more edits
This commit is contained in:
parent
2afe5706a1
commit
433587bc61
1 changed files with 3 additions and 3 deletions
|
@ -20,7 +20,7 @@ open import plfa.part2.BigStep using (_⊢_⇓_; cbn→reduce)
|
||||||
open import plfa.part3.Denotational using (ℰ; _≃_; ≃-sym; ≃-trans; _iff_)
|
open import plfa.part3.Denotational using (ℰ; _≃_; ≃-sym; ≃-trans; _iff_)
|
||||||
open import plfa.part3.Compositional using (Ctx; plug; compositionality)
|
open import plfa.part3.Compositional using (Ctx; plug; compositionality)
|
||||||
open import plfa.part3.Soundness using (soundness)
|
open import plfa.part3.Soundness using (soundness)
|
||||||
open import plfa.part3.Adequacy using (adequacy)
|
open import plfa.part3.Adequacy using (↓→⇓)
|
||||||
```
|
```
|
||||||
|
|
||||||
## Contextual Equivalence
|
## Contextual Equivalence
|
||||||
|
@ -78,7 +78,7 @@ denot-equal-terminates {Γ}{M}{N}{C} ℰM≃ℰN ⟨ N′ , CM—↠ƛN′ ⟩ =
|
||||||
let ℰCM≃ℰƛN′ = soundness CM—↠ƛN′ in
|
let ℰCM≃ℰƛN′ = soundness CM—↠ƛN′ in
|
||||||
let ℰCM≃ℰCN = compositionality{Γ = Γ}{Δ = ∅}{C = C} ℰM≃ℰN in
|
let ℰCM≃ℰCN = compositionality{Γ = Γ}{Δ = ∅}{C = C} ℰM≃ℰN in
|
||||||
let ℰCN≃ℰƛN′ = ≃-trans (≃-sym ℰCM≃ℰCN) ℰCM≃ℰƛN′ in
|
let ℰCN≃ℰƛN′ = ≃-trans (≃-sym ℰCM≃ℰCN) ℰCM≃ℰƛN′ in
|
||||||
cbn→reduce (proj₂ (proj₂ (proj₂ (adequacy ℰCN≃ℰƛN′))))
|
cbn→reduce (proj₂ (proj₂ (proj₂ (↓→⇓ ℰCN≃ℰƛN′))))
|
||||||
```
|
```
|
||||||
|
|
||||||
The proof is direct. Because `plug C —↠ plug C (ƛN′)`,
|
The proof is direct. Because `plug C —↠ plug C (ƛN′)`,
|
||||||
|
@ -94,7 +94,7 @@ Putting these two facts together gives us
|
||||||
|
|
||||||
ℰ (plug C N) ≃ ℰ (ƛN′).
|
ℰ (plug C N) ≃ ℰ (ƛN′).
|
||||||
|
|
||||||
We then apply adequacy to deduce
|
We then apply `↓→⇓` from Chapter [Adequacy](../Adequacy.lagda.md) to deduce
|
||||||
|
|
||||||
∅' ⊢ plug C N ⇓ clos (ƛ N′′) δ).
|
∅' ⊢ plug C N ⇓ clos (ƛ N′′) δ).
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue