, as
exhibited by the following function.
```
AboveFun? : (v : Value) → Dec (AboveFun v)
AboveFun? ⊥ = no AboveFun⊥
AboveFun? (v ↦ w) = yes ⟨ v , ⟨ w , Refl⊑ ⟩ ⟩
AboveFun? (u ⊔ u')
with AboveFun? u | AboveFun? u'
... | yes ⟨ v , ⟨ w , lt ⟩ ⟩ | _ = yes ⟨ v , ⟨ w , (ConjR1⊑ lt) ⟩ ⟩
... | no _ | yes ⟨ v , ⟨ w , lt ⟩ ⟩ = yes ⟨ v , ⟨ w , (ConjR2⊑ lt) ⟩ ⟩
... | no x | no y = no (not-AboveFun-⊔ x y)
above-fun? : (v : Value) → Dec (above-fun v)
above-fun? ⊥ = no above-fun⊥
above-fun? (v ↦ w) = yes ⟨ v , ⟨ w , ⊑-refl ⟩ ⟩
above-fun? (u ⊔ u')
with above-fun? u | above-fun? u'
... | yes ⟨ v , ⟨ w , lt ⟩ ⟩ | _ = yes ⟨ v , ⟨ w , (⊑-conj-R1 lt) ⟩ ⟩
... | no _ | yes ⟨ v , ⟨ w , lt ⟩ ⟩ = yes ⟨ v , ⟨ w , (⊑-conj-R2 lt) ⟩ ⟩
... | no x | no y = no (not-above-fun-⊔ x y)
```
@ -222,7 +222,7 @@ describe below.
𝕍 v (clos (M · M₁) γ) = Bot
𝕍 ⊥ (clos (ƛ M) γ) =
𝕍 (v ↦ w) (clos (ƛ N) γ) =
(∀{c : Clos} → 𝔼 v c → AboveFun w → Σ[ c' ∈ Clos ]
(∀{c : Clos} → 𝔼 v c → above-fun w → Σ[ c' ∈ Clos ]
(γ ,' c) ⊢ N ⇓ c' × 𝕍 w c')
𝕍 (u ⊔ v) (clos (ƛ N) γ) = 𝕍 u (clos (ƛ N) γ) × 𝕍 v (clos (ƛ N) γ)
```
@ -242,7 +242,7 @@ The definition of `𝔼` is straightforward. If `v` is a greater than a
function, then `M` evaluates to a closure related to `v`.
```
𝔼 v (clos M γ') = AboveFun v → Σ[ c ∈ Clos ] γ' ⊢ M ⇓ c × 𝕍 v c
𝔼 v (clos M γ') = above-fun v → Σ[ c ∈ Clos ] γ' ⊢ M ⇓ c × 𝕍 v c
```
The proof of the main lemma is by induction on `γ ⊢ M ↓ v`, so it goes
@ -310,15 +310,15 @@ values that are not greater than a function, that is, values that are
equivalent to `⊥`. In such cases, `𝕍 v (clos (ƛ N) γ')` is trivially true.
```
not-AboveFun-𝕍 : ∀{v : Value}{Γ}{γ' : ClosEnv Γ}{N : Γ , ★ ⊢ ★ }
→ ¬ AboveFun v
not-above-fun-𝕍 : ∀{v : Value}{Γ}{γ' : ClosEnv Γ}{N : Γ , ★ ⊢ ★ }
→ ¬ above-fun v
-------------------
𝕍 v (clos (ƛ N) γ')
not-AboveFun-𝕍 {⊥} af = tt
not-AboveFun-𝕍 {v ↦ v'} af = ⊥-elim (contradiction ⟨ v , ⟨ v' , Refl⊑ ⟩ ⟩ af)
not-AboveFun-𝕍 {v₁ ⊔ v₂} af
with not-AboveFun-⊔-inv af
... | ⟨ af1 , af2 ⟩ = ⟨ not-AboveFun-𝕍 af1 , not-AboveFun-𝕍 af2 ⟩
not-above-fun-𝕍 {⊥} af = tt
not-above-fun-𝕍 {v ↦ v'} af = ⊥-elim (contradiction ⟨ v , ⟨ v' , ⊑-refl ⟩ ⟩ af)
not-above-fun-𝕍 {v₁ ⊔ v₂} af
with not-above-fun-⊔-inv af
... | ⟨ af1 , af2 ⟩ = ⟨ not-above-fun-𝕍 af1 , not-above-fun-𝕍 af2 ⟩
```
The proofs of `𝕍-sub` and `𝔼-sub` are intertwined.
@ -335,48 +335,48 @@ cases for variables and application. We then proceed by induction on
```
sub-𝕍 {clos (` x) γ} {v} () lt
sub-𝕍 {clos (L · M) γ} () lt
sub-𝕍 {clos (ƛ N) γ} vc Bot⊑ = tt
sub-𝕍 {clos (ƛ N) γ} vc (ConjL⊑ lt1 lt2) = ⟨ (sub-𝕍 vc lt1) , sub-𝕍 vc lt2 ⟩
sub-𝕍 {clos (ƛ N) γ} ⟨ vv1 , vv2 ⟩ (ConjR1⊑ lt) = sub-𝕍 vv1 lt
sub-𝕍 {clos (ƛ N) γ} ⟨ vv1 , vv2 ⟩ (ConjR2⊑ lt) = sub-𝕍 vv2 lt
sub-𝕍 {clos (ƛ N) γ} vc (Trans⊑{v = v₂} lt1 lt2) = sub-𝕍 (sub-𝕍 vc lt2) lt1
sub-𝕍 {clos (ƛ N) γ} vc (Fun⊑ lt1 lt2) ev1 sf
with vc (sub-𝔼 ev1 lt1) (AboveFun-⊑ sf lt2)
sub-𝕍 {clos (ƛ N) γ} vc ⊑-bot = tt
sub-𝕍 {clos (ƛ N) γ} vc (⊑-conj-L lt1 lt2) = ⟨ (sub-𝕍 vc lt1) , sub-𝕍 vc lt2 ⟩
sub-𝕍 {clos (ƛ N) γ} ⟨ vv1 , vv2 ⟩ (⊑-conj-R1 lt) = sub-𝕍 vv1 lt
sub-𝕍 {clos (ƛ N) γ} ⟨ vv1 , vv2 ⟩ (⊑-conj-R2 lt) = sub-𝕍 vv2 lt
sub-𝕍 {clos (ƛ N) γ} vc (⊑-trans{v = v₂} lt1 lt2) = sub-𝕍 (sub-𝕍 vc lt2) lt1
sub-𝕍 {clos (ƛ N) γ} vc (⊑-fun lt1 lt2) ev1 sf
with vc (sub-𝔼 ev1 lt1) (above-fun-⊑ sf lt2)
... | ⟨ c , ⟨ Nc , v4 ⟩ ⟩ = ⟨ c , ⟨ Nc , sub-𝕍 v4 lt2 ⟩ ⟩
sub-𝕍 {clos (ƛ N) γ} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ Dist⊑ ev1c sf
with AboveFun? w | AboveFun? w'
sub-𝕍 {clos (ƛ N) γ} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ ⊑-dist ev1c sf
with above-fun? w | above-fun? w'
... | yes af2 | yes af3
with vcw ev1c af2 | vcw' ev1c af3
... | ⟨ clos L δ , ⟨ L⇓c₂ , 𝕍w ⟩ ⟩
| ⟨ c₃ , ⟨ L⇓c₃ , 𝕍w' ⟩ ⟩ rewrite ⇓-determ L⇓c₃ L⇓c₂ with 𝕍→WHNF 𝕍w
... | ƛ_ =
⟨ clos L δ , ⟨ L⇓c₂ , ⟨ 𝕍w , 𝕍w' ⟩ ⟩ ⟩
sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ Dist⊑ ev1c sf
sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ ⊑-dist ev1c sf
| yes af2 | no naf3
with vcw ev1c af2
... | ⟨ clos {Γ'} L γ₁ , ⟨ L⇓c2 , 𝕍w ⟩ ⟩
with 𝕍→WHNF 𝕍w
... | ƛ_ {N = N'} =
let 𝕍w' = not-AboveFun-𝕍{w'}{Γ'}{γ₁}{N'} naf3 in
let 𝕍w' = not-above-fun-𝕍{w'}{Γ'}{γ₁}{N'} naf3 in
⟨ clos (ƛ N') γ₁ , ⟨ L⇓c2 , 𝕍⊔-intro 𝕍w 𝕍w' ⟩ ⟩
sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ Dist⊑ ev1c sf
sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ ⊑-dist ev1c sf
| no naf2 | yes af3
with vcw' ev1c af3
... | ⟨ clos {Γ'} L γ₁ , ⟨ L⇓c3 , 𝕍w'c ⟩ ⟩
with 𝕍→WHNF 𝕍w'c
... | ƛ_ {N = N'} =
let 𝕍wc = not-AboveFun-𝕍{w}{Γ'}{γ₁}{N'} naf2 in
let 𝕍wc = not-above-fun-𝕍{w}{Γ'}{γ₁}{N'} naf2 in
⟨ clos (ƛ N') γ₁ , ⟨ L⇓c3 , 𝕍⊔-intro 𝕍wc 𝕍w'c ⟩ ⟩
sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ Dist⊑ ev1c ⟨ v' , ⟨ w'' , lt ⟩ ⟩
sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ ⊑-dist ev1c ⟨ v' , ⟨ w'' , lt ⟩ ⟩
| no naf2 | no naf3
with AboveFun-⊔ ⟨ v' , ⟨ w'' , lt ⟩ ⟩
with above-fun-⊔ ⟨ v' , ⟨ w'' , lt ⟩ ⟩
... | inj₁ af2 = ⊥-elim (contradiction af2 naf2)
... | inj₂ af3 = ⊥-elim (contradiction af3 naf3)
```
* Case `Bot⊑`. We immediately have `𝕍 ⊥ (clos (ƛ N) γ)`.
* Case `⊑-bot`. We immediately have `𝕍 ⊥ (clos (ƛ N) γ)`.
* Case `ConjL⊑`.
* Case `⊑-conj-L`.
v₁' ⊑ v v₂' ⊑ v
-------------------
@ -385,7 +385,7 @@ sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ Dist⊑ ev1c ⟨ v' , ⟨
The induction hypotheses gives us `𝕍 v₁' (clos (ƛ N) γ)`
and `𝕍 v₂' (clos (ƛ N) γ)`, which is all we need for this case.
* Case `ConjR1⊑`.
* Case `⊑-conj-R1`.
v' ⊑ v₁
-------------
@ -393,7 +393,7 @@ sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ Dist⊑ ev1c ⟨ v' , ⟨
The induction hypothesis gives us `𝕍 v' (clos (ƛ N) γ)`.
* Case `ConjR2⊑`.
* Case `⊑-conj-R2`.
v' ⊑ v₂
-------------
@ -401,7 +401,7 @@ sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ Dist⊑ ev1c ⟨ v' , ⟨
Again, the induction hypothesis gives us `𝕍 v' (clos (ƛ N) γ)`.
* Case `Trans⊑`.
* Case `⊑-trans`.
v' ⊑ v₂ v₂ ⊑ v
-----------------
@ -411,7 +411,7 @@ sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ Dist⊑ ev1c ⟨ v' , ⟨
`𝕍 v₂ (clos (ƛ N) γ)`. We apply the induction hypothesis
for `v' ⊑ v₂` to conclude that `𝕍 v' (clos (ƛ N) γ)`.
* Case `Dist⊑`. This case is the most difficult. We have
* Case `⊑-dist`. This case is the most difficult. We have
𝕍 (v ↦ w) (clos (ƛ N) γ)
𝕍 (v ↦ w') (clos (ƛ N) γ)
@ -423,7 +423,7 @@ sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ Dist⊑ ev1c ⟨ v' , ⟨
Let `c` be an arbtrary closure such that `𝔼 v c`.
Assume `w ⊔ w'` is greater than a function.
Unfortunately, this does not mean that both `w` and `w'`
are above functions. But thanks to the lemma `AboveFun-⊔`,
are above functions. But thanks to the lemma `above-fun-⊔`,
we know that at least one of them is greater than a function.
* Suppose both of them are greater than a function. Then we have
@ -433,10 +433,10 @@ sub-𝕍 {c} {v ↦ w ⊔ v ↦ w'} ⟨ vcw , vcw' ⟩ Dist⊑ ev1c ⟨ v' , ⟨
for some `N'`. We conclude that `𝕍 (w ⊔ w') (clos (ƛ N') δ)`.
* Suppose one of them is greater than a function and the other is
not: say `AboveFun w` and `¬ AboveFun w'`. Then from
not: say `above-fun w` and `¬ above-fun w'`. Then from
`𝕍 (v ↦ w) (clos (ƛ N) γ)`
we have `γ ⊢ N ⇓ clos L γ₁` and `𝕍 w (clos L γ₁)`. From this we have
`L ≡ ƛ N'` for some `N'`. Meanwhile, from AboveFun w'` we have
`L ≡ ƛ N'` for some `N'`. Meanwhile, from above-fun w'` we have
`𝕍 w' (clos L γ₁)`. We conclude that
`𝕍 (w ⊔ w') (clos (ƛ N') γ₁)`.
@ -445,12 +445,12 @@ The proof of `sub-𝔼` is direct and explained below.
```
sub-𝔼 {clos M γ} {v} {v'} 𝔼v v'⊑v fv'
with 𝔼v (AboveFun-⊑ fv' v'⊑v)
with 𝔼v (above-fun-⊑ fv' v'⊑v)
... | ⟨ c , ⟨ M⇓c , 𝕍v ⟩ ⟩ =
⟨ c , ⟨ M⇓c , sub-𝕍 𝕍v v'⊑v ⟩ ⟩
```
From `AboveFun v'` and `v' ⊑ v` we have `AboveFun v`. Then with `𝔼 v c` we
From `above-fun v'` and `v' ⊑ v` we have `above-fun v`. Then with `𝔼 v c` we
obtain a closure `c` such that `γ ⊢ M ⇓ c` and `𝕍 v c`. We conclude with an
application of `sub-𝕍` with `v' ⊑ v` to show `𝕍 v' c`.
@ -482,7 +482,7 @@ kth-x{γ' = γ'}{x = x} with γ' x
... | ⟨ c , ⟨ M'⇓c , 𝕍γx ⟩ ⟩ =
⟨ c , ⟨ (⇓-var eq M'⇓c) , 𝕍γx ⟩ ⟩
↓→𝔼 {Γ} {γ} {γ'} 𝔾γγ' (↦-elim{L = L}{M = M}{v = v₁}{w = v} d₁ d₂) fv
with ↓→𝔼 𝔾γγ' d₁ ⟨ v₁ , ⟨ v , Refl⊑ ⟩ ⟩
with ↓→𝔼 𝔾γγ' d₁ ⟨ v₁ , ⟨ v , ⊑-refl ⟩ ⟩
... | ⟨ clos L' δ , ⟨ L⇓L' , 𝕍v₁↦v ⟩ ⟩
with 𝕍→WHNF 𝕍v₁↦v
... | ƛ_ {N = N}
@ -491,12 +491,12 @@ kth-x{γ' = γ'}{x = x} with γ' x
⟨ c' , ⟨ ⇓-app L⇓L' N⇓c' , 𝕍v ⟩ ⟩
↓→𝔼 {Γ} {γ} {γ'} 𝔾γγ' (↦-intro{N = N}{v = v}{w = w} d) fv↦w =
⟨ clos (ƛ N) γ' , ⟨ ⇓-lam , E ⟩ ⟩
where E : {c : Clos} → 𝔼 v c → AboveFun w
where E : {c : Clos} → 𝔼 v c → above-fun w
→ Σ[ c' ∈ Clos ] (γ' ,' c) ⊢ N ⇓ c' × 𝕍 w c'
E {c} 𝔼vc fw = ↓→𝔼 (λ {x} → 𝔾-ext{Γ}{γ}{γ'} 𝔾γγ' 𝔼vc {x}) d fw
↓→𝔼 𝔾γγ' ⊥-intro f⊥ = ⊥-elim (AboveFun⊥ f⊥)
↓→𝔼 𝔾γγ' ⊥-intro f⊥ = ⊥-elim (above-fun⊥ f⊥)
↓→𝔼 𝔾γγ' (⊔-intro{v = v₁}{w = v₂} d₁ d₂) fv12
with AboveFun? v₁ | AboveFun? v₂
with above-fun? v₁ | above-fun? v₂
... | yes fv1 | yes fv2
with ↓→𝔼 𝔾γγ' d₁ fv1 | ↓→𝔼 𝔾γγ' d₂ fv2
... | ⟨ c₁ , ⟨ M⇓c₁ , 𝕍v₁ ⟩ ⟩ | ⟨ c₂ , ⟨ M⇓c₂ , 𝕍v₂ ⟩ ⟩
@ -507,28 +507,28 @@ kth-x{γ' = γ'}{x = x} with γ' x
... | ⟨ clos {Γ'} M' γ₁ , ⟨ M⇓c₁ , 𝕍v₁ ⟩ ⟩
with 𝕍→WHNF 𝕍v₁
... | ƛ_ {N = N} =
let 𝕍v₂ = not-AboveFun-𝕍{v₂}{Γ'}{γ₁}{N} nfv2 in
let 𝕍v₂ = not-above-fun-𝕍{v₂}{Γ'}{γ₁}{N} nfv2 in
⟨ clos (ƛ N) γ₁ , ⟨ M⇓c₁ , 𝕍⊔-intro 𝕍v₁ 𝕍v₂ ⟩ ⟩
↓→𝔼 𝔾γγ' (⊔-intro{v = v₁}{w = v₂} d₁ d₂) fv12 | no nfv1 | yes fv2
with ↓→𝔼 𝔾γγ' d₂ fv2
... | ⟨ clos {Γ'} M' γ₁ , ⟨ M'⇓c₂ , 𝕍2c ⟩ ⟩
with 𝕍→WHNF 𝕍2c
... | ƛ_ {N = N} =
let 𝕍1c = not-AboveFun-𝕍{v₁}{Γ'}{γ₁}{N} nfv1 in
let 𝕍1c = not-above-fun-𝕍{v₁}{Γ'}{γ₁}{N} nfv1 in
⟨ clos (ƛ N) γ₁ , ⟨ M'⇓c₂ , 𝕍⊔-intro 𝕍1c 𝕍2c ⟩ ⟩
↓→𝔼 𝔾γγ' (⊔-intro d₁ d₂) fv12 | no nfv1 | no nfv2
with AboveFun-⊔ fv12
with above-fun-⊔ fv12
... | inj₁ fv1 = ⊥-elim (contradiction fv1 nfv1)
... | inj₂ fv2 = ⊥-elim (contradiction fv2 nfv2)
↓→𝔼 {Γ} {γ} {γ'} {M} {v'} 𝔾γγ' (sub{v = v} d v'⊑v) fv'
with ↓→𝔼 {Γ} {γ} {γ'} {M} 𝔾γγ' d (AboveFun-⊑ fv' v'⊑v)
with ↓→𝔼 {Γ} {γ} {γ'} {M} 𝔾γγ' d (above-fun-⊑ fv' v'⊑v)
... | ⟨ c , ⟨ M⇓c , 𝕍v ⟩ ⟩ =
⟨ c , ⟨ M⇓c , sub-𝕍 𝕍v v'⊑v ⟩ ⟩
```
* Case `var`. Looking up `x` in `γ'` yields some closure, `clos M' δ`,
and from `𝔾 γ γ'` we have `𝔼 (γ x) (clos M' δ)`. With the premise
`AboveFun (γ x)`, we obtain a closure `c` such that `δ ⊢ M' ⇓ c`
`above-fun (γ x)`, we obtain a closure `c` such that `δ ⊢ M' ⇓ c`
and `𝕍 (γ x) c`. To conclude `γ' ⊢ x ⇓ c` via `⇓-var`, we
need `γ' x ≡ clos M' δ`, which is obvious, but it requires some
Agda shananigans via the `kth-x` lemma to get our hands on it.
@ -539,7 +539,7 @@ kth-x{γ' = γ'}{x = x} with γ' x
Of course, `L' ≡ ƛ N` for some `N`.
By the induction hypothesis for `γ ⊢ M ↓ v₁`,
we have `𝔼 v₁ (clos M γ')`.
Together with the premise `AboveFun v` and `𝕍 v (clos L' δ)`,
Together with the premise `above-fun v` and `𝕍 v (clos L' δ)`,
we obtain a closure `c'` such that `δ ⊢ N ⇓ c'` and `𝕍 v c'`.
We conclude that `γ' ⊢ L · M ⇓ c'` by rule `⇓-app`.
@ -553,11 +553,11 @@ kth-x{γ' = γ'}{x = x} with γ' x
but we must first show that `𝔾 (γ , v) (γ' , c)`. We prove
that by the lemma `𝔾-ext`, using facts `𝔾 γ γ'` and `𝔼 v c`.
* Case `⊥-intro`. We have the premise `AboveFun ⊥`, but that's impossible.
* Case `⊥-intro`. We have the premise `above-fun ⊥`, but that's impossible.
* Case `⊔-intro`. We have `γ ⊢ M ↓ (v₁ ⊔ v₂)` and `AboveFun (v₁ ⊔ v₂)`
* Case `⊔-intro`. We have `γ ⊢ M ↓ (v₁ ⊔ v₂)` and `above-fun (v₁ ⊔ v₂)`
and need to show `γ' ⊢ M ↓ c` and `𝕍 (v₁ ⊔ v₂) c` for some `c`.
Again, by `AboveFun-⊔`, at least one of `v₁` or `v₂` is greater than
Again, by `above-fun-⊔`, at least one of `v₁` or `v₂` is greater than
a function.
* Suppose both `v₁` and `v₂` are greater than a function value.
@ -573,9 +573,9 @@ kth-x{γ' = γ'}{x = x} with γ' x
Then because `v₂` is not greater than a function, we also have
`𝕍 v₂ (clos (ƛ N) γ₁)`. We conclude that `𝕍 (v₁ ⊔ v₂) (clos (ƛ N) γ₁)`.
* Case `sub`. We have `γ ⊢ M ↓ v`, `v' ⊑ v`, and `AboveFun v'`.
* Case `sub`. We have `γ ⊢ M ↓ v`, `v' ⊑ v`, and `above-fun v'`.
We need to show that `γ' ⊢ M ⇓ c` and `𝕍 v' c` for some `c`.
We have `AboveFun v` by `AboveFun-⊑`,
We have `above-fun v` by `above-fun-⊑`,
so the induction hypothesis for `γ ⊢ M ↓ v` gives us a closure `c`
such that `γ' ⊢ M ⇓ c` and `𝕍 v c`. We conclude that `𝕍 v' c` by `sub-𝕍`.
@ -593,7 +593,7 @@ adequacy : ∀{M : ∅ ⊢ ★}{N : ∅ , ★ ⊢ ★} → M ≃ (ƛ N
∅' ⊢ M ⇓ clos (ƛ N) γ
adequacy{M}{N} eq
with ↓→𝔼 𝔾-∅ ((proj₂ (eq `∅ (⊥ ↦ ⊥))) (↦-intro ⊥-intro))
⟨ ⊥ , ⟨ ⊥ , Refl⊑ ⟩ ⟩
⟨ ⊥ , ⟨ ⊥ , ⊑-refl ⟩ ⟩
... | ⟨ clos {Γ} M γ , ⟨ M⇓c , Vc ⟩ ⟩
with 𝕍→WHNF Vc
... | ƛ_ {N = N} =

View file

@ -35,7 +35,7 @@ open import plfa.part2.Untyped
using (Context; _,_; ★; _∋_; _⊢_; `_; ƛ_; _·_)
open import plfa.part3.Denotational
using (Value; _↦_; _`,_; _⊔_; ⊥; _⊑_; _⊢_↓_;
Bot⊑; Fun⊑; ConjL⊑; ConjR1⊑; ConjR2⊑; Dist⊑; Refl⊑; Trans⊑; Dist⊔↦⊔;
⊑-bot; ⊑-fun; ⊑-conj-L; ⊑-conj-R1; ⊑-conj-R2; ⊑-dist; ⊑-refl; ⊑-trans; ⊔↦⊔-dist;
var; ↦-intro; ↦-elim; ⊔-intro; ⊥-intro; sub;
up-env; ; _≃_; ≃-sym; Denotation; Env)
open plfa.part3.Denotational.≃-Reasoning
@ -63,8 +63,11 @@ rules `↦-intro`, `⊥-intro`, and `⊔-intro`.
D γ (u ⊔ v) = ( D γ u) × ( D γ v)
```
[JGS: add comment about how can be viewed as curry.]
If one squints hard enough, the `` function starts to look like the
`curry` operation familar to functional programmers. It turns a
function that expects a tuple of length `n + 1` (the environment `Γ ,
★`) into a function that expects a tuple of length `n` and returns a
function of one parameter.
Using this ``, we hope to prove that
@ -73,7 +76,7 @@ Using this ``, we hope to prove that
The function `` is preserved when going from a larger value `v` to a
smaller value `u`. The proof is a straightforward induction on the
derivation of `u ⊑ v`, using the `up-env` lemma in the case for the
`Fun⊑` rule.
`⊑-fun` rule.
```
sub- : ∀{Γ}{N : Γ , ★ ⊢ ★}{γ v u}
@ -81,14 +84,14 @@ sub- : ∀{Γ}{N : Γ , ★ ⊢ ★}{γ v u}
→ u ⊑ v
------------
( N) γ u
sub- d Bot⊑ = tt
sub- d (Fun⊑ lt lt) = sub (up-env d lt) lt
sub- d (ConjL⊑ lt lt₁) = ⟨ sub- d lt , sub- d lt₁ ⟩
sub- d (ConjR1⊑ lt) = sub- (proj₁ d) lt
sub- d (ConjR2⊑ lt) = sub- (proj₂ d) lt
sub- {v = v₁ ↦ v₂ ⊔ v₁ ↦ v₃} {v₁ ↦ (v₂ ⊔ v₃)} ⟨ N2 , N3 ⟩ Dist⊑ =
sub- d ⊑-bot = tt
sub- d (⊑-fun lt lt) = sub (up-env d lt) lt
sub- d (⊑-conj-L lt lt₁) = ⟨ sub- d lt , sub- d lt₁ ⟩
sub- d (⊑-conj-R1 lt) = sub- (proj₁ d) lt
sub- d (⊑-conj-R2 lt) = sub- (proj₂ d) lt
sub- {v = v₁ ↦ v₂ ⊔ v₁ ↦ v₃} {v₁ ↦ (v₂ ⊔ v₃)} ⟨ N2 , N3 ⟩ ⊑-dist =
⊔-intro N2 N3
sub- d (Trans⊑ x₁ x₂) = sub- (sub- d x₂) x₁
sub- d (⊑-trans x₁ x₂) = sub- (sub- d x₂) x₁
```
[PLW:
@ -164,7 +167,7 @@ because, for example, the rule `↦-elim` applies to any value. Instead
we shall define `●` in a way that directly deals with the `↦-elim` and
`⊥-intro` rules but ignores `⊔-intro`. This makes the forward
direction of the proof more difficult, and the case for `⊔-intro`
demonstrates why the `Dist⊑` rule is important.
demonstrates why the `⊑-dist` rule is important.
So we define the application of `D₁` to `D₂`, written `D₁ ● D₂`, to include
any value `w` equivalent to `⊥`, for the `⊥-intro` rule, and to include any
@ -178,7 +181,9 @@ _●_ : ∀{Γ} → Denotation Γ → Denotation Γ → Denotation Γ
(D₁ ● D₂) γ w = w ⊑ ⊥ ⊎ Σ[ v ∈ Value ]( D₁ γ (v ↦ w) × D₂ γ v )
```
[JGS: add comment about how ● can be viewed as apply.]
If one squints hard enough, the `_●_` operator starts to look
like the `apply` operation familiar to functional programmers.
It takes two parameters and applies the first to the second.
Next we consider the inversion lemma for application, which is also
the forward direction of the semantic equation for application. We
@ -190,28 +195,28 @@ describe the proof below.
----------------
→ ( L ● M) γ v
ℰ·→●ℰ (↦-elim{v = v} d₁ d₂) = inj₂ ⟨ v , ⟨ d₁ , d₂ ⟩ ⟩
ℰ·→●ℰ {v = ⊥} ⊥-intro = inj₁ Bot⊑
ℰ·→●ℰ {v = ⊥} ⊥-intro = inj₁ ⊑-bot
ℰ·→●ℰ {Γ}{γ}{L}{M}{v} (⊔-intro{v = v₁}{w = v₂} d₁ d₂)
with ℰ·→●ℰ d₁ | ℰ·→●ℰ d₂
... | inj₁ lt1 | inj₁ lt2 = inj₁ (ConjL⊑ lt1 lt2)
... | inj₁ lt1 | inj₁ lt2 = inj₁ (⊑-conj-L lt1 lt2)
... | inj₁ lt1 | inj₂ ⟨ v₁ , ⟨ L↓v12 , M↓v3 ⟩ ⟩ =
inj₂ ⟨ v₁ , ⟨ sub L↓v12 lt , M↓v3 ⟩ ⟩
where lt : v₁ ↦ (v₁ ⊔ v₂) ⊑ v₁ ↦ v₂
lt = (Fun⊑ Refl⊑ (ConjL⊑ (Trans⊑ lt1 Bot⊑) Refl⊑))
lt = (⊑-fun ⊑-refl (⊑-conj-L (⊑-trans lt1 ⊑-bot) ⊑-refl))
... | inj₂ ⟨ v₁ , ⟨ L↓v12 , M↓v3 ⟩ ⟩ | inj₁ lt2 =
inj₂ ⟨ v₁ , ⟨ sub L↓v12 lt , M↓v3 ⟩ ⟩
where lt : v₁ ↦ (v₁ ⊔ v₂) ⊑ v₁ ↦ v₁
lt = (Fun⊑ Refl⊑ (ConjL⊑ Refl⊑ (Trans⊑ lt2 Bot⊑)))
lt = (⊑-fun ⊑-refl (⊑-conj-L ⊑-refl (⊑-trans lt2 ⊑-bot)))
... | inj₂ ⟨ v₁ , ⟨ L↓v12 , M↓v3 ⟩ ⟩ | inj₂ ⟨ v₁ , ⟨ L↓v12 , M↓v3 ⟩ ⟩ =
let L↓⊔ = ⊔-intro L↓v12 L↓v12 in
let M↓⊔ = ⊔-intro M↓v3 M↓v3 in
let x = inj₂ ⟨ v₁ ⊔ v₁ , ⟨ sub L↓⊔ Dist⊔↦⊔ , M↓⊔ ⟩ ⟩ in
let x = inj₂ ⟨ v₁ ⊔ v₁ , ⟨ sub L↓⊔ ⊔↦⊔-dist , M↓⊔ ⟩ ⟩ in
x
ℰ·→●ℰ {Γ}{γ}{L}{M}{v} (sub d lt)
with ℰ·→●ℰ d
... | inj₁ lt2 = inj₁ (Trans⊑ lt lt2)
... | inj₁ lt2 = inj₁ (⊑-trans lt lt2)
... | inj₂ ⟨ v₁ , ⟨ L↓v12 , M↓v3 ⟩ ⟩ =
inj₂ ⟨ v₁ , ⟨ sub L↓v12 (Fun⊑ Refl⊑ lt) , M↓v3 ⟩ ⟩
inj₂ ⟨ v₁ , ⟨ sub L↓v12 (⊑-fun ⊑-refl lt) , M↓v3 ⟩ ⟩
```
We proceed by induction on the semantics.
@ -243,7 +248,7 @@ We proceed by induction on the semantics.
`L` must be an `↦` whose input entry is `v₁ ⊔ v₁`.
So we use the `sub` rule to obtain
`γ ⊢ L ↓ (v₁ ⊔ v₁) ↦ (v₁ ⊔ v₂)`,
using the `Dist⊔→⊔` lemma (thanks to the `Dist⊑` rule) to
using the `⊔↦⊔-dist` lemma (thanks to the `⊑-dist` rule) to
show that
(v₁ ⊔ v₁) ↦ (v₁ ⊔ v₂) ⊑ (v₁ ↦ v₂) ⊔ (v₁ ↦ v₁)
@ -291,10 +296,10 @@ var-inv : ∀ {Γ v x} {γ : Env Γ}
(` x) γ v
-------------------
→ v ⊑ γ x
var-inv (var) = Refl⊑
var-inv (⊔-intro d₁ d₂) = ConjL⊑ (var-inv d₁) (var-inv d₂)
var-inv (sub d lt) = Trans⊑ lt (var-inv d)
var-inv ⊥-intro = Bot⊑
var-inv (var) = ⊑-refl
var-inv (⊔-intro d₁ d₂) = ⊑-conj-L (var-inv d₁) (var-inv d₂)
var-inv (sub d lt) = ⊑-trans lt (var-inv d)
var-inv ⊥-intro = ⊑-bot
```
To round-out the semantic equations, we establish the following one
@ -422,24 +427,24 @@ terms that result from filling the hole.
```
data Ctx : Context → Context → Set where
CHole : ∀{Γ} → Ctx Γ Γ
CLam : ∀{Γ Δ} → Ctx (Γ , ★) (Δ , ★) → Ctx (Γ , ★) Δ
CAppL : ∀{Γ Δ} → Ctx Γ Δ → Δ ⊢ ★ → Ctx Γ Δ
CAppR : ∀{Γ Δ} → Δ ⊢ ★ → Ctx Γ Δ → Ctx Γ Δ
ctx-hole : ∀{Γ} → Ctx Γ Γ
ctx-lam : ∀{Γ Δ} → Ctx (Γ , ★) (Δ , ★) → Ctx (Γ , ★) Δ
ctx-app-L : ∀{Γ Δ} → Ctx Γ Δ → Δ ⊢ ★ → Ctx Γ Δ
ctx-app-R : ∀{Γ Δ} → Δ ⊢ ★ → Ctx Γ Δ → Ctx Γ Δ
```
* The constructor `CHole` represents the hole, and in this case the
* The constructor `ctx-hole` represents the hole, and in this case the
variable context for the hole is the same as the variable context
for the term that results from filling the hole.
* The constructor `CLam` takes a `Ctx` and produces a larger one that
* The constructor `ctx-lam` takes a `Ctx` and produces a larger one that
adds a lambda abstraction at the top. The variable context of the
hole stays the same, whereas we remove one variable from the context
of the resulting term because it is bound by this lambda
abstraction.
* There are two constructions for application, `CAppL` and
`CAppR`. The `CAppL` is for when the hole is inside the left-hand
* There are two constructions for application, `ctx-app-L` and
`ctx-app-R`. The `ctx-app-L` is for when the hole is inside the left-hand
term (the operator) and the later is when the hole is inside the
right-hand term (the operand).
@ -448,10 +453,10 @@ following `plug` function. It is defined by recursion on the context.
```
plug : ∀{Γ}{Δ} → Ctx Γ Δ → Γ ⊢ ★ → Δ ⊢ ★
plug CHole M = M
plug (CLam C) N = ƛ plug C N
plug (CAppL C N) L = (plug C L) · N
plug (CAppR L C) M = L · (plug C M)
plug ctx-hole M = M
plug (ctx-lam C) N = ƛ plug C N
plug (ctx-app-L C N) L = (plug C L) · N
plug (ctx-app-R L C) M = L · (plug C M)
```
We are ready to state and prove the compositionality principle. Given
@ -464,13 +469,13 @@ compositionality : ∀{Γ Δ}{C : Ctx Γ Δ} {M N : Γ ⊢ ★}
M ≃ N
---------------------------
(plug C M) ≃ (plug C N)
compositionality {C = CHole} M≃N =
compositionality {C = ctx-hole} M≃N =
M≃N
compositionality {C = CLam C} M≃N =
compositionality {C = ctx-lam C} M≃N =
lam-cong (compositionality {C = C} M≃N)
compositionality {C = CAppL C L} M≃N =
compositionality {C = ctx-app-L C L} M≃N =
app-cong (compositionality {C = C} M≃N) λ γ v → ⟨ (λ x → x) , (λ x → x) ⟩
compositionality {C = CAppR L C} M≃N =
compositionality {C = ctx-app-R L C} M≃N =
app-cong (λ γ v → ⟨ (λ x → x) , (λ x → x) ⟩) (compositionality {C = C} M≃N)
```

View file

@ -101,7 +101,7 @@ data Value : Set where
The `⊑` relation adapts the familiar notion of subset to the Value data
type. This relation plays the key role in enabling self-application.
There are two rules that are specific to functions, `Fun⊑` and `Dist⊑`,
There are two rules that are specific to functions, `⊑-fun` and `⊑-dist`,
which we discuss below.
```
@ -109,59 +109,59 @@ infix 4 _⊑_
data _⊑_ : Value → Value → Set where
Bot⊑ : ∀ {v} → ⊥ ⊑ v
⊑-bot : ∀ {v} → ⊥ ⊑ v
ConjL⊑ : ∀ {u v w}
⊑-conj-L : ∀ {u v w}
→ v ⊑ u
→ w ⊑ u
-----------
→ (v ⊔ w) ⊑ u
ConjR1⊑ : ∀ {u v w}
⊑-conj-R1 : ∀ {u v w}
→ u ⊑ v
-----------
→ u ⊑ (v ⊔ w)
ConjR2⊑ : ∀ {u v w}
⊑-conj-R2 : ∀ {u v w}
→ u ⊑ w
-----------
→ u ⊑ (v ⊔ w)
Trans⊑ : ∀ {u v w}
⊑-trans : ∀ {u v w}
→ u ⊑ v
→ v ⊑ w
-----
→ u ⊑ w
Fun⊑ : ∀ {v w v w}
⊑-fun : ∀ {v w v w}
→ v ⊑ v
→ w ⊑ w
-------------------
→ (v ↦ w) ⊑ (v ↦ w)
Dist⊑ : ∀{v w w}
⊑-dist : ∀{v w w}
---------------------------------
→ v ↦ (w ⊔ w) ⊑ (v ↦ w) ⊔ (v ↦ w)
```
The first five rules are straightforward.
The rule `Fun⊑` captures when it is OK to match a higher-order argument
The rule `⊑-fun` captures when it is OK to match a higher-order argument
`v ↦ w` to a table entry whose input is `v ↦ w`. Considering a
call to the higher-order argument. It is OK to pass a larger argument
than expected, so `v` can be larger than `v`. Also, it is OK to
disregard some of the output, so `w` can be smaller than `w`.
The rule `Dist⊑` says that if you have two entries for the same input,
The rule `⊑-dist` says that if you have two entries for the same input,
then you can combine them into a single entry and joins the two
outputs.
The `⊑` relation is reflexive.
```
Refl⊑ : ∀ {v} → v ⊑ v
Refl⊑ {⊥} = Bot⊑
Refl⊑ {v ↦ v} = Fun⊑ Refl⊑ Refl⊑
Refl⊑ {v₁ ⊔ v₂} = ConjL⊑ (ConjR1⊑ Refl⊑) (ConjR2⊑ Refl⊑)
⊑-refl : ∀ {v} → v ⊑ v
⊑-refl {⊥} = ⊑-bot
⊑-refl {v ↦ v} = ⊑-fun ⊑-refl ⊑-refl
⊑-refl {v₁ ⊔ v₂} = ⊑-conj-L (⊑-conj-R1 ⊑-refl) (⊑-conj-R2 ⊑-refl)
```
The `⊔` operation is monotonic with respect to `⊑`, that is, given two
@ -172,19 +172,19 @@ larger values it produces a larger value.
→ v ⊑ v → w ⊑ w
-----------------------
→ (v ⊔ w) ⊑ (v ⊔ w)
⊔⊑⊔ d₁ d₂ = ConjL⊑ (ConjR1⊑ d₁) (ConjR2⊑ d₂)
⊔⊑⊔ d₁ d₂ = ⊑-conj-L (⊑-conj-R1 d₁) (⊑-conj-R2 d₂)
```
The `Dist⊑` rule can be used to combine two entries even when the
The `⊑-dist` rule can be used to combine two entries even when the
input values are not identical. One can first combine the two inputs
using ⊔ and then apply the `Dist⊑` rule to obtain the following
using ⊔ and then apply the `⊑-dist` rule to obtain the following
property.
```
Dist⊔↦⊔ : ∀{v v w w : Value}
⊔↦⊔-dist : ∀{v v w w : Value}
→ (v ⊔ v) ↦ (w ⊔ w) ⊑ (v ↦ w) ⊔ (v ↦ w)
Dist⊔↦⊔ = Trans⊑ Dist⊑ (⊔⊑⊔ (Fun⊑ (ConjR1⊑ Refl⊑) Refl⊑)
(Fun⊑ (ConjR2⊑ Refl⊑) Refl⊑))
⊔↦⊔-dist = ⊑-trans ⊑-dist (⊔⊑⊔ (⊑-fun (⊑-conj-R1 ⊑-refl) ⊑-refl)
(⊑-fun (⊑-conj-R2 ⊑-refl) ⊑-refl))
```
<!-- above might read more nicely if we introduce inequational reasoning -->
@ -197,19 +197,19 @@ then both `u` and `v` are less than `w`.
→ u ⊔ v ⊑ w
---------
→ u ⊑ w
⊔⊑-invL (ConjL⊑ lt1 lt2) = lt1
⊔⊑-invL (ConjR1⊑ lt) = ConjR1⊑ (⊔⊑-invL lt)
⊔⊑-invL (ConjR2⊑ lt) = ConjR2⊑ (⊔⊑-invL lt)
⊔⊑-invL (Trans⊑ lt1 lt2) = Trans⊑ (⊔⊑-invL lt1) lt2
⊔⊑-invL (⊑-conj-L lt1 lt2) = lt1
⊔⊑-invL (⊑-conj-R1 lt) = ⊑-conj-R1 (⊔⊑-invL lt)
⊔⊑-invL (⊑-conj-R2 lt) = ⊑-conj-R2 (⊔⊑-invL lt)
⊔⊑-invL (⊑-trans lt1 lt2) = ⊑-trans (⊔⊑-invL lt1) lt2
⊔⊑-invR : ∀{u v w : Value}
→ u ⊔ v ⊑ w
---------
→ v ⊑ w
⊔⊑-invR (ConjL⊑ lt1 lt2) = lt2
⊔⊑-invR (ConjR1⊑ lt) = ConjR1⊑ (⊔⊑-invR lt)
⊔⊑-invR (ConjR2⊑ lt) = ConjR2⊑ (⊔⊑-invR lt)
⊔⊑-invR (Trans⊑ lt1 lt2) = Trans⊑ (⊔⊑-invR lt1) lt2
⊔⊑-invR (⊑-conj-L lt1 lt2) = lt2
⊔⊑-invR (⊑-conj-R1 lt) = ⊑-conj-R1 (⊔⊑-invR lt)
⊔⊑-invR (⊑-conj-R2 lt) = ⊑-conj-R2 (⊔⊑-invR lt)
⊔⊑-invR (⊑-trans lt1 lt2) = ⊑-trans (⊔⊑-invR lt1) lt2
```
@ -279,19 +279,19 @@ _`⊔_ : ∀ {Γ} → Env Γ → Env Γ → Env Γ
(γ `⊔ δ) x = γ x ⊔ δ x
```
The `Refl⊑`, `ConjR1⊑`, and `ConjR2⊑` rules lift to environments. So
The `⊑-refl`, `⊑-conj-R1`, and `⊑-conj-R2` rules lift to environments. So
the join of two environments `γ` and `δ` is greater than the first
environment `γ` or the second environment `δ`.
```
`Refl⊑ : ∀ {Γ} {γ : Env Γ} → γ `⊑ γ
`Refl⊑ {Γ} {γ} x = Refl⊑ {γ x}
`⊑-refl : ∀ {Γ} {γ : Env Γ} → γ `⊑ γ
`⊑-refl {Γ} {γ} x = ⊑-refl {γ x}
EnvConjR1⊑ : ∀ {Γ} → (γ : Env Γ) → (δ : Env Γ) → γ `⊑ (γ `⊔ δ)
EnvConjR1⊑ γ δ x = ConjR1⊑ Refl⊑
⊑-env-conj-R1 : ∀ {Γ} → (γ : Env Γ) → (δ : Env Γ) → γ `⊑ (γ `⊔ δ)
⊑-env-conj-R1 γ δ x = ⊑-conj-R1 ⊑-refl
EnvConjR2⊑ : ∀ {Γ} → (γ : Env Γ) → (δ : Env Γ) → δ `⊑ (γ `⊔ δ)
EnvConjR2⊑ γ δ x = ConjR2⊑ Refl⊑
⊑-env-conj-R2 : ∀ {Γ} → (γ : Env Γ) → (δ : Env Γ) → δ `⊑ (γ `⊔ δ)
⊑-env-conj-R2 γ δ x = ⊑-conj-R2 ⊑-refl
```
## Denotational Semantics
@ -411,7 +411,7 @@ we'll name `v`. Then for the second application, it must map `v` to
some value. Let's name it `w`. So the parameter's table must contain
two entries, both `u ↦ v` and `v ↦ w`. For each application of the
table, we extract the appropriate entry from it using the `sub` rule.
In particular, we use the ConjR1⊑ and ConjR2⊑ to select `u ↦ v` and `v
In particular, we use the ⊑-conj-R1 and ⊑-conj-R2 to select `u ↦ v` and `v
↦ w`, respectively, from the table `u ↦ v ⊔ v ↦ w`. So the meaning of
twoᶜ is that it takes this table and parameter `u`, and it returns `w`.
Indeed we derive this as follows.
@ -421,10 +421,10 @@ denot-twoᶜ : ∀{u v w : Value} → `∅ ⊢ twoᶜ ↓ ((u ↦ v ⊔ v ↦ w)
denot-twoᶜ {u}{v}{w} =
↦-intro (↦-intro (↦-elim (sub var lt1) (↦-elim (sub var lt2) var)))
where lt1 : v ↦ w ⊑ u ↦ v ⊔ v ↦ w
lt1 = ConjR2⊑ (Fun⊑ Refl⊑ Refl⊑)
lt1 = ⊑-conj-R2 (⊑-fun ⊑-refl ⊑-refl)
lt2 : u ↦ v ⊑ u ↦ v ⊔ v ↦ w
lt2 = (ConjR1⊑ (Fun⊑ Refl⊑ Refl⊑))
lt2 = (⊑-conj-R1 (⊑-fun ⊑-refl ⊑-refl))
```
@ -441,8 +441,8 @@ and then the result of the application is `w`.
Δ = (ƛ (# 0) · (# 0))
denot-Δ : ∀ {v w} → `∅ ⊢ Δ ↓ ((v ↦ w ⊔ v) ↦ w)
denot-Δ = ↦-intro (↦-elim (sub var (ConjR1⊑ Refl⊑))
(sub var (ConjR2⊑ Refl⊑)))
denot-Δ = ↦-intro (↦-elim (sub var (⊑-conj-R1 ⊑-refl))
(sub var (⊑-conj-R2 ⊑-refl)))
```
One might worry whether this semantics can deal with diverging
@ -706,7 +706,7 @@ ext-nth : ∀ {Γ Δ v} {γ : Env Γ} {δ : Env Δ}
γ `⊑ (δ ∘ ρ)
------------------------------
→ (γ `, v) `⊑ ((δ `, v) ∘ ext ρ)
ext-nth ρ lt Z = Refl⊑
ext-nth ρ lt Z = ⊑-refl
ext-nth ρ lt (S n) = lt n
```
@ -766,19 +766,19 @@ which gives us `δ ⊢ rename (λ {A} x → x) M ↓ v`, and then we apply the
`rename-id` lemma to obtain `δ ⊢ M ↓ v`.
```
Env⊑ : ∀ {Γ} {γ : Env Γ} {δ : Env Γ} {M v}
⊑-env : ∀ {Γ} {γ : Env Γ} {δ : Env Γ} {M v}
γ ⊢ M ↓ v
γ `⊑ δ
----------
→ δ ⊢ M ↓ v
Env⊑{Γ}{γ}{δ}{M}{v} d lt
⊑-env{Γ}{γ}{δ}{M}{v} d lt
with rename-pres{Γ}{Γ}{v}{γ}{δ}{M} (λ {A} x → x) lt d
... | d rewrite rename-id {Γ}{★}{M} =
d
```
In the proof that substitution reflects denotations, in the case for
lambda abstraction, we use a minor variation of `Env⊑`, in which just
lambda abstraction, we use a minor variation of `⊑-env`, in which just
the last element of the environment gets larger.
```
@ -787,11 +787,11 @@ up-env : ∀ {Γ} {γ : Env Γ} {M v u₁ u₂}
→ u₁ ⊑ u₂
-----------------
→ (γ `, u₂) ⊢ M ↓ v
up-env d lt = Env⊑ d (nth-le lt)
up-env d lt = ⊑-env d (nth-le lt)
where
nth-le : ∀ {γ u₁ u₂} → u₁ ⊑ u₂ → (γ `, u₁) `⊑ (γ `, u₂)
nth-le lt Z = lt
nth-le lt (S n) = Refl⊑
nth-le lt (S n) = ⊑-refl
```
@ -800,10 +800,10 @@ up-env d lt = Env⊑ d (nth-le lt)
What can we deduce from knowing that a function `v ↦ w` is less than
some value `u`? What can we deduce about `u`? The answer to this
question is called the inversion property of less-than for functions.
This question is not easy to answer because of the `Dist⊑` rule, which
This question is not easy to answer because of the `⊑-dist` rule, which
relates a function on the left to a pair of functions on the right.
So `u` may include several functions that, as a group, relate to
`v ↦ w`. Furthermore, because of the rules `ConjR1⊑` and `ConjR2⊑`,
`v ↦ w`. Furthermore, because of the rules `⊑-conj-R1` and `⊑-conj-R2`,
there may be other values inside `u`, such as `⊥`, that have nothing
to do with `v ↦ w`. But in general, we can deduce that `u` includes
a collection of functions where the join of their domains is less
@ -852,20 +852,20 @@ imply the less-than relation but not the other way around.
→ u ∈ v
-----
→ u ⊑ v
∈→⊑ {.⊥} {⊥} refl = Bot⊑
∈→⊑ {v ↦ w} {v ↦ w} refl = Refl⊑
∈→⊑ {u} {v ⊔ w} (inj₁ x) = ConjR1⊑ (∈→⊑ x)
∈→⊑ {u} {v ⊔ w} (inj₂ y) = ConjR2⊑ (∈→⊑ y)
∈→⊑ {.⊥} {⊥} refl = ⊑-bot
∈→⊑ {v ↦ w} {v ↦ w} refl = ⊑-refl
∈→⊑ {u} {v ⊔ w} (inj₁ x) = ⊑-conj-R1 (∈→⊑ x)
∈→⊑ {u} {v ⊔ w} (inj₂ y) = ⊑-conj-R2 (∈→⊑ y)
⊆→⊑ : ∀{u v : Value}
→ u ⊆ v
-----
→ u ⊑ v
⊆→⊑ {⊥} s with s {⊥} refl
... | x = Bot⊑
... | x = ⊑-bot
⊆→⊑ {u ↦ u} s with s {u ↦ u} refl
... | x = ∈→⊑ x
⊆→⊑ {u ⊔ u} s = ConjL⊑ (⊆→⊑ (λ z → s (inj₁ z))) (⊆→⊑ (λ z → s (inj₂ z)))
⊆→⊑ {u ⊔ u} s = ⊑-conj-L (⊆→⊑ (λ z → s (inj₁ z))) (⊆→⊑ (λ z → s (inj₂ z)))
```
We shall also need some inversion principles for value inclusion. If
@ -897,15 +897,15 @@ then `v ↦ w` must be a member of `u`.
To identify collections of functions, we define the following two
predicates. We write `Fun u` if `u` is a function value, that is, if
`u ≡ v ↦ w` for some values `v` and `w`. We write `Funs v` if all the elements
`u ≡ v ↦ w` for some values `v` and `w`. We write `all-funs v` if all the elements
of `v` are functions.
```
data Fun : Value → Set where
fun : ∀{u v w} → u ≡ (v ↦ w) → Fun u
Funs : Value → Set
Funs v = ∀{u} → u ∈ v → Fun u
all-funs : Value → Set
all-funs v = ∀{u} → u ∈ v → Fun u
```
The value `⊥` is not a function.
@ -920,14 +920,14 @@ one element. Thus, if all the elements are functions, there is at
least one that is a function.
```
Funs∈ : ∀{u}
Funs u
all-funs∈ : ∀{u}
all-funs u
→ Σ[ v ∈ Value ] Σ[ w ∈ Value ] v ↦ w ∈ u
Funs∈ {⊥} f with f {⊥} refl
all-funs∈ {⊥} f with f {⊥} refl
... | fun ()
Funs∈ {v ↦ w} f = ⟨ v , ⟨ w , refl ⟩ ⟩
Funs∈ {u ⊔ u} f
with Funs∈ λ z → f (inj₁ z)
all-funs∈ {v ↦ w} f = ⟨ v , ⟨ w , refl ⟩ ⟩
all-funs∈ {u ⊔ u} f
with all-funs∈ λ z → f (inj₁ z)
... | ⟨ v , ⟨ w , m ⟩ ⟩ = ⟨ v , ⟨ w , (inj₁ m) ⟩ ⟩
```
@ -961,7 +961,7 @@ that `v` is included in the domain of `v`.
```
↦∈→⊆dom : ∀{u v w : Value}
Funs u → (v ↦ w) ∈ u
all-funs u → (v ↦ w) ∈ u
----------------------
→ v ⊆ dom u
↦∈→⊆dom {⊥} fg () u∈v
@ -1000,7 +1000,7 @@ than `w`.
```
factor : (u : Value) → (u : Value) → (v : Value) → (w : Value) → Set
factor u u v w = Funs u × u ⊆ u × dom u ⊑ v × w ⊑ cod u
factor u u v w = all-funs u × u ⊆ u × dom u ⊑ v × w ⊑ cod u
```
We prove the inversion principle for functions by induction on the
@ -1010,17 +1010,17 @@ u`), and strengthen the conclusion to say that for _every_ function
value `v ↦ w ∈ u₁`, we have that `v ↦ w` factors `u₂` into some
value `u₃`.
### Inversion of less-than for functions, the case for Trans⊑
### Inversion of less-than for functions, the case for ⊑-trans
The crux of the proof is the case for `Trans⊑`.
The crux of the proof is the case for `⊑-trans`.
u₁ ⊑ u u ⊑ u₂
--------------- (Trans⊑)
--------------- (⊑-trans)
u₁ ⊑ u₂
By the induction hypothesis for `u₁ ⊑ u`, we know
that `v ↦ w factors u into u`, for some value `u`,
so we have `Funs u` and `u ⊆ u`.
so we have `all-funs u` and `u ⊆ u`.
By the induction hypothesis for `u ⊑ u₂`, we know
that for any `v ↦ w ∈ u`, `v ↦ w` factors `u₂` into `u₃`.
With these facts in hand, we proceed by induction on `u`
@ -1029,7 +1029,7 @@ We discuss each case of the proof in the text below.
```
sub-inv-trans : ∀{u u₂ u : Value}
Funs u → u ⊆ u
all-funs u → u ⊆ u
→ (∀{v w} → v ↦ w ∈ u → Σ[ u₃ ∈ Value ] factor u₂ u₃ v w)
---------------------------------------------------------------
→ Σ[ u₃ ∈ Value ] factor u₂ u₃ (dom u) (cod u)
@ -1063,7 +1063,7 @@ sub-inv-trans {u₁ ⊔ u₂} {u₂} {u} fg u⊆u IH
`dom u ≡ u₁` and `cod u ≡ u₂`.
* Suppose `u ≡ u₁ ⊔ u₂`. Then we have `u₁ ⊆ u` and `u₂ ⊆ u`. We also
have `Funs u₁` and `Funs u₂`, so we can apply the induction hypothesis
have `all-funs u₁` and `all-funs u₂`, so we can apply the induction hypothesis
for both `u₁` and `u₂`. So there exists values `u₃₁` and `u₃₂` such that
`(dom u₁) ↦ (cod u₁)` factors `u` into `u₃₁` and
`(dom u₂) ↦ (cod u₂)` factors `u` into `u₃₂`.
@ -1091,32 +1091,32 @@ sub-inv : ∀{u₁ u₂ : Value}
→ ∀{v w} → v ↦ w ∈ u₁
-------------------------------------
→ Σ[ u₃ ∈ Value ] factor u₂ u₃ v w
sub-inv {⊥} {u₂} Bot⊑ {v} {w} ()
sub-inv {u₁₁ ⊔ u₁₂} {u₂} (ConjL⊑ lt1 lt2) {v} {w} (inj₁ x) = sub-inv lt1 x
sub-inv {u₁₁ ⊔ u₁₂} {u₂} (ConjL⊑ lt1 lt2) {v} {w} (inj₂ y) = sub-inv lt2 y
sub-inv {u₁} {u₂₁ ⊔ u₂₂} (ConjR1⊑ lt) {v} {w} m
sub-inv {⊥} {u₂} ⊑-bot {v} {w} ()
sub-inv {u₁₁ ⊔ u₁₂} {u₂} (⊑-conj-L lt1 lt2) {v} {w} (inj₁ x) = sub-inv lt1 x
sub-inv {u₁₁ ⊔ u₁₂} {u₂} (⊑-conj-L lt1 lt2) {v} {w} (inj₂ y) = sub-inv lt2 y
sub-inv {u₁} {u₂₁ ⊔ u₂₂} (⊑-conj-R1 lt) {v} {w} m
with sub-inv lt m
... | ⟨ u₃₁ , ⟨ fu₃₁ , ⟨ u₃₁⊆u₂₁ , ⟨ domu₃₁⊑v , w⊑codu₃₁ ⟩ ⟩ ⟩ ⟩ =
⟨ u₃₁ , ⟨ fu₃₁ , ⟨ (λ {w} z → inj₁ (u₃₁⊆u₂₁ z)) ,
⟨ domu₃₁⊑v , w⊑codu₃₁ ⟩ ⟩ ⟩ ⟩
sub-inv {u₁} {u₂₁ ⊔ u₂₂} (ConjR2⊑ lt) {v} {w} m
sub-inv {u₁} {u₂₁ ⊔ u₂₂} (⊑-conj-R2 lt) {v} {w} m
with sub-inv lt m
... | ⟨ u₃₂ , ⟨ fu₃₂ , ⟨ u₃₂⊆u₂₂ , ⟨ domu₃₂⊑v , w⊑codu₃₂ ⟩ ⟩ ⟩ ⟩ =
⟨ u₃₂ , ⟨ fu₃₂ , ⟨ (λ {C} z → inj₂ (u₃₂⊆u₂₂ z)) ,
⟨ domu₃₂⊑v , w⊑codu₃₂ ⟩ ⟩ ⟩ ⟩
sub-inv {u₁} {u₂} (Trans⊑{v = u} u₁⊑u u⊑u₂) {v} {w} v↦w∈u₁
sub-inv {u₁} {u₂} (⊑-trans{v = u} u₁⊑u u⊑u₂) {v} {w} v↦w∈u₁
with sub-inv u₁⊑u v↦w∈u₁
... | ⟨ u , ⟨ fu , ⟨ u⊆u , ⟨ domu⊑v , w⊑codu ⟩ ⟩ ⟩ ⟩
with sub-inv-trans {u} fu u⊆u (sub-inv u⊑u₂)
... | ⟨ u₃ , ⟨ fu₃ , ⟨ u₃⊆u₂ , ⟨ domu₃⊑domu , codu⊑codu₃ ⟩ ⟩ ⟩ ⟩ =
⟨ u₃ , ⟨ fu₃ , ⟨ u₃⊆u₂ , ⟨ Trans⊑ domu₃⊑domu domu⊑v ,
Trans⊑ w⊑codu codu⊑codu₃ ⟩ ⟩ ⟩ ⟩
sub-inv {u₁₁ ↦ u₁₂} {u₂₁ ↦ u₂₂} (Fun⊑ lt1 lt2) refl =
⟨ u₃ , ⟨ fu₃ , ⟨ u₃⊆u₂ , ⟨ ⊑-trans domu₃⊑domu domu⊑v ,
⊑-trans w⊑codu codu⊑codu₃ ⟩ ⟩ ⟩ ⟩
sub-inv {u₁₁ ↦ u₁₂} {u₂₁ ↦ u₂₂} (⊑-fun lt1 lt2) refl =
⟨ u₂₁ ↦ u₂₂ , ⟨ (λ {w} → fun) , ⟨ (λ {C} z → z) , ⟨ lt1 , lt2 ⟩ ⟩ ⟩ ⟩
sub-inv {u₂₁ ↦ (u₂₂ ⊔ u₂₃)} {u₂₁ ↦ u₂₂ ⊔ u₂₁ ↦ u₂₃} Dist⊑
sub-inv {u₂₁ ↦ (u₂₂ ⊔ u₂₃)} {u₂₁ ↦ u₂₂ ⊔ u₂₁ ↦ u₂₃} ⊑-dist
{.u₂₁} {.(u₂₂ ⊔ u₂₃)} refl =
⟨ u₂₁ ↦ u₂₂ ⊔ u₂₁ ↦ u₂₃ , ⟨ f , ⟨ g , ⟨ ConjL⊑ Refl⊑ Refl⊑ , Refl⊑ ⟩ ⟩ ⟩ ⟩
where f : Funs (u₂₁ ↦ u₂₂ ⊔ u₂₁ ↦ u₂₃)
⟨ u₂₁ ↦ u₂₂ ⊔ u₂₁ ↦ u₂₃ , ⟨ f , ⟨ g , ⟨ ⊑-conj-L ⊑-refl ⊑-refl , ⊑-refl ⟩ ⟩ ⟩ ⟩
where f : all-funs (u₂₁ ↦ u₂₂ ⊔ u₂₁ ↦ u₂₃)
f (inj₁ x) = fun x
f (inj₂ y) = fun y
g : (u₂₁ ↦ u₂₂ ⊔ u₂₁ ↦ u₂₃) ⊆ (u₂₁ ↦ u₂₂ ⊔ u₂₁ ↦ u₂₃)
@ -1126,9 +1126,9 @@ sub-inv {u₂₁ ↦ (u₂₂ ⊔ u₂₃)} {u₂₁ ↦ u₂₂ ⊔ u₂₁ ↦
Let `v` and `w` be arbitrary values.
* Case `Bot⊑`. So `u₁ ≡ ⊥`. We have `v ↦ w ∈ ⊥`, but that is impossible.
* Case `⊑-bot`. So `u₁ ≡ ⊥`. We have `v ↦ w ∈ ⊥`, but that is impossible.
* Case `ConjL⊑`.
* Case `⊑-conj-L`.
u₁₁ ⊑ u₂ u₁₂ ⊑ u₂
-------------------
@ -1142,7 +1142,7 @@ Let `v` and `w` be arbitrary values.
* Subcase `v ↦ w ∈ u₁₂`. We conclude by the induction hypothesis
for `u₁₂ ⊑ u₂`.
* Case `ConjR1⊑`.
* Case `⊑-conj-R1`.
u₁ ⊑ u₂₁
--------------
@ -1154,10 +1154,10 @@ Let `v` and `w` be arbitrary values.
we just need to show that `u₃₁ ⊆ u₂₁ ⊔ u₂₂`, but that follows
directly from `u₃₁ ⊆ u₂₁`.
* Case `ConjR2⊑`. This case follows by reasoning similar to
the case for `ConjR1⊑`.
* Case `⊑-conj-R2`. This case follows by reasoning similar to
the case for `⊑-conj-R1`.
* Case `Trans⊑`.
* Case `⊑-trans`.
u₁ ⊑ u u ⊑ u₂
---------------
@ -1165,7 +1165,7 @@ Let `v` and `w` be arbitrary values.
By the induction hypothesis for `u₁ ⊑ u`, we know
that `v ↦ w` factors `u` into `u`, for some value `u`,
so we have `Funs u` and `u ⊆ u`.
so we have `all-funs u` and `u ⊆ u`.
By the induction hypothesis for `u ⊑ u₂`, we know
that for any `v ↦ w ∈ u`, `v ↦ w` factors `u₂`.
Now we apply the lemma sub-inv-trans, which gives us
@ -1175,7 +1175,7 @@ Let `v` and `w` be arbitrary values.
From `w ⊑ cod u` and `cod u ⊑ cod u₃`, we have `w ⊑ cod u₃`,
and this case is complete.
* Case `Fun⊑`.
* Case `⊑-fun`.
u₂₁ ⊑ u₁₁ u₁₂ ⊑ u₂₂
---------------------
@ -1186,7 +1186,7 @@ Let `v` and `w` be arbitrary values.
We need to show that `dom (u₂₁ ↦ u₂₂) ⊑ u₁₁` and `u₁₂ ⊑ cod (u₂₁ ↦ u₂₂)`,
but that is equivalent to our premises `u₂₁ ⊑ u₁₁` and `u₁₂ ⊑ u₂₂`.
* Case `Dist⊑`.
* Case `⊑-dist`.
---------------------------------------------
u₂₁ ↦ (u₂₂ ⊔ u₂₃) ⊑ (u₂₁ ↦ u₂₂) ⊔ (u₂₁ ↦ u₂₃)
@ -1208,14 +1208,14 @@ and we modify the conclusion to say that for every
sub-inv-fun : ∀{v w u₁ : Value}
→ (v ↦ w) ⊑ u₁
-----------------------------------------------------
→ Σ[ u₂ ∈ Value ] Funs u₂ × u₂ ⊆ u₁
→ Σ[ u₂ ∈ Value ] all-funs u₂ × u₂ ⊆ u₁
× (∀{v w} → (v ↦ w) ∈ u₂ → v ⊑ v) × w ⊑ cod u₂
sub-inv-fun{v}{w}{u₁} abc
with sub-inv abc {v}{w} refl
... | ⟨ u₂ , ⟨ f , ⟨ u₂⊆u₁ , ⟨ db , cc ⟩ ⟩ ⟩ ⟩ =
⟨ u₂ , ⟨ f , ⟨ u₂⊆u₁ , ⟨ G , cc ⟩ ⟩ ⟩ ⟩
where G : ∀{D E} → (D ↦ E) ∈ u₂ → D ⊑ v
G{D}{E} m = Trans⊑ (⊆→⊑ (↦∈→⊆dom f m)) db
G{D}{E} m = ⊑-trans (⊆→⊑ (↦∈→⊆dom f m)) db
```
The second corollary is the inversion rule that one would expect for
@ -1229,12 +1229,12 @@ less-than with functions on the left and right-hand sides.
↦⊑↦-inv{v}{w}{v}{w} lt
with sub-inv-fun lt
... | ⟨ Γ , ⟨ f , ⟨ Γ⊆v34 , ⟨ lt1 , lt2 ⟩ ⟩ ⟩ ⟩
with Funs∈ f
with all-funs∈ f
... | ⟨ u , ⟨ u , u↦u∈Γ ⟩ ⟩
with Γ⊆v34 u↦u∈Γ
... | refl =
let codΓ⊆w = ⊆↦→cod⊆ Γ⊆v34 in
⟨ lt1 u↦u∈Γ , Trans⊑ lt2 (⊆→⊑ codΓ⊆w) ⟩
⟨ lt1 u↦u∈Γ , ⊑-trans lt2 (⊆→⊑ codΓ⊆w) ⟩
```

View file

@ -50,7 +50,7 @@ open import plfa.part2.Untyped
open import plfa.part2.Substitution using (Rename; Subst; ids)
open import plfa.part3.Denotational
using (Value; ⊥; Env; _⊢_↓_; _`,_; _⊑_; _`⊑_; `⊥; _`⊔_; init; last; init-last;
Refl⊑; Trans⊑; `Refl⊑; Env⊑; EnvConjR1⊑; EnvConjR2⊑; up-env;
⊑-refl; ⊑-trans; `⊑-refl; ⊑-env; ⊑-env-conj-R1; ⊑-env-conj-R2; up-env;
var; ↦-elim; ↦-intro; ⊥-intro; ⊔-intro; sub;
rename-pres; ; _≃_; ≃-trans)
open import plfa.part3.Compositional using (lambda-inversion; var-inv)
@ -96,7 +96,7 @@ subst-ext : ∀ {Γ Δ v} {γ : Env Γ} {δ : Env Δ}
--------------------------
→ δ `, v `⊢ exts σγ `, v
subst-ext σ d Z = var
subst-ext σ d (S x) = rename-pres S_ (λ _ → Refl⊑) (d x)
subst-ext σ d (S x) = rename-pres S_ (λ _ → ⊑-refl) (d x)
```
The proof is by cases on the de Bruijn index `x`.
@ -246,7 +246,7 @@ nth-ext : ∀ {Γ Δ v} {γ : Env Γ} {δ : Env Δ}
→ (δ ∘ ρ) `⊑ γ
------------------------------
→ ((δ `, v) ∘ ext ρ) `⊑ (γ `, v)
nth-ext ρ lt Z = Refl⊑
nth-ext ρ lt Z = ⊑-refl
nth-ext ρ lt (S x) = lt x
```
@ -259,7 +259,7 @@ rename-reflect : ∀ {Γ Δ v} {γ : Env Γ} {δ : Env Δ} { M : Γ ⊢ ★}
------------------------------------
γ ⊢ M ↓ v
rename-reflect {M = ` x} all-n d with var-inv d
... | lt = sub var (Trans⊑ lt (all-n x))
... | lt = sub var (⊑-trans lt (all-n x))
rename-reflect {M = ƛ N}{ρ = ρ} all-n (↦-intro d) =
↦-intro (rename-reflect (nth-ext ρ all-n) d)
rename-reflect {M = ƛ N} all-n ⊥-intro = ⊥-intro
@ -310,7 +310,7 @@ rename-inc-reflect : ∀ {Γ v v} {γ : Env Γ} { M : Γ ⊢ ★}
→ (γ `, v) ⊢ rename S_ M ↓ v
----------------------------
γ ⊢ M ↓ v
rename-inc-reflect d = rename-reflect `Refl⊑ d
rename-inc-reflect d = rename-reflect `⊑-refl d
```
@ -476,8 +476,8 @@ subst-reflect{Γ}{Δ}{γ}{σ = σ} (↦-elim d₁ d₂)
with subst-reflect {M = M₁} d₁ refl | subst-reflect {M = M₂} d₂ refl
... | ⟨ δ₁ , ⟨ subst-δ₁ , m1 ⟩ ⟩ | ⟨ δ₂ , ⟨ subst-δ₂ , m2 ⟩ ⟩ =
⟨ δ₁ `⊔ δ₂ , ⟨ subst-⊔ {γ₁ = δ₁}{γ₂ = δ₂}{σ = σ} subst-δ₁ subst-δ₂ ,
↦-elim (Env⊑ m1 (EnvConjR1⊑ δ₁ δ₂))
(Env⊑ m2 (EnvConjR2⊑ δ₁ δ₂)) ⟩ ⟩
↦-elim (⊑-env m1 (⊑-env-conj-R1 δ₁ δ₂))
(⊑-env m2 (⊑-env-conj-R2 δ₁ δ₂)) ⟩ ⟩
subst-reflect {M = M}{σ = σ} (↦-intro d) eqL with M
... | ` x with (↦-intro d)
@ -496,8 +496,8 @@ subst-reflect {σ = σ} (⊔-intro d₁ d₂) eq
with subst-reflect {σ = σ} d₁ eq | subst-reflect {σ = σ} d₂ eq
... | ⟨ δ₁ , ⟨ subst-δ₁ , m1 ⟩ ⟩ | ⟨ δ₂ , ⟨ subst-δ₂ , m2 ⟩ ⟩ =
⟨ δ₁ `⊔ δ₂ , ⟨ subst-⊔ {γ₁ = δ₁}{γ₂ = δ₂}{σ = σ} subst-δ₁ subst-δ₂ ,
⊔-intro (Env⊑ m1 (EnvConjR1⊑ δ₁ δ₂))
(Env⊑ m2 (EnvConjR2⊑ δ₁ δ₂)) ⟩ ⟩
⊔-intro (⊑-env m1 (⊑-env-conj-R1 δ₁ δ₂))
(⊑-env m2 (⊑-env-conj-R2 δ₁ δ₂)) ⟩ ⟩
subst-reflect (sub d lt) eq
with subst-reflect d eq
... | ⟨ δ , ⟨ subst-δ , m ⟩ ⟩ = ⟨ δ , ⟨ subst-δ , sub m lt ⟩ ⟩
@ -512,8 +512,8 @@ subst-reflect (sub d lt) eq
* Case `M ≡ M₁ · M₂`: By the induction hypothesis, we have
some `δ₁` and `δ₂` such that `δ₁ ⊢ M₁ ↓ v₁ ↦ v₃` and `γσ ↓ δ₁`,
as well as `δ₂ ⊢ M₂ ↓ v₁` and `γσ ↓ δ₂`.
By `Env⊑` we have `δ₁ ⊔ δ₂ ⊢ M₁ ↓ v₁ ↦ v₃` and `δ₁ ⊔ δ₂ ⊢ M₂ ↓ v₁`
(using `EnvConjR1⊑` and `EnvConjR2⊑`), and therefore
By `⊑-env` we have `δ₁ ⊔ δ₂ ⊢ M₁ ↓ v₁ ↦ v₃` and `δ₁ ⊔ δ₂ ⊢ M₂ ↓ v₁`
(using `⊑-env-conj-R1` and `⊑-env-conj-R2`), and therefore
`δ₁ ⊔ δ₂ ⊢ M₁ · M₂ ↓ v₃`.
We conclude this case by obtaining `γσ ↓ δ₁ ⊔ δ₂`
by the `subst-⊔` lemma.
@ -538,7 +538,7 @@ subst-reflect (sub d lt) eq
* Case `⊔-intro`: By the induction hypothesis we have
`δ₁ ⊢ M ↓ v₁`, `δ₂ ⊢ M ↓ v₂`, `δ ⊢ σ ↓ δ₁`, and `δ ⊢ σ ↓ δ₂`.
We have `δ₁ ⊔ δ₂ ⊢ M ↓ v₁` and `δ₁ ⊔ δ₂ ⊢ M ↓ v₂`
by `Env⊑` with `EnvConjR1⊑` and `EnvConjR2⊑`.
by `⊑-env` with `⊑-env-conj-R1` and `⊑-env-conj-R2`.
So by `⊔-intro` we have `δ₁ ⊔ δ₂ ⊢ M ↓ v₁ ⊔ v₂`.
By `subst-⊔` we conclude that `δ ⊢ σ ↓ δ₁ ⊔ δ₂`.
@ -565,7 +565,7 @@ subst-zero-reflect : ∀ {Δ} {δ : Env Δ} {γ : Env (Δ , ★)} {M : Δ ⊢
subst-zero-reflect {δ = δ} {γ = γ} δσγ = ⟨ last γ , ⟨ lemma , δσγ Z ⟩ ⟩
where
lemma : γ `⊑ (δ `, last γ)
lemma Z = Refl⊑
lemma Z = ⊑-refl
lemma (S x) = var-inv (δσγ (S x))
```
@ -586,14 +586,14 @@ substitution-reflect : ∀ {Δ} {δ : Env Δ} {N : Δ , ★ ⊢ ★} {M : Δ ⊢
→ Σ[ w ∈ Value ] δ ⊢ M ↓ w × (δ `, w) ⊢ N ↓ v
substitution-reflect d with subst-reflect d refl
... | ⟨ γ , ⟨ δσγ , γNv ⟩ ⟩ with subst-zero-reflect δσγ
... | ⟨ w , ⟨ ineq , δMw ⟩ ⟩ = ⟨ w , ⟨ δMw , Env⊑ γNv ineq ⟩ ⟩
... | ⟨ w , ⟨ ineq , δMw ⟩ ⟩ = ⟨ w , ⟨ δMw , ⊑-env γNv ineq ⟩ ⟩
```
We apply the `subst-reflect` lemma to obtain
`δ ⊢ subst-zero M ↓ γ` and `γ ⊢ N ↓ v` for some `γ`.
Using the former, the `subst-zero-reflect` lemma gives
us `γ ⊑ (δ , w)` and `δ ⊢ M ↓ w`. We conclude that
`δ , w ⊢ N ↓ v` by applying the `Env⊑` lemma, using
`δ , w ⊢ N ↓ v` by applying the `⊑-env` lemma, using
`γ ⊢ N ↓ v` and `γ ⊑ (δ , w)`.