diff --git a/src/extra/Typed-backup.lagda b/src/extra/Typed-backup.lagda index 6d4f5083..011394a4 100644 --- a/src/extra/Typed-backup.lagda +++ b/src/extra/Typed-backup.lagda @@ -396,11 +396,11 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈ Δ′ = Δ , x ⦂ A xs′ = x ∷ xs - ⊢σ′ : ∀ {y B} → y ∈ xs′ → Γ′ ∋ y ⦂ B → Δ′ ∋ y ⦂ B - ⊢σ′ ∈xs′ Z = Z - ⊢σ′ ∈xs′ (S x≢y ⊢y) with ∈xs′ - ... | here = ⊥-elim (x≢y refl) - ... | there ∈xs = S x≢y (⊢σ ∈xs ⊢y) + ⊢σ′ : ∀ {w B} → w ∈ xs′ → Γ′ ∋ w ⦂ B → Δ′ ∋ w ⦂ B + ⊢σ′ w∈′ Z = Z + ⊢σ′ w∈′ (S w≢ ⊢w) = S w≢ (⊢σ ∈w ⊢w) + where + ∈w = there⁻¹ w∈′ w≢ ⊆xs′ : free N ⊆ xs′ ⊆xs′ = \\-to-∷ ⊆xs @@ -432,12 +432,9 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈ ρ′ = ρ , x ↦ ` y Σ′ : ∀ {w} → w ∈ xs′ → free (ρ′ w) ⊆ ys′ - Σ′ {w} here with w ≟ x - ... | yes refl = [_]-⊆ - ... | no w≢ = ⊥-elim (w≢ refl) - Σ′ {w} (there w∈) with w ≟ x - ... | yes refl = [_]-⊆ - ... | no _ = there ∘ (Σ w∈) + Σ′ {w} w∈′ with w ≟ x + ... | yes refl = ⊆-++₁ + ... | no w≢ = ⊆-++₂ ∘ Σ (there⁻¹ w∈′ w≢) ⊆xs′ : free N ⊆ xs′ ⊆xs′ = \\-to-∷ ⊆xs @@ -448,12 +445,12 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈ ⊢ρ′ : ∀ {w C} → w ∈ xs′ → Γ′ ∋ w ⦂ C → Δ′ ⊢ ρ′ w ⦂ C ⊢ρ′ {w} _ Z with w ≟ x ... | yes _ = ` Z - ... | no w≢x = ⊥-elim (w≢x refl) - ⊢ρ′ {w} w∈′ (S w≢x ⊢w) with w ≟ x - ... | yes refl = ⊥-elim (w≢x refl) + ... | no w≢ = ⊥-elim (w≢ refl) + ⊢ρ′ {w} w∈′ (S w≢ ⊢w) with w ≟ x + ... | yes refl = ⊥-elim (w≢ refl) ... | no _ = ⊢rename {Δ} {Δ′} {ys} ⊢σ (Σ w∈) (⊢ρ w∈ ⊢w) where - w∈ = lemma₂ w≢x w∈′ + w∈ = there⁻¹ w∈′ w≢ ⊢subst Σ ⊢ρ ⊆xs (⊢L · ⊢M) = ⊢subst Σ ⊢ρ L⊆ ⊢L · ⊢subst Σ ⊢ρ M⊆ ⊢M @@ -476,18 +473,16 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈ Σ : ∀ {w} → w ∈ xs → free (ρ w) ⊆ ys Σ {w} w∈ y∈ with w ≟ x - ... | yes _ = ⊆-++₁ y∈ - ... | no w≢ with y∈ - ... | here = ⊆-++₂ (∈-≢-to-\\ w∈ w≢) - ... | there () + ... | yes _ = ⊆-++₁ y∈ + ... | no w≢ rewrite ∈-[_] y∈ = ⊆-++₂ (∈-≢-to-\\ w∈ w≢) ⊢ρ : ∀ {w B} → w ∈ xs → Γ′ ∋ w ⦂ B → Γ ⊢ ρ w ⦂ B ⊢ρ {w} w∈ Z with w ≟ x - ... | yes _ = ⊢M - ... | no w≢x = ⊥-elim (w≢x refl) - ⊢ρ {w} w∈ (S w≢x ⊢w) with w ≟ x - ... | yes refl = ⊥-elim (w≢x refl) - ... | no _ = ` ⊢w + ... | yes _ = ⊢M + ... | no w≢ = ⊥-elim (w≢ refl) + ⊢ρ {w} w∈ (S w≢ ⊢w) with w ≟ x + ... | yes refl = ⊥-elim (w≢ refl) + ... | no _ = ` ⊢w ⊆xs : free N ⊆ xs ⊆xs x∈ = x∈