diff --git a/src/plfa/DeBruijn.lagda b/src/plfa/DeBruijn.lagda index 8cb770e5..f46efd60 100644 --- a/src/plfa/DeBruijn.lagda +++ b/src/plfa/DeBruijn.lagda @@ -18,6 +18,13 @@ inherently typed. Our new presentation is more compact, using less than half the lines of code required previously to do cover the same ground. +The inherently typed representation was first proposed by +Thorsten Altenkirch and Bernhard Reus. +The formalisation of renaming and substitution +we use is due to Conor McBride. +Related work has been carried out by +James Chapman, James McKinna, and many others. + ## Imports \begin{code} @@ -185,42 +192,12 @@ shadowing: with variable names, there is no way to refer to the former binding in the scope of the latter, but with de Bruijn indices it could be referred to as `# 2`. - ## Order of presentation -The presentation in the previous two chapters was ordered as -follows, where the first chapter introduces raw terms, and the -second proves their properties. - - * Lambda: Introduction to Lambda Calculus - + 1.1 Syntax - + 1.2 Values - + 1.3 Substitution - + 1.4 Reduction - + 1.5 Typing - * Properties: Progress and Preservation - + 2.1 Canonical forms lemma - + 2.2 Progress - + 2.3 Renaming lemma - + 2.4 Substitution preserves types - + 2.5 Preservation - + 2.6 Evaluation - In the current chapter, the use of inherently-typed terms necessitates that we cannot introduce operations such as substitution or reduction without also showing that they preserve types. Hence, the order of presentation must change. -For each new section, we show the corresponding old section or -sections. - - * DeBruijn: Inherently typed de Bruijn representation - + Syntax (1.1, 1.5) - + Values (1.2, 2.1) - + Renaming (2.3) - + Substitution (1.3, 2.3) - + Reduction (1.3, 2.4) - + Progress (2.2) - + Evaluation (2.6) The syntax of terms now incorporates their typing rules, and the definition of values now incorporates the Canonical Forms lemma. The @@ -505,19 +482,7 @@ As before we generalise everything save `2+2ᶜ` to arbitary contexts. While we are at it, we also generalise `twoᶜ` and `plusᶜ` to Church numerals over arbitrary types. -## Substitution - -With terms in hand, we turn to substitution. -Whereas before we had to restrict our -attention to substituting only one variable at a time and -could only substitute closed terms, here we can consider -simultaneous subsitution of open terms. The -definition of substitution we consider is due to Conor -McBride. Whereas before we defined substitution in one -chapter and showed it preserved types in the next chapter, -here we write code that does both at once. - -### Renaming +## Renaming Renaming is a necessary prelude to substitution, enabling us to "rebase" a term from one context to another. It @@ -620,7 +585,7 @@ typing, and hence the Agda code for inherently-typed de Bruijn terms is inherently reliable. -### Simultaneous Substitution +## Simultaneous Substitution Because de Bruijn indices free us of concerns with renaming, it becomes easy to provide a definition of substitution that @@ -695,7 +660,7 @@ The remaining cases are similar, recursing on each subterm, and extending the map whenever the construct introduces a bound variable. -### Single substitution +## Single substitution From the general case of substitution for multiple free variables in is easy to define the special case of @@ -773,12 +738,7 @@ And combining definition with proof makes it harder for errors to sneak in. -## Reduction - -With substitution out of the way, it is straightforward to -define values and reduction. - -### Value +## Values The definition of value is much as before, save that the added types incorporate the same information found in the @@ -804,7 +764,8 @@ Here `zero` requires an implicit parameter to aid inference, much in the same way that `[]` did in [Lists]({{ site.baseurl }}{% link out/plfa/Lists.md %})). -### Reduction step + +## Reduction The reduction rules are the same as those given earlier, save that for each term we must specify its types. As before, we @@ -867,7 +828,7 @@ preserves types, which we previously is built-in to our definition of substitution. -### Reflexive and transitive closure +## Reflexive and transitive closure The reflexive and transitive closure is exactly as before. We simply cut-and-paste the previous definition. diff --git a/src/plfa/More.lagda b/src/plfa/More.lagda index d5858c2c..bd0c410e 100644 --- a/src/plfa/More.lagda +++ b/src/plfa/More.lagda @@ -12,6 +12,7 @@ So far, we have focussed on a relatively minimal language, based on Plotkin's PCF, which supports functions, naturals, and fixpoints. In this chapter we extend our calculus to support the following: + * primitive numbers * _let_ bindings * products * an alternative formulation of products @@ -24,7 +25,7 @@ this chapter we extend our calculus to support the following: All of the data types should be familiar from Part I of this textbook. For _let_ and the alternative formulations we show how they translate to other constructs in the calculus. Most of the description will be -informal. We show how to formalise the first three constructs and leave +informal. We show how to formalise the first four constructs and leave the rest as an exercise for the reader. Our informal descriptions will be in the style of @@ -40,6 +41,58 @@ For each construct, we give syntax, typing, reductions, and an example. We also give translations where relevant; formally establishing the correctness of translations will be the subject of the next chapter. +## Primitive numbers + +We define a `Num` type equivalent to the built-in natural number type +with multiplication as a primitive operation on numbers. + +### Syntax + + L, M, N ::= ... Terms + con c constant + L `* M multiplication + +### Typing + +The hypothesis of the `con` rule is unusual, in that +it refers to a typing judgement of Agda rather than a +typing judgement of the defined calculus. + + c : ℕ + --------------- con + Γ ⊢ con c : Nat + + Γ ⊢ L : Nat + Γ ⊢ M : Nat + ---------------- _`*_ + Γ ⊢ L `* M : Nat + +### Reduction + +A rule that defines a primitive directly, such as the last rule below, +is called a δ rule. Here the δ rule defines multiplication of +primitive numbers in terms of multiplication of naturals as given +by the Agda standard prelude. + + L —→ L′ + ----------------- ξ-*₁ + L `* M —→ L′ `* M + + M —→ M′ + ----------------- ξ-*₂ + V `* M —→ V `* M′ + + ----------------------------- δ-* + con c `* con d —→ con (c * d) + +### Example + +Here is a function to cube a primitive number. + + cube : ∅ ⊢ Nat ⇒ Nat + cube = ƛ x ⇒ x `* x `* x + + ## Let bindings Let bindings affect only the syntax of terms; they introduce no new @@ -68,15 +121,13 @@ types or values. ### Example -Let _`*_ : ∅ ⊢ `ℕ ⇒ `ℕ ⇒ `ℕ represent multiplication of naturals. -Then raising a natural to the tenth power can be defined as follows. +Here is a function to raise a primitive number to the tenth power. - exp10 : ∅ ⊢ `ℕ ⇒ `ℕ + exp10 : ∅ ⊢ Nat ⇒ Nat exp10 = ƛ x ⇒ `let x2 `= x `* x `in `let x4 `= x2 `* x2 `in `let x5 `= x4 `* x `in - `let x10 `= x5 `* x5 `in - x10 + x5 `* x5 ### Translation @@ -141,7 +192,7 @@ We can translate each _let_ term into an application of an abstraction. ### Example -Here is the definition of a function to swap the components of a pair. +Here is a function to swap the components of a pair. swap× : ∅ ⊢ A `× B ⇒ B `× A swap× = ƛ z ⇒ `⟨ proj₂ z , proj₁ z ⟩ @@ -190,7 +241,7 @@ and reduction rules. ### Example -Function to swap the components of a pair rewritten in the new notation. +Here is a function to swap the components of a pair rewritten in the new notation. swap×-case : ∅ ⊢ A `× B ⇒ B `× A swap×-case = ƛ z ⇒ case× z @@ -274,7 +325,7 @@ We can also translate back the other way. ### Example -Here is the definition of a function to swap the components of a sum. +Here is a function to swap the components of a sum. swap⊎ : ∅ ⊢ A `⊎ B ⇒ B `⊎ A swap⊎ = ƛ z ⇒ case⊎ z @@ -496,6 +547,7 @@ Here is the map function for lists. We now show how to formalise + * primitive numbers * _let_ bindings * products * an alternative formulation of products @@ -509,7 +561,7 @@ and leave formalisation of the remaining constructs as an exercise. import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open import Data.Empty using (⊥; ⊥-elim) -open import Data.Nat using (ℕ; zero; suc; _+_; _∸_) +open import Data.Nat using (ℕ; zero; suc; _*_) open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩) open import Data.Unit using (⊤; tt) open import Function using (_∘_) @@ -533,6 +585,7 @@ infix 5 ƛ_ infix 5 μ_ infixr 6 _`∷_ infixl 7 _·_ +infixl 8 _`*_ infix 8 `suc_ infix 9 `_ infix 9 S_ @@ -548,6 +601,7 @@ infix 8 V-suc_ data Type : Set where `ℕ : Type _⇒_ : Type → Type → Type + Nat : Type _`×_ : Type → Type → Type _`⊎_ : Type → Type → Type `⊤ : Type @@ -628,6 +682,19 @@ data _⊢_ : Context → Type → Set where ---------- → Γ ⊢ A + -- primitive + + con : ∀ {Γ} + → ℕ + ------- + → Γ ⊢ Nat + + _`*_ : ∀ {Γ} + → Γ ⊢ Nat + → Γ ⊢ Nat + ------- + → Γ ⊢ Nat + -- let `let : ∀ {Γ A B} @@ -722,7 +789,7 @@ data _⊢_ : Context → Type → Set where → Γ ⊢ B \end{code} -## Abbreviating de Bruijn indices +### Abbreviating de Bruijn indices \begin{code} lookup : Context → ℕ → Type @@ -741,9 +808,7 @@ count {∅} _ = ⊥-elim impossible # n = ` count n \end{code} -## Substitution - -### Renaming +## Renaming \begin{code} ext : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ∋ A) → (∀ {A B} → Γ , A ∋ B → Δ , A ∋ B) @@ -758,6 +823,9 @@ rename ρ (`zero) = `zero rename ρ (`suc M) = `suc (rename ρ M) rename ρ (case L M N) = case (rename ρ L) (rename ρ M) (rename (ext ρ) N) rename ρ (μ N) = μ (rename (ext ρ) N) +rename ρ (con n) = con n +rename ρ (M `* N) = rename ρ M `* rename ρ N +rename ρ (`let M N) = `let (rename ρ M) (rename (ext ρ) N) rename ρ `⟨ M , N ⟩ = `⟨ rename ρ M , rename ρ N ⟩ rename ρ (`proj₁ L) = `proj₁ (rename ρ L) rename ρ (`proj₂ L) = `proj₂ (rename ρ L) @@ -771,10 +839,9 @@ rename ρ (case⊥ L) = case⊥ (rename ρ L) rename ρ `[] = `[] rename ρ (M `∷ N) = (rename ρ M) `∷ (rename ρ N) rename ρ (caseL L M N) = caseL (rename ρ L) (rename ρ M) (rename (ext (ext ρ)) N) -rename ρ (`let M N) = `let (rename ρ M) (rename (ext ρ) N) \end{code} -### Simultaneous Substitution +## Simultaneous Substitution \begin{code} exts : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ⊢ A) → (∀ {A B} → Γ , A ∋ B → Δ , A ⊢ B) @@ -789,6 +856,9 @@ subst σ (`zero) = `zero subst σ (`suc M) = `suc (subst σ M) subst σ (case L M N) = case (subst σ L) (subst σ M) (subst (exts σ) N) subst σ (μ N) = μ (subst (exts σ) N) +subst σ (con n) = con n +subst σ (M `* N) = subst σ M `* subst σ N +subst σ (`let M N) = `let (subst σ M) (subst (exts σ) N) subst σ `⟨ M , N ⟩ = `⟨ subst σ M , subst σ N ⟩ subst σ (`proj₁ L) = `proj₁ (subst σ L) subst σ (`proj₂ L) = `proj₂ (subst σ L) @@ -802,10 +872,9 @@ subst σ (case⊥ L) = case⊥ (subst σ L) subst σ `[] = `[] subst σ (M `∷ N) = (subst σ M) `∷ (subst σ N) subst σ (caseL L M N) = caseL (subst σ L) (subst σ M) (subst (exts (exts σ)) N) -subst σ (`let M N) = `let (subst σ M) (subst (exts σ) N) \end{code} -### Single and double substitution +## Single and double substitution \begin{code} _[_] : ∀ {Γ A B} @@ -833,9 +902,7 @@ _[_][_] {Γ} {A} {B} N V W = subst {Γ , A , B} {Γ} σ N σ (S (S x)) = ` x \end{code} -## Reduction - -### Value +## Values \begin{code} data Value : ∀ {Γ A} → Γ ⊢ A → Set where @@ -857,6 +924,12 @@ data Value : ∀ {Γ A} → Γ ⊢ A → Set where -------------- → Value (`suc V) + -- primitives + + V-con : ∀ {Γ n} + --------------------- + → Value {Γ = Γ} (con n) + -- products V-⟨_,_⟩ : ∀ {Γ A B} {V : Γ ⊢ A} {W : Γ ⊢ B} @@ -899,7 +972,7 @@ data Value : ∀ {Γ A} → Γ ⊢ A → Set where Implicit arguments need to be supplied when they are not fixed by the given arguments. -### Reduction step +## Reduction \begin{code} infix 2 _—→_ @@ -951,6 +1024,23 @@ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where ---------------- → μ N —→ N [ μ N ] + -- primitives + + ξ-*₁ : ∀ {Γ} {L L′ M : Γ ⊢ Nat} + → L —→ L′ + ----------------- + → L `* M —→ L′ `* M + + ξ-*₂ : ∀ {Γ} {V M M′ : Γ ⊢ Nat} + → Value V + → M —→ M′ + ----------------- + → V `* M —→ V `* M′ + + δ-* : ∀ {Γ c d} + ------------------------------------- + → con {Γ = Γ} c `* con d —→ con (c * d) + -- let ξ-let : ∀ {Γ A B} {M M′ : Γ ⊢ A} {N : Γ , A ⊢ B} @@ -1086,7 +1176,7 @@ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where → caseL (V `∷ W) M N —→ N [ V ][ W ] \end{code} -### Reflexive and transitive closure +## Reflexive and transitive closure \begin{code} infix 2 _—↠_ @@ -1116,7 +1206,6 @@ begin M—↠N = M—↠N ## Values do not reduce -Values do not reduce. \begin{code} V¬—→ : ∀ {Γ A} {M N : Γ ⊢ A} → Value M @@ -1125,6 +1214,7 @@ V¬—→ : ∀ {Γ A} {M N : Γ ⊢ A} V¬—→ V-ƛ () V¬—→ V-zero () V¬—→ (V-suc VM) (ξ-suc M—→M′) = V¬—→ VM M—→M′ +V¬—→ V-con () V¬—→ V-⟨ VM , _ ⟩ (ξ-⟨,⟩₁ M—→M′) = V¬—→ VM M—→M′ V¬—→ V-⟨ _ , VN ⟩ (ξ-⟨,⟩₂ _ N—→N′) = V¬—→ VN N—→N′ V¬—→ (V-inj₁ VM) (ξ-inj₁ M—→M′) = V¬—→ VM M—→M′ @@ -1135,15 +1225,6 @@ V¬—→ (VM V-∷ _) (ξ-∷₁ M—→M′) = V¬—→ VM M—→M V¬—→ (_ V-∷ VN) (ξ-∷₂ _ N—→N′) = V¬—→ VN N—→N′ \end{code} -As a corollary, terms that reduce are not values. -\begin{code} -—→¬V : ∀ {Γ A} {M N : Γ ⊢ A} - → M —→ N - --------- - → ¬ Value M -—→¬V M—→N VM = V¬—→ VM M—→N -\end{code} - ## Progress @@ -1175,6 +1256,12 @@ progress (`zero) = done V-zero progress (`suc M) with progress M ... | step M—→M′ = step (ξ-suc M—→M′) ... | done VM = done (V-suc VM) +progress (con n) = done V-con +progress (L `* M) with progress L +... | step L—→L′ = step (ξ-*₁ L—→L′) +... | done V-con with progress M +... | step M—→M′ = step (ξ-*₂ V-con M—→M′) +... | done V-con = step δ-* progress (case L M N) with progress L ... | step L—→L′ = step (ξ-case L—→L′) ... | done V-zero = step β-zero @@ -1268,6 +1355,49 @@ eval (gas (suc m)) L with progress L ## Examples \begin{code} +cube : ∅ ⊢ Nat ⇒ Nat +cube = ƛ (# 0 `* # 0 `* # 0) + +_ : cube · con 2 —↠ con 8 +_ = + begin + cube · con 2 + —→⟨ β-ƛ V-con ⟩ + con 2 `* con 2 `* con 2 + —→⟨ ξ-*₁ δ-* ⟩ + con 4 `* con 2 + —→⟨ δ-* ⟩ + con 8 + ∎ + +exp10 : ∅ ⊢ Nat ⇒ Nat +exp10 = ƛ (`let (# 0 `* # 0) + (`let (# 0 `* # 0) + (`let (# 0 `* # 2) + (# 0 `* # 0)))) + +_ : exp10 · con 2 —↠ con 1024 +_ = + begin + exp10 · con 2 + —→⟨ β-ƛ V-con ⟩ + `let (con 2 `* con 2) (`let (# 0 `* # 0) (`let (# 0 `* con 2) (# 0 `* # 0))) + —→⟨ ξ-let δ-* ⟩ + `let (con 4) (`let (# 0 `* # 0) (`let (# 0 `* con 2) (# 0 `* # 0))) + —→⟨ β-let V-con ⟩ + `let (con 4 `* con 4) (`let (# 0 `* con 2) (# 0 `* # 0)) + —→⟨ ξ-let δ-* ⟩ + `let (con 16) (`let (# 0 `* con 2) (# 0 `* # 0)) + —→⟨ β-let V-con ⟩ + `let (con 16 `* con 2) (# 0 `* # 0) + —→⟨ ξ-let δ-* ⟩ + `let (con 32) (# 0 `* # 0) + —→⟨ β-let V-con ⟩ + con 32 `* con 32 + —→⟨ δ-* ⟩ + con 1024 + ∎ + swap× : ∀ {A B} → ∅ ⊢ A `× B ⇒ B `× A swap× = ƛ `⟨ `proj₂ (# 0) , `proj₁ (# 0) ⟩ @@ -1283,6 +1413,22 @@ _ = `⟨ `zero , `tt ⟩ ∎ +swap×-case : ∀ {A B} → ∅ ⊢ A `× B ⇒ B `× A +swap×-case = ƛ case× (# 0) `⟨ # 0 , # 1 ⟩ + +_ : swap×-case · `⟨ `tt , `zero ⟩ —↠ `⟨ `zero , `tt ⟩ +_ = + begin + swap×-case · `⟨ `tt , `zero ⟩ + —→⟨ β-ƛ V-⟨ V-tt , V-zero ⟩ ⟩ + case× `⟨ `tt , `zero ⟩ `⟨ # 0 , # 1 ⟩ + —→⟨ β-case× V-tt V-zero ⟩ + `⟨ `zero , `tt ⟩ + ∎ +\end{code} + + +\begin{code} swap⊎ : ∀ {A B} → ∅ ⊢ A `⊎ B ⇒ B `⊎ A swap⊎ = ƛ (case⊎ (# 0) (`inj₂ (# 0)) (`inj₁ (# 0))) @@ -1298,3 +1444,6 @@ _ = \end{code} +#### Exercise (`More`) + +Formalise the remaining constructs defined in this chapter. diff --git a/src/plfa/Properties.lagda b/src/plfa/Properties.lagda index 48f7b931..a1ac3b41 100644 --- a/src/plfa/Properties.lagda +++ b/src/plfa/Properties.lagda @@ -352,9 +352,8 @@ postulate ## Prelude to preservation The other property we wish to prove, preservation of typing under -reduction, turns out to require considerably more work. Our proof -draws on a line of work by Thorsten Altenkirch, Conor McBride, -James McKinna, and others. The proof has three key steps. +reduction, turns out to require considerably more work. The proof has +three key steps. The first step is to show that types are preserved by _renaming_.