added PureConor

This commit is contained in:
wadler 2018-06-15 09:58:13 -07:00
parent b3a386b56c
commit 45ed4f4a39
3 changed files with 210 additions and 2 deletions

208
extra/PureConor.lagda Normal file
View file

@ -0,0 +1,208 @@
---
title : "Pure: Pure Type Systems"
layout : page
permalink : /Pure/
---
Barendregt, H. (1991). Introduction to generalized type
systems. Journal of Functional Programming, 1(2),
125-154. doi:10.1017/S0956796800020025
Attempt to create inherently typed terms with Connor.
## Imports
\begin{code}
module PureConor where
\end{code}
\begin{code}
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Nat using (; zero; suc; _+_; _∸_)
open import Data.Product using (_×_; Σ; Σ-syntax; proj₁; proj₂)
renaming (_,_ to ⟨_,_⟩)
open import Data.Unit using (; tt)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_∘_)
open import Function.Equivalence using (_⇔_; equivalence)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Decidable using (map)
open import Relation.Nullary.Negation using (contraposition)
open import Relation.Nullary.Product using (_×-dec_)
\end{code}
## Syntax
\begin{code}
infix 4 _⊢_
infix 4 _∋_
infix 4 _⊆_
infixl 5 _,_
infix 6 _/_
infix 6 ƛ_⇒_
infix 7 Π_⇒_
-- infixr 8 _⇒_
infixl 9 _·_
data Sort : Set where
* : Sort
▢ : Sort
ok2 : Sort → Sort → Set
ok2 * ▢ =
ok2 _ _ = ⊥
ok3 : Sort → Sort → Sort → Set
ok3 * * ▢ =
ok3 * ▢ ▢ =
ok3 ▢ * * =
ok3 ▢ ▢ ▢ =
ok3 _ _ _ = ⊥
data Ctx : Set
data Tp : ∀ (Γ : Ctx) → Set
data _∋_ : ∀ (Γ : Ctx) → Tp Γ → Set
data _⊢_ : ∀ (Γ : Ctx) → Tp Γ → Set
data _⟶_ {Γ : Ctx} {A : Tp Γ} : Γ ⊢ A → Γ ⊢ A → Set
data _=β_ {Γ : Ctx} {A : Tp Γ} : Γ ⊢ A → Γ ⊢ A → Set
data Ctx where
∅ :
---
Ctx
_,_ :
(Γ : Ctx)
→ (A : Tp Γ)
-----------
→ Ctx
data Tp where
⟪_⟫ : ∀ {Γ : Ctx}
→ Sort
----
→ Tp Γ
⌈_⌉ : ∀ {Γ : Ctx} {s : Sort}
→ Γ ⊢ ⟪ s ⟫
----------
→ Tp Γ
W : ∀ {Γ : Ctx} {A : Tp Γ}
→ Tp Γ
-----------
→ Tp (Γ , A)
-- vcons : Π (n : ) → Vec n → Vec (suc n)
_[_] : ∀ {Γ : Ctx}
→ {A : Tp Γ}
→ (B : Tp (Γ , A))
→ (M : Γ ⊢ A)
----------------
→ Tp Γ
_⟨_⟩ : ∀ {Γ : Ctx} {A : Tp Γ} {B : Tp (Γ , A)}
→ (N : Γ , A ⊢ B)
→ (M : Γ ⊢ A)
---------------
→ Γ ⊢ B [ M ]
data _∋_ where
Z : ∀ {Γ : Ctx} {A : Tp Γ}
----------------------
→ Γ , A ∋ W A
S : ∀ {Γ : Ctx} {A B : Tp Γ}
→ Γ ∋ B
-----------
→ Γ , A ∋ W B
data _⊢_ where
⟪_⟫ : ∀ {Γ : Ctx} {t : Sort}
→ (s : Sort)
→ {_ : ok2 s t}
-------------
→ Γ ⊢ ⟪ t ⟫
⌊_⌋ : ∀ {Γ : Ctx} {A : Tp Γ}
→ Γ ∋ A
-----
→ Γ ⊢ A
Π_⇒_ : ∀ {Γ : Ctx} {s t u : Sort} {stu : ok3 s t u}
→ (A : Γ ⊢ ⟪ s ⟫)
→ Γ , ⌈ A ⌉ ⊢ ⟪ t ⟫
------------------
→ Γ ⊢ ⟪ u ⟫
ƛ_⇒_ : ∀ {Γ : Ctx} {s t u : Sort} {stu : ok3 s t u}
→ (A : Γ ⊢ ⟪ s ⟫)
→ {B : Γ , ⌈ A ⌉ ⊢ ⟪ t ⟫}
→ Γ , ⌈ A ⌉ ⊢ ⌈ B ⌉
-------------------------------------
→ Γ ⊢ ⌈ Π_⇒_ {u = u} {stu = stu} A B ⌉
_·_ : ∀ {Γ : Ctx} {s t u : Sort} {stu : ok3 s t u}
→ {A : Γ ⊢ ⟪ s ⟫}
→ {B : Γ , ⌈ A ⌉ ⊢ ⟪ t ⟫}
→ (L : Γ ⊢ ⌈ Π_⇒_ {u = u} {stu = stu} A B ⌉)
→ (M : Γ ⊢ ⌈ A ⌉)
------------------------------------------
→ Γ ⊢ ⌈ B ⌉ [ M ]
data _⊆_ : Ctx → Ctx → Set
_/_ : ∀ {Γ Δ : Ctx} → Γ ⊆ Δ → Tp Γ → Tp Δ
_/∋_ : ∀ {Γ Δ : Ctx} {A : Tp Γ} → (θ : Γ ⊆ Δ) → Γ ∋ A → Δ ∋ θ / A
_/⊢_ : ∀ {Γ Δ : Ctx} {A : Tp Γ} → (θ : Γ ⊆ Δ) → Γ ⊢ A → Δ ⊢ θ / A
data _⊆_ where
∅ :
-----
∅ ⊆ ∅
W : ∀ {Γ Δ : Ctx} {A : Tp Δ}
→ Γ ⊆ Δ
---------
→ Γ ⊆ Δ , A
S : ∀ {Γ Δ : Ctx} {A : Tp Γ}
→ (θ : Γ ⊆ Δ)
-----------------
→ Γ , A ⊆ Δ , θ / A
∅ / A = A
W θ / A = {!!}
S θ / A = {!!}
∅ /∋ x = x
W θ /∋ x = {!S x!}
S θ /∋ x = {!!}
θ /⊢ A = {!!}
_[_] = {!!}
_⟨_⟩ = {!!}
data _⟶_ where
data _=β_ where
\end{code}

View file

@ -378,7 +378,7 @@ data Normalise (M : Term) : Set where
→ Normalise M
normalise : ∀ {M A}
Gas
→ ∅ ⊢ M ⦂ A
-----------
→ Normalise M