Fix #488
This commit is contained in:
parent
dedf93666d
commit
6bc9ccd609
1 changed files with 27 additions and 20 deletions
|
@ -53,12 +53,13 @@ four.
|
|||
## Imports
|
||||
|
||||
```
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
|
||||
open import Data.String using (String; _≟_)
|
||||
open import Data.Nat using (ℕ; zero; suc)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Relation.Nullary using (Dec; yes; no; ¬_)
|
||||
open import Data.List using (List; _∷_; [])
|
||||
open import Data.Nat using (ℕ; zero; suc)
|
||||
open import Data.Product using (∃-syntax; _×_)
|
||||
open import Data.String using (String; _≟_)
|
||||
open import Relation.Nullary using (Dec; yes; no; ¬_)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
|
||||
```
|
||||
|
||||
## Syntax of terms
|
||||
|
@ -788,24 +789,30 @@ while if the top two lines stand for a single reduction
|
|||
step and the bottom two stand for zero or more reduction
|
||||
steps it is called the diamond property. In symbols:
|
||||
|
||||
confluence : ∀ {L M N} → ∃[ P ]
|
||||
( ((L —↠ M) × (L —↠ N))
|
||||
```
|
||||
postulate
|
||||
confluence : ∀ {L M N}
|
||||
→ ((L —↠ M) × (L —↠ N))
|
||||
--------------------
|
||||
→ ((M —↠ P) × (N —↠ P)) )
|
||||
→ ∃[ P ] ((M —↠ P) × (N —↠ P))
|
||||
|
||||
diamond : ∀ {L M N} → ∃[ P ]
|
||||
( ((L —→ M) × (L —→ N))
|
||||
diamond : ∀ {L M N}
|
||||
→ ((L —→ M) × (L —→ N))
|
||||
--------------------
|
||||
→ ((M —↠ P) × (N —↠ P)) )
|
||||
→ ∃[ P ] ((M —↠ P) × (N —↠ P))
|
||||
```
|
||||
|
||||
The reduction system studied in this chapter is deterministic.
|
||||
In symbols:
|
||||
|
||||
```
|
||||
postulate
|
||||
deterministic : ∀ {L M N}
|
||||
→ L —→ M
|
||||
→ L —→ N
|
||||
------
|
||||
→ M ≡ N
|
||||
```
|
||||
|
||||
It is easy to show that every deterministic relation satisfies
|
||||
the diamond property, and that every relation that satisfies
|
||||
|
|
Loading…
Add table
Reference in a new issue