removed Typed, which is redundant

This commit is contained in:
wadler 2018-03-05 19:02:10 -03:00
parent dbd5399b85
commit 73ab7f0dc0

View file

@ -1,305 +0,0 @@
---
title : "Scoped: Scoped and Typed DeBruijn representation"
layout : page
permalink : /Scoped
---
## Imports
\begin{code}
module Typed where
\end{code}
\begin{code}
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong)
-- open Eq.≡-Reasoning
open import Data.Nat using (; zero; suc; _+_)
open import Data.Product using (_×_; proj₁; proj₂; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (contraposition)
open import Data.Unit using (; tt)
open import Data.Empty using (⊥; ⊥-elim)
open import Function using (_∘_)
\end{code}
## Syntax
\begin{code}
infixr 4 _⇒_
data Type : Set where
o : Type
_⇒_ : Type → Type → Type
data Env : Set where
ε : Env
_,_ : Env → Type → Env
data Var : Env → Type → Set where
Z : ∀ {Γ : Env} {A : Type} → Var (Γ , A) A
S : ∀ {Γ : Env} {A B : Type} → Var Γ B → Var (Γ , A) B
data Exp : Env → Type → Set where
var : ∀ {Γ : Env} {A : Type} → Var Γ A → Exp Γ A
abs : ∀ {Γ : Env} {A B : Type} → Exp (Γ , A) B → Exp Γ (A ⇒ B)
app : ∀ {Γ : Env} {A B : Type} → Exp Γ (A ⇒ B) → Exp Γ A → Exp Γ B
type : Type → Set
type o =
type (A ⇒ B) = type A → type B
env : Env → Set
env ε =
env (Γ , A) = env Γ × type A
\end{code}
# PH representation
\begin{code}
data PH (V : Type → Set) : Type → Set where
var : ∀ {A : Type} → V A → PH V A
abs : ∀ {A B : Type} → (V A → PH V B) → PH V (A ⇒ B)
app : ∀ {A B : Type} → PH V (A ⇒ B) → PH V A → PH V B
data Extends : (Γ : Env) → (Δ : Env) → Set where
Z : ∀ {Γ : Env} → Extends Γ Γ
S : ∀ {A : Type} {Γ Δ : Env} → Extends Γ Δ → Extends Γ (Δ , A)
extract : ∀ {A : Type} {Γ Δ : Env} → Extends (Γ , A) Δ → Var Δ A
extract Z = Z
extract (S k) = S (extract k)
\end{code}
toDB : ∀ {A : Type} → (Γ : Env) → PH (λ (B : Type) → (Δ : Env) → Extends (Γ , B) Δ) A → Exp Γ A
toDB Γ (var x) = var (extract (x Γ))
toDB {A ⇒ B} Γ (abs N) = abs {!toDB (Γ , A) (N ?) !}
toDB Γ (app L M) = app (toDB Γ L) (toDB Γ M)
# Test code
\begin{code}
Church : Type
Church = (o ⇒ o) ⇒ o ⇒ o
plus : ∀ {Γ : Env} → Exp Γ (Church ⇒ Church ⇒ Church)
plus = (abs (abs (abs (abs (app (app (var (S (S (S Z)))) (var (S Z))) (app (app (var (S (S Z))) (var (S Z))) (var Z)))))))
one : ∀ {Γ : Env} → Exp Γ Church
one = (abs (abs (app (var (S Z)) (var Z))))
two : ∀ {Γ : Env} → Exp Γ Church
two = (app (app plus one) one)
four : ∀ {Γ : Env} → Exp Γ Church
four = (app (app plus two) two)
\end{code}
# Denotational semantics
\begin{code}
lookup : ∀ {Γ : Env} {A : Type} → Var Γ A → env Γ → type A
lookup Z ⟨ ρ , v ⟩ = v
lookup (S n) ⟨ ρ , v ⟩ = lookup n ρ
eval : ∀ {Γ : Env} {A : Type} → Exp Γ A → env Γ → type A
eval (var n) ρ = lookup n ρ
eval (abs N) ρ = λ{ v → eval N ⟨ ρ , v ⟩ }
eval (app L M) ρ = eval L ρ (eval M ρ)
ex : eval four tt suc zero ≡ 4
ex = refl
\end{code}
# Operational semantics - with substitution a la Darais (31 lines)
## Remove variable from environment (4 lines)
\begin{code}
infix 4 _⊝_
_⊝_ : ∀ {A : Type} (Γ : Env) → Var Γ A → Env
(Γ , B) ⊝ Z = Γ
(Γ , B) ⊝ S k = (Γ ⊝ k) , B
\end{code}
## Rebuild environment (6 lines)
\begin{code}
shunt : ∀ (Γ Δ : Env) → Env
shunt Γ ε = Γ
shunt Γ (Δ , A) = shunt (Γ , A) Δ
weaken : ∀ (Γ Δ : Env) {A : Type} (k : Var Γ A) → Var (shunt Γ Δ) A
weaken Γ ε k = k
weaken Γ (Δ , A) k = weaken (Γ , A) Δ (S k)
\end{code}
## Lift term to a larger environment (8 lines)
\begin{code}
liftvar : ∀ {Γ : Env} {A B : Type} (j : Var Γ B) (k : Var (Γ ⊝ j) A) → Var Γ A
liftvar Z k = S k
liftvar (S j) Z = Z
liftvar (S j) (S k) = S (liftvar j k)
lift : ∀ {Γ : Env} {A B : Type} (j : Var Γ B) (M : Exp (Γ ⊝ j) A) → Exp Γ A
lift j (var k) = var (liftvar j k)
lift j (abs N) = abs (lift (S j) N)
lift j (app L M) = app (lift j L) (lift j M)
\end{code}
## Substitution (13 lines)
\begin{code}
substvar : ∀ (Γ Δ : Env) {A B : Type} (j : Var Γ B) (k : Var Γ A) (P : Exp (shunt (Γ ⊝ k) Δ) A) → Exp (shunt (Γ ⊝ k) Δ) B
substvar Γ Δ Z Z P = P
substvar (Γ , A) Δ Z (S k) P = var (weaken ((Γ ⊝ k) , A) Δ Z)
substvar (Γ , A) Δ (S j) Z P = var (weaken Γ Δ j)
substvar (Γ , A) Δ (S j) (S k) P = substvar Γ (Δ , A) j k P
subst : ∀ {Γ : Env} {A B : Type} (N : Exp Γ B) (k : Var Γ A) (M : Exp (Γ ⊝ k) A) → Exp (Γ ⊝ k) B
subst {Γ} (var j) k P = substvar Γ ε j k P
subst (abs N) k P = abs (subst N (S k) (lift Z P))
subst (app L M) k P = app (subst L k P) (subst M k P)
\end{code}
# Operational semantics - with simultaneous substitution, a la McBride (18 lines)
## Renaming (7 lines)
\begin{code}
extend : ∀ {Γ Δ : Env} {B : Type} → (∀ {A : Type} → Var Γ A → Var Δ A) → Var Δ B → (∀ {A : Type} → Var (Γ , B) A → Var Δ A)
extend ρ j Z = j
extend ρ j (S k) = ρ k
rename : ∀ {Γ Δ : Env} → (∀ {A : Type} → Var Γ A → Var Δ A) → (∀ {A : Type} → Exp Γ A → Exp Δ A)
rename ρ (var n) = var (ρ n)
rename ρ (abs N) = abs (rename (extend (S ∘ ρ) Z) N)
rename ρ (app L M) = app (rename ρ L) (rename ρ M)
\end{code}
## Substitution (9 lines)
\begin{code}
ext : ∀ {Γ Δ : Env} {B : Type} → (∀ {A : Type} → Var Γ A → Exp Δ A) → Exp Δ B → (∀ {A : Type} → Var (Γ , B) A → Exp Δ A)
ext ρ j Z = j
ext ρ j (S k) = ρ k
sub : ∀ {Γ Δ : Env} → (∀ {A : Type} → Var Γ A → Exp Δ A) → (∀ {A : Type} → Exp Γ A → Exp Δ A)
sub ρ (var n) = ρ n
sub ρ (app L M) = app (sub ρ L) (sub ρ M)
sub ρ (abs N) = abs (sub (ext (rename S ∘ ρ) (var Z)) N)
substitute : ∀ {Γ : Env} {A B : Type} → Exp (Γ , A) B → Exp Γ A → Exp Γ B
substitute N M = sub (ext var M) N
\end{code}
## Value
\begin{code}
data Val : {Γ : Env} {A : Type} → Exp Γ A → Set where
Fun : ∀ {Γ : Env} {A B : Type} {N : Exp (Γ , A) B} →
Val (abs N)
\end{code}
## Reduction step
\begin{code}
data _⟶_ : {Γ : Env} {A : Type} → Exp Γ A → Exp Γ A → Set where
ξ₁ : ∀ {Γ : Env} {A B : Type} {L : Exp Γ (A ⇒ B)} {L : Exp Γ (A ⇒ B)} {M : Exp Γ A} →
L ⟶ L
app L M ⟶ app L M
ξ₂ : ∀ {Γ : Env} {A B : Type} {L : Exp Γ (A ⇒ B)} {M : Exp Γ A} {M : Exp Γ A} →
Val L →
M ⟶ M
app L M ⟶ app L M
β : ∀ {Γ : Env} {A B : Type} {N : Exp (Γ , A) B} {M : Exp Γ A} →
Val M →
app (abs N) M ⟶ substitute N M
\end{code}
## Reflexive and transitive closure
\begin{code}
data _⟶*_ : {Γ : Env} {A : Type} → Exp Γ A → Exp Γ A → Set where
reflexive : ∀ {Γ : Env} {A : Type} {M : Exp Γ A} →
M ⟶* M
inclusion : ∀ {Γ : Env} {A : Type} {L M : Exp Γ A} →
L ⟶ M →
L ⟶* M
transitive : ∀ {Γ : Env} {A : Type} {L M N : Exp Γ A} →
L ⟶* M →
M ⟶* N →
L ⟶* N
\end{code}
## Displaying reduction sequences
\begin{code}
infix 1 begin_
infixr 2 _⟶⟨_⟩_
infix 3 _∎
begin_ : {Γ : Env} {A : Type} {M N : Exp Γ A} → (M ⟶* N) → (M ⟶* N)
begin steps = steps
_⟶⟨_⟩_ : {Γ : Env} {A : Type} (L : Exp Γ A) {M N : Exp Γ A} → (L ⟶ M) → (M ⟶* N) → (L ⟶* N)
L ⟶⟨ L⟶M ⟩ M⟶*N = transitive (inclusion L⟶M) M⟶*N
_∎ : {Γ : Env} {A : Type} (M : Exp Γ A) → M ⟶* M
M ∎ = reflexive
\end{code}
## Example reduction sequence
\begin{code}
ex₁ : (app (abs (var Z)) (abs (var Z))) ⟶* (abs (var Z))
ex₁ =
begin
(app (abs {Γ = ε} {A = o ⇒ o} (var Z)) (abs (var Z)))
⟶⟨ β Fun ⟩
(abs (var Z))
\end{code}
\begin{code}
ex₂ : (app {Γ = ε} (app plus one) one) ⟶* (abs (abs (app (app one (var (S Z))) (app (app one (var (S Z))) (var Z)))))
ex₂ =
begin
(app (app plus one) one)
⟶⟨ ξ₁ (β Fun) ⟩
(app (abs (abs (abs (app (app one (var (S Z))) (app (app (var (S (S Z))) (var (S Z))) (var Z)))))) one)
⟶⟨ β Fun ⟩
(abs (abs (app (app one (var (S Z))) (app (app one (var (S Z))) (var Z)))))
\end{code}
\begin{code}
progress : ∀ {A : Type} → (M : Exp ε A) → (∃[ N ] (M ⟶ N)) ⊎ Val M
progress (var ())
progress (abs N) = inj₂ Fun
progress (app L M) with progress L
progress (app L M) | inj₁ ⟨ L , r ⟩ = inj₁ ⟨ app L M , ξ₁ r ⟩
progress (app (abs N) M) | inj₂ Fun with progress M
progress (app (abs N) M) | inj₂ Fun | inj₁ ⟨ M , r ⟩ = inj₁ ⟨ app (abs N) M , ξ₂ Fun r ⟩
progress (app (abs N) M) | inj₂ Fun | inj₂ ValM = inj₁ ⟨ substitute N M , β ValM ⟩
\end{code}
\begin{code}
ex₃ : progress (app (app plus one) one) ≡
inj₁ ⟨ (app (abs (abs (abs (app (app one (var (S Z))) (app (app (var (S (S Z))) (var (S Z))) (var Z)))))) one) , ξ₁ (β Fun) ⟩
ex₃ = refl
ex₄ : progress (app (abs (abs (abs (app (app one (var (S Z))) (app (app (var (S (S Z))) (var (S Z))) (var Z)))))) one) ≡
inj₁ ⟨ (abs (abs (app (app one (var (S Z))) (app (app one (var (S Z))) (var Z))))) , β Fun ⟩
ex₄ = refl
ex₅ : progress (abs (abs (app (app one (var (S Z))) (app (app one (var (S Z))) (var Z))))) ≡ inj₂ Fun
ex₅ = refl
\end{code}