Updated courses after f20abd92eb
This commit is contained in:
parent
982dcb2e06
commit
67e139fa16
10 changed files with 26 additions and 28 deletions
|
@ -31,7 +31,7 @@ open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
|
||||||
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; z≤n; s≤s)
|
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; z≤n; s≤s)
|
||||||
open import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm;
|
open import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm;
|
||||||
≤-refl; ≤-trans; ≤-antisym; ≤-total; +-monoʳ-≤; +-monoˡ-≤; +-mono-≤)
|
≤-refl; ≤-trans; ≤-antisym; ≤-total; +-monoʳ-≤; +-monoˡ-≤; +-mono-≤)
|
||||||
open import plfa.Relations using (_<_; z<s; s<s; zero; suc; even; odd)
|
open import plfa.part1.Relations using (_<_; z<s; s<s; zero; suc; even; odd)
|
||||||
```
|
```
|
||||||
|
|
||||||
## Naturals
|
## Naturals
|
||||||
|
|
|
@ -31,7 +31,6 @@ open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
|
||||||
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; z≤n; s≤s)
|
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; z≤n; s≤s)
|
||||||
open import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm;
|
open import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm;
|
||||||
≤-refl; ≤-trans; ≤-antisym; ≤-total; +-monoʳ-≤; +-monoˡ-≤; +-mono-≤)
|
≤-refl; ≤-trans; ≤-antisym; ≤-total; +-monoʳ-≤; +-monoˡ-≤; +-mono-≤)
|
||||||
open import plfa.Relations using (_<_; z<s; s<s)
|
|
||||||
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
|
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
|
||||||
open import Data.Product using (Σ; ∃; Σ-syntax; ∃-syntax)
|
open import Data.Product using (Σ; ∃; Σ-syntax; ∃-syntax)
|
||||||
open import Data.Unit using (⊤; tt)
|
open import Data.Unit using (⊤; tt)
|
||||||
|
@ -47,10 +46,10 @@ open import Relation.Nullary.Negation using (contraposition)
|
||||||
open import Relation.Unary using (Decidable)
|
open import Relation.Unary using (Decidable)
|
||||||
open import Function using (_∘_)
|
open import Function using (_∘_)
|
||||||
open import Level using (Level)
|
open import Level using (Level)
|
||||||
open import plfa.Relations using (_<_; z<s; s<s)
|
open import plfa.part1.Relations using (_<_; z<s; s<s)
|
||||||
open import plfa.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_; extensionality)
|
open import plfa.part1.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_; extensionality)
|
||||||
open plfa.Isomorphism.≃-Reasoning
|
open plfa.part1.Isomorphism.≃-Reasoning
|
||||||
open import plfa.Lists using (List; []; _∷_; [_]; [_,_]; [_,_,_]; [_,_,_,_];
|
open import plfa.part1.Lists using (List; []; _∷_; [_]; [_,_]; [_,_,_]; [_,_,_,_];
|
||||||
_++_; reverse; map; foldr; sum; All; Any; here; there; _∈_)
|
_++_; reverse; map; foldr; sum; All; Any; here; there; _∈_)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
|
@ -39,13 +39,13 @@ open import Function using (_∘_)
|
||||||
open import Algebra.Structures using (IsMonoid)
|
open import Algebra.Structures using (IsMonoid)
|
||||||
open import Level using (Level)
|
open import Level using (Level)
|
||||||
open import Relation.Unary using (Decidable)
|
open import Relation.Unary using (Decidable)
|
||||||
open import plfa.Relations using (_<_; z<s; s<s)
|
open import plfa.part1.Relations using (_<_; z<s; s<s)
|
||||||
open import plfa.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_; extensionality)
|
open import plfa.part1.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_; extensionality)
|
||||||
open plfa.Isomorphism.≃-Reasoning
|
open plfa.part1.Isomorphism.≃-Reasoning
|
||||||
open import plfa.Lists using (List; []; _∷_; [_]; [_,_]; [_,_,_]; [_,_,_,_];
|
open import plfa.part1.Lists using (List; []; _∷_; [_]; [_,_]; [_,_,_]; [_,_,_,_];
|
||||||
_++_; reverse; map; foldr; sum; All; Any; here; there; _∈_)
|
_++_; reverse; map; foldr; sum; All; Any; here; there; _∈_)
|
||||||
open import plfa.Lambda hiding (ƛ′_⇒_; case′_[zero⇒_|suc_⇒_]; μ′_⇒_; plus′)
|
open import plfa.part2.Lambda hiding (ƛ′_⇒_; case′_[zero⇒_|suc_⇒_]; μ′_⇒_; plus′)
|
||||||
open import plfa.Properties hiding (value?; unstuck; preserves; wttdgs)
|
open import plfa.part2.Properties hiding (value?; unstuck; preserves; wttdgs)
|
||||||
```
|
```
|
||||||
|
|
||||||
## Lambda
|
## Lambda
|
||||||
|
|
|
@ -54,7 +54,7 @@ module DeBruijn where
|
||||||
Remember to indent all code by two spaces.
|
Remember to indent all code by two spaces.
|
||||||
|
|
||||||
```
|
```
|
||||||
open import plfa.DeBruijn
|
open import plfa.part2.DeBruijn
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -55,7 +55,7 @@ Remember to indent all code by two spaces.
|
||||||
### Imports
|
### Imports
|
||||||
|
|
||||||
```
|
```
|
||||||
import plfa.More as DB
|
import plfa.part2.More as DB
|
||||||
```
|
```
|
||||||
|
|
||||||
### Syntax
|
### Syntax
|
||||||
|
|
|
@ -34,7 +34,7 @@ open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
|
||||||
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; z≤n; s≤s)
|
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; z≤n; s≤s)
|
||||||
open import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm;
|
open import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm;
|
||||||
≤-refl; ≤-trans; ≤-antisym; ≤-total; +-monoʳ-≤; +-monoˡ-≤; +-mono-≤)
|
≤-refl; ≤-trans; ≤-antisym; ≤-total; +-monoʳ-≤; +-monoˡ-≤; +-mono-≤)
|
||||||
open import plfa.Relations using (_<_; z<s; s<s; zero; suc; even; odd)
|
open import plfa.part1.Relations using (_<_; z<s; s<s; zero; suc; even; odd)
|
||||||
```
|
```
|
||||||
|
|
||||||
## Naturals
|
## Naturals
|
||||||
|
|
|
@ -34,7 +34,6 @@ open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
|
||||||
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; z≤n; s≤s)
|
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; z≤n; s≤s)
|
||||||
open import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm;
|
open import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm;
|
||||||
≤-refl; ≤-trans; ≤-antisym; ≤-total; +-monoʳ-≤; +-monoˡ-≤; +-mono-≤)
|
≤-refl; ≤-trans; ≤-antisym; ≤-total; +-monoʳ-≤; +-monoˡ-≤; +-mono-≤)
|
||||||
open import plfa.Relations using (_<_; z<s; s<s)
|
|
||||||
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
|
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
|
||||||
open import Data.Unit using (⊤; tt)
|
open import Data.Unit using (⊤; tt)
|
||||||
open import Data.Sum using (_⊎_; inj₁; inj₂) renaming ([_,_] to case-⊎)
|
open import Data.Sum using (_⊎_; inj₁; inj₂) renaming ([_,_] to case-⊎)
|
||||||
|
@ -47,9 +46,9 @@ open import Relation.Nullary.Product using (_×-dec_)
|
||||||
open import Relation.Nullary.Sum using (_⊎-dec_)
|
open import Relation.Nullary.Sum using (_⊎-dec_)
|
||||||
open import Relation.Nullary.Negation using (contraposition)
|
open import Relation.Nullary.Negation using (contraposition)
|
||||||
open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax)
|
open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax)
|
||||||
open import plfa.Relations using (_<_; z<s; s<s)
|
open import plfa.part1.Relations using (_<_; z<s; s<s)
|
||||||
open import plfa.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_; extensionality)
|
open import plfa.part1.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_; extensionality)
|
||||||
open plfa.Isomorphism.≃-Reasoning
|
open plfa.part1.Isomorphism.≃-Reasoning
|
||||||
```
|
```
|
||||||
|
|
||||||
## Equality
|
## Equality
|
||||||
|
|
|
@ -42,13 +42,13 @@ open import Function using (_∘_)
|
||||||
open import Algebra.Structures using (IsMonoid)
|
open import Algebra.Structures using (IsMonoid)
|
||||||
open import Level using (Level)
|
open import Level using (Level)
|
||||||
open import Relation.Unary using (Decidable)
|
open import Relation.Unary using (Decidable)
|
||||||
open import plfa.Relations using (_<_; z<s; s<s)
|
open import plfa.part1.Relations using (_<_; z<s; s<s)
|
||||||
open import plfa.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_; extensionality)
|
open import plfa.part1.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_; extensionality)
|
||||||
open plfa.Isomorphism.≃-Reasoning
|
open plfa.part1.Isomorphism.≃-Reasoning
|
||||||
open import plfa.Lists using (List; []; _∷_; [_]; [_,_]; [_,_,_]; [_,_,_,_];
|
open import plfa.part1.Lists using (List; []; _∷_; [_]; [_,_]; [_,_,_]; [_,_,_,_];
|
||||||
_++_; reverse; map; foldr; sum; All; Any; here; there; _∈_)
|
_++_; reverse; map; foldr; sum; All; Any; here; there; _∈_)
|
||||||
open import plfa.Lambda hiding (ƛ′_⇒_; case′_[zero⇒_|suc_⇒_]; μ′_⇒_; plus′)
|
open import plfa.part2.Lambda hiding (ƛ′_⇒_; case′_[zero⇒_|suc_⇒_]; μ′_⇒_; plus′)
|
||||||
open import plfa.Properties hiding (value?; unstuck; preserves; wttdgs)
|
open import plfa.part2.Properties hiding (value?; unstuck; preserves; wttdgs)
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Exercise `reverse-++-commute` (recommended)
|
#### Exercise `reverse-++-commute` (recommended)
|
||||||
|
|
|
@ -57,7 +57,7 @@ module DeBruijn where
|
||||||
Remember to indent all code by two spaces.
|
Remember to indent all code by two spaces.
|
||||||
|
|
||||||
```
|
```
|
||||||
open import plfa.DeBruijn
|
open import plfa.part2.DeBruijn
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
@ -770,7 +770,7 @@ Remember to indent all code by two spaces.
|
||||||
### Imports
|
### Imports
|
||||||
|
|
||||||
```
|
```
|
||||||
import plfa.More as DB
|
import plfa.part2.More as DB
|
||||||
```
|
```
|
||||||
|
|
||||||
### Syntax
|
### Syntax
|
||||||
|
|
|
@ -398,7 +398,7 @@ module Problem3 where
|
||||||
### Imports
|
### Imports
|
||||||
|
|
||||||
```
|
```
|
||||||
import plfa.DeBruijn as DB
|
import plfa.part2.DeBruijn as DB
|
||||||
```
|
```
|
||||||
|
|
||||||
### Syntax
|
### Syntax
|
||||||
|
|
Loading…
Reference in a new issue