remove second premise from cong-rename
This commit is contained in:
parent
bfff5d01cb
commit
5bfc503eec
2 changed files with 12 additions and 13 deletions
|
@ -346,15 +346,15 @@ cong-ext{Γ}{Δ}{ρ}{ρ′}{B} rr {A} = extensionality λ x → lemma {x}
|
|||
```
|
||||
|
||||
```
|
||||
cong-rename : ∀{Γ Δ}{ρ ρ′ : Rename Γ Δ}{B}{M M′ : Γ ⊢ B}
|
||||
→ (∀{A} → ρ ≡ ρ′ {A}) → M ≡ M′
|
||||
------------------------------
|
||||
→ rename ρ M ≡ rename ρ′ M′
|
||||
cong-rename {M = ` x} rr refl = cong `_ (cong-app rr x)
|
||||
cong-rename {ρ = ρ} {ρ′ = ρ′} {M = ƛ N} rr refl =
|
||||
cong ƛ_ (cong-rename {ρ = ext ρ}{ρ′ = ext ρ′}{M = N} (cong-ext rr) refl)
|
||||
cong-rename {M = L · M} rr refl =
|
||||
cong₂ _·_ (cong-rename rr refl) (cong-rename rr refl)
|
||||
cong-rename : ∀{Γ Δ}{ρ ρ′ : Rename Γ Δ}{B}{M : Γ ⊢ B}
|
||||
→ (∀{A} → ρ ≡ ρ′ {A})
|
||||
------------------------
|
||||
→ rename ρ M ≡ rename ρ′ M
|
||||
cong-rename {M = ` x} rr = cong `_ (cong-app rr x)
|
||||
cong-rename {ρ = ρ} {ρ′ = ρ′} {M = ƛ N} rr =
|
||||
cong ƛ_ (cong-rename {ρ = ext ρ}{ρ′ = ext ρ′}{M = N} (cong-ext rr))
|
||||
cong-rename {M = L · M} rr =
|
||||
cong₂ _·_ (cong-rename rr) (cong-rename rr)
|
||||
```
|
||||
|
||||
```
|
||||
|
@ -670,7 +670,7 @@ compose-rename {Γ}{Δ}{Σ}{A}{ƛ N}{ρ}{ρ′} = cong ƛ_ G
|
|||
rename (ext ρ) (rename (ext ρ′) N)
|
||||
≡⟨ compose-rename{ρ = ext ρ}{ρ′ = ext ρ′} ⟩
|
||||
rename ((ext ρ) ∘ (ext ρ′)) N
|
||||
≡⟨ cong-rename compose-ext refl ⟩
|
||||
≡⟨ cong-rename compose-ext ⟩
|
||||
rename (ext (ρ ∘ ρ′)) N
|
||||
∎
|
||||
compose-rename {M = L · M} = cong₂ _·_ compose-rename compose-rename
|
||||
|
@ -705,7 +705,7 @@ commute-subst-rename{Γ}{Δ}{ƛ N}{σ}{ρ} r =
|
|||
rename S_ (rename ρ (σ y))
|
||||
≡⟨ compose-rename ⟩
|
||||
rename (S_ ∘ ρ) (σ y)
|
||||
≡⟨ cong-rename refl refl ⟩
|
||||
≡⟨ cong-rename refl ⟩
|
||||
rename ((ext ρ) ∘ S_) (σ y)
|
||||
≡⟨ sym compose-rename ⟩
|
||||
rename (ext ρ) (rename S_ (σ y))
|
||||
|
|
|
@ -213,8 +213,7 @@ describe the proof below.
|
|||
... | inj₂ ⟨ v₁′ , ⟨ L↓v12 , M↓v3 ⟩ ⟩ | inj₂ ⟨ v₁′′ , ⟨ L↓v12′ , M↓v3′ ⟩ ⟩ =
|
||||
let L↓⊔ = ⊔-intro L↓v12 L↓v12′ in
|
||||
let M↓⊔ = ⊔-intro M↓v3 M↓v3′ in
|
||||
let x = inj₂ ⟨ v₁′ ⊔ v₁′′ , ⟨ sub L↓⊔ ⊔↦⊔-dist , M↓⊔ ⟩ ⟩ in
|
||||
x
|
||||
inj₂ ⟨ v₁′ ⊔ v₁′′ , ⟨ sub L↓⊔ ⊔↦⊔-dist , M↓⊔ ⟩ ⟩
|
||||
ℰ·→●ℰ {Γ}{γ}{L}{M}{v} (sub d lt)
|
||||
with ℰ·→●ℰ d
|
||||
... | inj₁ lt2 = inj₁ (⊑-trans lt lt2)
|
||||
|
|
Loading…
Reference in a new issue