This commit is contained in:
wadler 2020-03-10 11:17:31 -03:00
commit 489daa4519
2 changed files with 27 additions and 26 deletions

View file

@ -172,7 +172,7 @@ the environment `γ` to an equivalent substitution `σ`.
The case for `⇓-app` also requires that we strengthen the The case for `⇓-app` also requires that we strengthen the
conclusion. In the case for `⇓-app` we have `γ ⊢ L ⇓ clos (λ N) δ` and conclusion. In the case for `⇓-app` we have `γ ⊢ L ⇓ clos (λ N) δ` and
the induction hypothesis gives us `L —↠ ƛ N`, but we need to know the induction hypothesis gives us `L —↠ ƛ N`, but we need to know
that `N` and `N` are equivalent. In particular, that `N ≡ subst τ N` that `N` and `N` are equivalent. In particular, that `N ≡ subst τ N`
where `τ` is the substitution that is equivalent to `δ`. Therefore we where `τ` is the substitution that is equivalent to `δ`. Therefore we
expand the conclusion of the statement, stating that the results are expand the conclusion of the statement, stating that the results are
equivalent. equivalent.
@ -279,22 +279,22 @@ to some term `N` that is equivalent to `V`. We describe the proof
below. below.
``` ```
⇓→—↠×𝔹 : ∀{Γ}{γ : ClosEnv Γ}{σ : Subst Γ ∅}{M : Γ ⊢ ★}{V : Clos} ⇓→—↠× : ∀{Γ}{γ : ClosEnv Γ}{σ : Subst Γ ∅}{M : Γ ⊢ ★}{V : Clos}
γ ⊢ M ⇓ V → γ ≈ₑ σ γ ⊢ M ⇓ V → γ ≈ₑ σ
--------------------------------------- ---------------------------------------
→ Σ[ N ∈ ∅ ⊢ ★ ] (subst σ M —↠ N) × V ≈ N → Σ[ N ∈ ∅ ⊢ ★ ] (subst σ M —↠ N) × V ≈ N
⇓→—↠×𝔹 {γ = γ} (⇓-var{x = x} γx≡Lδ δ⊢L⇓V) γ≈ₑσ ⇓→—↠× {γ = γ} (⇓-var{x = x} γx≡Lδ δ⊢L⇓V) γ≈ₑσ
with γ x | γ≈ₑσ {x} | γx≡Lδ with γ x | γ≈ₑσ {x} | γx≡Lδ
... | clos L δ | ⟨ τ , ⟨ δ≈ₑτ , σx≡τL ⟩ ⟩ | refl ... | clos L δ | ⟨ τ , ⟨ δ≈ₑτ , σx≡τL ⟩ ⟩ | refl
with ⇓→—↠×𝔹{σ = τ} δ⊢L⇓V δ≈ₑτ with ⇓→—↠×{σ = τ} δ⊢L⇓V δ≈ₑτ
... | ⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩ rewrite σx≡τL = ... | ⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩ rewrite σx≡τL =
⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩ ⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩
⇓→—↠×𝔹 {σ = σ} {V = clos (ƛ N) γ} ⇓-lam γ≈ₑσ = ⇓→—↠×≈ {σ = σ} {V = clos (ƛ N) γ} (⇓-lam) γ≈ₑσ =
⟨ subst σ (ƛ N) , ⟨ subst σ (ƛ N) ∎ , ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ ⟩ ⟩ ⟨ subst σ (ƛ N) , ⟨ subst σ (ƛ N) ∎ , ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ ⟩ ⟩
⇓→—↠×𝔹{Γ}{γ} {σ = σ} {L · M} {V} (⇓-app {N = N} L⇓ƛNδ N⇓V) γ≈ₑσ ⇓→—↠×{Γ}{γ} {σ = σ} {L · M} {V} (⇓-app {N = N} L⇓ƛNδ N⇓V) γ≈ₑσ
with ⇓→—↠×𝔹{σ = σ} L⇓ƛNδ γ≈ₑσ with ⇓→—↠×{σ = σ} L⇓ƛNδ γ≈ₑσ
... | ⟨ _ , ⟨ σL—↠ƛτN , ⟨ τ , ⟨ δ≈ₑτ , ≡ƛτN ⟩ ⟩ ⟩ ⟩ rewrite ≡ƛτN ... | ⟨ _ , ⟨ σL—↠ƛτN , ⟨ τ , ⟨ δ≈ₑτ , ≡ƛτN ⟩ ⟩ ⟩ ⟩ rewrite ≡ƛτN
with ⇓→—↠×𝔹 {σ = ext-subst τ (subst σ M)} N⇓V with ⇓→—↠× {σ = ext-subst τ (subst σ M)} N⇓V
(λ {x} → ≈ₑ-ext{σ = τ} δ≈ₑτ ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ {x}) (λ {x} → ≈ₑ-ext{σ = τ} δ≈ₑτ ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ {x})
| β{∅}{subst (exts τ) N}{subst σ M} | β{∅}{subst (exts τ) N}{subst σ M}
... | ⟨ N' , ⟨ —↠N' , V≈N' ⟩ ⟩ | ƛτN·σM—→ ... | ⟨ N' , ⟨ —↠N' , V≈N' ⟩ ⟩ | ƛτN·σM—→
@ -367,7 +367,7 @@ cbn→reduce : ∀{M : ∅ ⊢ ★}{Δ}{δ : ClosEnv Δ}{N : Δ , ★ ⊢
----------------------------- -----------------------------
→ Σ[ N ∈ ∅ , ★ ⊢ ★ ] (M —↠ ƛ N) → Σ[ N ∈ ∅ , ★ ⊢ ★ ] (M —↠ ƛ N)
cbn→reduce {M}{Δ}{δ}{N} M⇓c cbn→reduce {M}{Δ}{δ}{N} M⇓c
with ⇓→—↠×𝔹{σ = ids} M⇓c ≈ₑ-id with ⇓→—↠×{σ = ids} M⇓c ≈ₑ-id
... | ⟨ N , ⟨ rs , ⟨ σ , ⟨ h , eq2 ⟩ ⟩ ⟩ ⟩ rewrite sub-id{M = M} | eq2 = ... | ⟨ N , ⟨ rs , ⟨ σ , ⟨ h , eq2 ⟩ ⟩ ⟩ ⟩ rewrite sub-id{M = M} | eq2 =
⟨ subst (exts σ) N , rs ⟩ ⟨ subst (exts σ) N , rs ⟩
``` ```

View file

@ -67,7 +67,7 @@ open import Data.Product using (_×_; Σ; Σ-syntax; ∃; ∃-syntax; proj₁; p
renaming (_,_ to ⟨_,_⟩) renaming (_,_ to ⟨_,_⟩)
open import plfa.part2.Substitution using (Rename; Subst) open import plfa.part2.Substitution using (Rename; Subst)
open import plfa.part2.Untyped open import plfa.part2.Untyped
using (_—→_; β; ξ₁; ξ₂; ζ; _—↠_; _—→⟨_⟩_; _∎; using (_—→_; β; ξ₁; ξ₂; ζ; _—↠_; begin_; _—→⟨_⟩_; _—↠⟨_⟩_; _∎;
abs-cong; appL-cong; appR-cong; —↠-trans; abs-cong; appL-cong; appR-cong; —↠-trans;
_⊢_; _∋_; `_; #_; _,_; ★; ƛ_; _·_; _[_]; _⊢_; _∋_; `_; #_; _,_; ★; ƛ_; _·_; _[_];
rename; ext; exts; Z; S_; subst; subst-zero) rename; ext; exts; Z; S_; subst; subst-zero)
@ -195,17 +195,19 @@ par-betas : ∀{Γ A}{M N : Γ ⊢ A}
→ M —↠ N → M —↠ N
par-betas {Γ} {A} {.(` _)} (pvar{x = x}) = (` x) ∎ par-betas {Γ} {A} {.(` _)} (pvar{x = x}) = (` x) ∎
par-betas {Γ} {★} {ƛ N} (pabs p) = abs-cong (par-betas p) par-betas {Γ} {★} {ƛ N} (pabs p) = abs-cong (par-betas p)
par-betas {Γ} {★} {L · M} (papp p₁ p₂) = par-betas {Γ} {★} {L · M} (papp {L = L}{L}{M}{M} p₁ p₂) =
—↠-trans (appL-cong{M = M} (par-betas p₁)) (appR-cong (par-betas p₂)) begin
L · M —↠⟨ appL-cong{M = M} (par-betas p₁) ⟩
L · M —↠⟨ appR-cong (par-betas p₂) ⟩
L · M
par-betas {Γ} {★} {(ƛ N) · M} (pbeta{N = N}{M = M} p₁ p₂) = par-betas {Γ} {★} {(ƛ N) · M} (pbeta{N = N}{M = M} p₁ p₂) =
let ih₁ = par-betas p₁ in begin
let ih₂ = par-betas p₂ in (ƛ N) · M —↠⟨ appL-cong{M = M} (abs-cong (par-betas p₁)) ⟩
let a : (ƛ N) · M —↠ (ƛ N) · M (ƛ N) · M —↠⟨ appR-cong{L = ƛ N} (par-betas p₂) ⟩
a = appL-cong{M = M} (abs-cong ih₁) in (ƛ N) · M —→⟨ β ⟩
let b : (ƛ N) · M —↠ (ƛ N) · M N [ M ]
b = appR-cong{L = ƛ N} ih₂ in
let c = (ƛ N) · M —→⟨ β ⟩ N [ M ] ∎ in
—↠-trans (—↠-trans a b) c
``` ```
The proof is by induction on `M ⇛ N`. The proof is by induction on `M ⇛ N`.
@ -219,14 +221,13 @@ The proof is by induction on `M ⇛ N`.
* Suppose `L · M ⇛ L · M` because `L ⇛ L` and `M ⇛ M`. * Suppose `L · M ⇛ L · M` because `L ⇛ L` and `M ⇛ M`.
By the induction hypothesis, we have `L —↠ L` and `M —↠ M`. By the induction hypothesis, we have `L —↠ L` and `M —↠ M`.
So `L · M —↠ L · M` and then `L · M —↠ L · M` So `L · M —↠ L · M` and then `L · M —↠ L · M`
because `—↠` is a congruence. We conclude using the transitity because `—↠` is a congruence.
of `—↠`.
* Suppose `(ƛ N) · M ⇛ N [ M ]` because `N ⇛ N` and `M ⇛ M`. * Suppose `(ƛ N) · M ⇛ N [ M ]` because `N ⇛ N` and `M ⇛ M`.
By similar reasoning, we have By similar reasoning, we have
`(ƛ N) · M —↠ (ƛ N) · M`. `(ƛ N) · M —↠ (ƛ N) · M`
Of course, `(ƛ N) · M —→ N [ M ]`, so we can conclude which we can following with the β reduction
using the transitivity of `—↠`. `(ƛ N) · M —→ N [ M ]`.
With this lemma in hand, we complete the proof that `M ⇛* N` implies With this lemma in hand, we complete the proof that `M ⇛* N` implies
`M —↠ N` with a simple induction on `M ⇛* N`. `M —↠ N` with a simple induction on `M ⇛* N`.