finished main text for confluence

This commit is contained in:
Jeremy Siek 2019-05-08 18:01:32 +02:00
parent f8ed0b378f
commit 6fc3e4a920

View file

@ -436,6 +436,14 @@ The proof is by induction on both premises.
## Proof of confluence for parallel reduction ## Proof of confluence for parallel reduction
As promised at the beginning, the proof that parallel reduction is
confluent is easy now that we know it satisfies the diamond property.
We just need one more lemma which states that
if `M ⇒ N` and `M ⇒* N'`, then
`N ⇒* L` and `N' ⇒ L` for some `L`.
The proof is a straightforward induction on `M ⇒* N'`,
using the diamond property in the induction step.
\begin{code} \begin{code}
par-confR : ∀{Γ A} {M N N' : Γ ⊢ A} par-confR : ∀{Γ A} {M N N' : Γ ⊢ A}
→ M ⇒ N → M ⇒* N' → M ⇒ N → M ⇒* N'
@ -449,6 +457,10 @@ par-confR{Γ}{A}{M}{N}{N'} mn (_⇒⟨_⟩_ M {M'} mm' mn')
⟨ L' , ⟨ (N ⇒⟨ nl ⟩ ll') , n'l' ⟩ ⟩ ⟨ L' , ⟨ (N ⇒⟨ nl ⟩ ll') , n'l' ⟩ ⟩
\end{code} \end{code}
The proof of confluence for parallel reduction is now proved by
induction on the sequence `M ⇒* N`, using the above lemma in the
induction step.
\begin{code} \begin{code}
par-confluence : ∀{Γ A} {M N N' : Γ ⊢ A} par-confluence : ∀{Γ A} {M N N' : Γ ⊢ A}
→ M ⇒* N → M ⇒* N' → M ⇒* N → M ⇒* N'
@ -464,6 +476,14 @@ par-confluence {Γ}{A}{M}{N}{N'} (_⇒⟨_⟩_ M {M'} m→m' m'→n) m→n'
## Proof of confluence for reduction ## Proof of confluence for reduction
Confluence of reduction is a corollary of confluence for parallel
reduction. From
`M —↠ N` and `M —↠ N'` we have
`M ⇒* N` and `M ⇒* N'` by `betas-pars`.
Then by confluence we obtain some `L` such that
`N ⇒* L` and `N' ⇒* L`, from which we conclude that
`N —↠ L` and `N' —↠ L` by `pars-betas`.
\begin{code} \begin{code}
confluence : ∀{Γ A} {M N N' : Γ ⊢ A} confluence : ∀{Γ A} {M N N' : Γ ⊢ A}
→ M —↠ N → M —↠ N' → M —↠ N → M —↠ N'