more edits

This commit is contained in:
Jeremy Siek 2020-04-09 09:18:30 -04:00
parent 2afe5706a1
commit 433587bc61

View file

@ -20,7 +20,7 @@ open import plfa.part2.BigStep using (_⊢_⇓_; cbn→reduce)
open import plfa.part3.Denotational using (; _≃_; ≃-sym; ≃-trans; _iff_) open import plfa.part3.Denotational using (; _≃_; ≃-sym; ≃-trans; _iff_)
open import plfa.part3.Compositional using (Ctx; plug; compositionality) open import plfa.part3.Compositional using (Ctx; plug; compositionality)
open import plfa.part3.Soundness using (soundness) open import plfa.part3.Soundness using (soundness)
open import plfa.part3.Adequacy using (adequacy) open import plfa.part3.Adequacy using (↓→⇓)
``` ```
## Contextual Equivalence ## Contextual Equivalence
@ -78,7 +78,7 @@ denot-equal-terminates {Γ}{M}{N}{C} M≃N ⟨ N , CM—↠ƛN ⟩ =
let CM≃ƛN = soundness CM—↠ƛN in let CM≃ƛN = soundness CM—↠ƛN in
let CM≃CN = compositionality{Γ = Γ}{Δ = ∅}{C = C} M≃N in let CM≃CN = compositionality{Γ = Γ}{Δ = ∅}{C = C} M≃N in
let CN≃ƛN = ≃-trans (≃-sym CM≃CN) CM≃ƛN in let CN≃ƛN = ≃-trans (≃-sym CM≃CN) CM≃ƛN in
cbn→reduce (proj₂ (proj₂ (proj₂ (adequacy CN≃ƛN)))) cbn→reduce (proj₂ (proj₂ (proj₂ (↓→⇓ CN≃ƛN))))
``` ```
The proof is direct. Because `plug C —↠ plug C (ƛN)`, The proof is direct. Because `plug C —↠ plug C (ƛN)`,
@ -94,7 +94,7 @@ Putting these two facts together gives us
(plug C N) ≃ (ƛN). (plug C N) ≃ (ƛN).
We then apply adequacy to deduce We then apply `↓→⇓` from Chapter [Adequacy](../Adequacy.lagda.md) to deduce
∅' ⊢ plug C N ⇓ clos (ƛ N) δ). ∅' ⊢ plug C N ⇓ clos (ƛ N) δ).