merge
This commit is contained in:
commit
489daa4519
2 changed files with 27 additions and 26 deletions
|
@ -172,7 +172,7 @@ the environment `γ` to an equivalent substitution `σ`.
|
||||||
The case for `⇓-app` also requires that we strengthen the
|
The case for `⇓-app` also requires that we strengthen the
|
||||||
conclusion. In the case for `⇓-app` we have `γ ⊢ L ⇓ clos (λ N) δ` and
|
conclusion. In the case for `⇓-app` we have `γ ⊢ L ⇓ clos (λ N) δ` and
|
||||||
the induction hypothesis gives us `L —↠ ƛ N′`, but we need to know
|
the induction hypothesis gives us `L —↠ ƛ N′`, but we need to know
|
||||||
that `N` and `N′` are equivalent. In particular, that `N ≡ subst τ N′`
|
that `N` and `N′` are equivalent. In particular, that `N′ ≡ subst τ N`
|
||||||
where `τ` is the substitution that is equivalent to `δ`. Therefore we
|
where `τ` is the substitution that is equivalent to `δ`. Therefore we
|
||||||
expand the conclusion of the statement, stating that the results are
|
expand the conclusion of the statement, stating that the results are
|
||||||
equivalent.
|
equivalent.
|
||||||
|
@ -279,22 +279,22 @@ to some term `N` that is equivalent to `V`. We describe the proof
|
||||||
below.
|
below.
|
||||||
|
|
||||||
```
|
```
|
||||||
⇓→—↠×𝔹 : ∀{Γ}{γ : ClosEnv Γ}{σ : Subst Γ ∅}{M : Γ ⊢ ★}{V : Clos}
|
⇓→—↠×≈ : ∀{Γ}{γ : ClosEnv Γ}{σ : Subst Γ ∅}{M : Γ ⊢ ★}{V : Clos}
|
||||||
→ γ ⊢ M ⇓ V → γ ≈ₑ σ
|
→ γ ⊢ M ⇓ V → γ ≈ₑ σ
|
||||||
---------------------------------------
|
---------------------------------------
|
||||||
→ Σ[ N ∈ ∅ ⊢ ★ ] (subst σ M —↠ N) × V ≈ N
|
→ Σ[ N ∈ ∅ ⊢ ★ ] (subst σ M —↠ N) × V ≈ N
|
||||||
⇓→—↠×𝔹 {γ = γ} (⇓-var{x = x} γx≡Lδ δ⊢L⇓V) γ≈ₑσ
|
⇓→—↠×≈ {γ = γ} (⇓-var{x = x} γx≡Lδ δ⊢L⇓V) γ≈ₑσ
|
||||||
with γ x | γ≈ₑσ {x} | γx≡Lδ
|
with γ x | γ≈ₑσ {x} | γx≡Lδ
|
||||||
... | clos L δ | ⟨ τ , ⟨ δ≈ₑτ , σx≡τL ⟩ ⟩ | refl
|
... | clos L δ | ⟨ τ , ⟨ δ≈ₑτ , σx≡τL ⟩ ⟩ | refl
|
||||||
with ⇓→—↠×𝔹{σ = τ} δ⊢L⇓V δ≈ₑτ
|
with ⇓→—↠×≈{σ = τ} δ⊢L⇓V δ≈ₑτ
|
||||||
... | ⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩ rewrite σx≡τL =
|
... | ⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩ rewrite σx≡τL =
|
||||||
⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩
|
⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩
|
||||||
⇓→—↠×𝔹 {σ = σ} {V = clos (ƛ N) γ} ⇓-lam γ≈ₑσ =
|
⇓→—↠×≈ {σ = σ} {V = clos (ƛ N) γ} (⇓-lam) γ≈ₑσ =
|
||||||
⟨ subst σ (ƛ N) , ⟨ subst σ (ƛ N) ∎ , ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ ⟩ ⟩
|
⟨ subst σ (ƛ N) , ⟨ subst σ (ƛ N) ∎ , ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ ⟩ ⟩
|
||||||
⇓→—↠×𝔹{Γ}{γ} {σ = σ} {L · M} {V} (⇓-app {N = N} L⇓ƛNδ N⇓V) γ≈ₑσ
|
⇓→—↠×≈{Γ}{γ} {σ = σ} {L · M} {V} (⇓-app {N = N} L⇓ƛNδ N⇓V) γ≈ₑσ
|
||||||
with ⇓→—↠×𝔹{σ = σ} L⇓ƛNδ γ≈ₑσ
|
with ⇓→—↠×≈{σ = σ} L⇓ƛNδ γ≈ₑσ
|
||||||
... | ⟨ _ , ⟨ σL—↠ƛτN , ⟨ τ , ⟨ δ≈ₑτ , ≡ƛτN ⟩ ⟩ ⟩ ⟩ rewrite ≡ƛτN
|
... | ⟨ _ , ⟨ σL—↠ƛτN , ⟨ τ , ⟨ δ≈ₑτ , ≡ƛτN ⟩ ⟩ ⟩ ⟩ rewrite ≡ƛτN
|
||||||
with ⇓→—↠×𝔹 {σ = ext-subst τ (subst σ M)} N⇓V
|
with ⇓→—↠×≈ {σ = ext-subst τ (subst σ M)} N⇓V
|
||||||
(λ {x} → ≈ₑ-ext{σ = τ} δ≈ₑτ ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ {x})
|
(λ {x} → ≈ₑ-ext{σ = τ} δ≈ₑτ ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ {x})
|
||||||
| β{∅}{subst (exts τ) N}{subst σ M}
|
| β{∅}{subst (exts τ) N}{subst σ M}
|
||||||
... | ⟨ N' , ⟨ —↠N' , V≈N' ⟩ ⟩ | ƛτN·σM—→
|
... | ⟨ N' , ⟨ —↠N' , V≈N' ⟩ ⟩ | ƛτN·σM—→
|
||||||
|
@ -367,7 +367,7 @@ cbn→reduce : ∀{M : ∅ ⊢ ★}{Δ}{δ : ClosEnv Δ}{N′ : Δ , ★ ⊢
|
||||||
-----------------------------
|
-----------------------------
|
||||||
→ Σ[ N ∈ ∅ , ★ ⊢ ★ ] (M —↠ ƛ N)
|
→ Σ[ N ∈ ∅ , ★ ⊢ ★ ] (M —↠ ƛ N)
|
||||||
cbn→reduce {M}{Δ}{δ}{N′} M⇓c
|
cbn→reduce {M}{Δ}{δ}{N′} M⇓c
|
||||||
with ⇓→—↠×𝔹{σ = ids} M⇓c ≈ₑ-id
|
with ⇓→—↠×≈{σ = ids} M⇓c ≈ₑ-id
|
||||||
... | ⟨ N , ⟨ rs , ⟨ σ , ⟨ h , eq2 ⟩ ⟩ ⟩ ⟩ rewrite sub-id{M = M} | eq2 =
|
... | ⟨ N , ⟨ rs , ⟨ σ , ⟨ h , eq2 ⟩ ⟩ ⟩ ⟩ rewrite sub-id{M = M} | eq2 =
|
||||||
⟨ subst (exts σ) N′ , rs ⟩
|
⟨ subst (exts σ) N′ , rs ⟩
|
||||||
```
|
```
|
||||||
|
|
|
@ -67,7 +67,7 @@ open import Data.Product using (_×_; Σ; Σ-syntax; ∃; ∃-syntax; proj₁; p
|
||||||
renaming (_,_ to ⟨_,_⟩)
|
renaming (_,_ to ⟨_,_⟩)
|
||||||
open import plfa.part2.Substitution using (Rename; Subst)
|
open import plfa.part2.Substitution using (Rename; Subst)
|
||||||
open import plfa.part2.Untyped
|
open import plfa.part2.Untyped
|
||||||
using (_—→_; β; ξ₁; ξ₂; ζ; _—↠_; _—→⟨_⟩_; _∎;
|
using (_—→_; β; ξ₁; ξ₂; ζ; _—↠_; begin_; _—→⟨_⟩_; _—↠⟨_⟩_; _∎;
|
||||||
abs-cong; appL-cong; appR-cong; —↠-trans;
|
abs-cong; appL-cong; appR-cong; —↠-trans;
|
||||||
_⊢_; _∋_; `_; #_; _,_; ★; ƛ_; _·_; _[_];
|
_⊢_; _∋_; `_; #_; _,_; ★; ƛ_; _·_; _[_];
|
||||||
rename; ext; exts; Z; S_; subst; subst-zero)
|
rename; ext; exts; Z; S_; subst; subst-zero)
|
||||||
|
@ -195,17 +195,19 @@ par-betas : ∀{Γ A}{M N : Γ ⊢ A}
|
||||||
→ M —↠ N
|
→ M —↠ N
|
||||||
par-betas {Γ} {A} {.(` _)} (pvar{x = x}) = (` x) ∎
|
par-betas {Γ} {A} {.(` _)} (pvar{x = x}) = (` x) ∎
|
||||||
par-betas {Γ} {★} {ƛ N} (pabs p) = abs-cong (par-betas p)
|
par-betas {Γ} {★} {ƛ N} (pabs p) = abs-cong (par-betas p)
|
||||||
par-betas {Γ} {★} {L · M} (papp p₁ p₂) =
|
par-betas {Γ} {★} {L · M} (papp {L = L}{L′}{M}{M′} p₁ p₂) =
|
||||||
—↠-trans (appL-cong{M = M} (par-betas p₁)) (appR-cong (par-betas p₂))
|
begin
|
||||||
|
L · M —↠⟨ appL-cong{M = M} (par-betas p₁) ⟩
|
||||||
|
L′ · M —↠⟨ appR-cong (par-betas p₂) ⟩
|
||||||
|
L′ · M′
|
||||||
|
∎
|
||||||
par-betas {Γ} {★} {(ƛ N) · M} (pbeta{N′ = N′}{M′ = M′} p₁ p₂) =
|
par-betas {Γ} {★} {(ƛ N) · M} (pbeta{N′ = N′}{M′ = M′} p₁ p₂) =
|
||||||
let ih₁ = par-betas p₁ in
|
begin
|
||||||
let ih₂ = par-betas p₂ in
|
(ƛ N) · M —↠⟨ appL-cong{M = M} (abs-cong (par-betas p₁)) ⟩
|
||||||
let a : (ƛ N) · M —↠ (ƛ N′) · M
|
(ƛ N′) · M —↠⟨ appR-cong{L = ƛ N′} (par-betas p₂) ⟩
|
||||||
a = appL-cong{M = M} (abs-cong ih₁) in
|
(ƛ N′) · M′ —→⟨ β ⟩
|
||||||
let b : (ƛ N′) · M —↠ (ƛ N′) · M′
|
N′ [ M′ ]
|
||||||
b = appR-cong{L = ƛ N′} ih₂ in
|
∎
|
||||||
let c = (ƛ N′) · M′ —→⟨ β ⟩ N′ [ M′ ] ∎ in
|
|
||||||
—↠-trans (—↠-trans a b) c
|
|
||||||
```
|
```
|
||||||
|
|
||||||
The proof is by induction on `M ⇛ N`.
|
The proof is by induction on `M ⇛ N`.
|
||||||
|
@ -219,14 +221,13 @@ The proof is by induction on `M ⇛ N`.
|
||||||
* Suppose `L · M ⇛ L′ · M′` because `L ⇛ L′` and `M ⇛ M′`.
|
* Suppose `L · M ⇛ L′ · M′` because `L ⇛ L′` and `M ⇛ M′`.
|
||||||
By the induction hypothesis, we have `L —↠ L′` and `M —↠ M′`.
|
By the induction hypothesis, we have `L —↠ L′` and `M —↠ M′`.
|
||||||
So `L · M —↠ L′ · M` and then `L′ · M —↠ L′ · M′`
|
So `L · M —↠ L′ · M` and then `L′ · M —↠ L′ · M′`
|
||||||
because `—↠` is a congruence. We conclude using the transitity
|
because `—↠` is a congruence.
|
||||||
of `—↠`.
|
|
||||||
|
|
||||||
* Suppose `(ƛ N) · M ⇛ N′ [ M′ ]` because `N ⇛ N′` and `M ⇛ M′`.
|
* Suppose `(ƛ N) · M ⇛ N′ [ M′ ]` because `N ⇛ N′` and `M ⇛ M′`.
|
||||||
By similar reasoning, we have
|
By similar reasoning, we have
|
||||||
`(ƛ N) · M —↠ (ƛ N′) · M′`.
|
`(ƛ N) · M —↠ (ƛ N′) · M′`
|
||||||
Of course, `(ƛ N′) · M′ —→ N′ [ M′ ]`, so we can conclude
|
which we can following with the β reduction
|
||||||
using the transitivity of `—↠`.
|
`(ƛ N′) · M′ —→ N′ [ M′ ]`.
|
||||||
|
|
||||||
With this lemma in hand, we complete the proof that `M ⇛* N` implies
|
With this lemma in hand, we complete the proof that `M ⇛* N` implies
|
||||||
`M —↠ N` with a simple induction on `M ⇛* N`.
|
`M —↠ N` with a simple induction on `M ⇛* N`.
|
||||||
|
|
Loading…
Reference in a new issue