failed attempt at string ids

This commit is contained in:
wadler 2018-04-27 16:13:51 -03:00
parent c4bc06e2f5
commit 74427956f3
3 changed files with 1008 additions and 183 deletions

View file

@ -15,15 +15,45 @@ module Typed where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List using (List; []; _∷_; [_]; _++_; map; foldr; filter)
open import Data.Nat using (; zero; suc; _+_; _∸_; _≤_; _⊔_; _≟_)
open import Data.List using (List; []; _∷_; _++_; map; foldr; filter)
open import Data.Nat using (; zero; suc; _+_; _∸_; _≤_; _⊔_)
open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n)
open import Data.String using (String)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_∘_)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Negation using (¬?)
open import Collections
import Data.Nat as Nat
import Data.String as String
pattern [_] x = x ∷ []
pattern [_,_] x y = x ∷ y ∷ []
pattern [_,_,_] x y z = x ∷ y ∷ z ∷ []
\end{code}
## Identifiers
\begin{code}
data Id : Set where
id : String → → Id
_≟_ : ∀ (x y : Id) → Dec (x ≡ y)
id s m ≟ id t n with s String.≟ t | m Nat.≟ n
... | yes refl | yes refl = yes refl
... | yes refl | no m≢n = no (λ {refl → m≢n refl})
... | no s≢t | _ = no (λ {refl → s≢t refl})
{-
_≠_ : ∀ (x y : Id) → x ≢ y
x ≠ y with x ≟ y
... | no x≢y = x≢y
... | yes _ = impossible
where postulate impossible : _
-}
\end{code}
@ -40,9 +70,6 @@ infix 7 `suc_ `pred_ `Y_
infixl 8 _·_
infix 9 `_
Id : Set
Id =
data Type : Set where
` : Type
_⇒_ : Type → Type → Type
@ -122,11 +149,11 @@ data _⊢_⦂_ : Env → Term → Type → Set where
\begin{code}
m n s z : Id
p = 0
m = 1
n = 2
s = 3
z = 4
p = id "p" 0 -- 0
m = id "m" 0 -- 1
n = id "n" 0 -- 2
s = id "s" 0 -- 3
z = id "z" 0 -- 4
s≢z : s ≢ z
s≢z ()
@ -281,15 +308,35 @@ free (`Y M) = free M
### Fresh identifier
\begin{code}
fresh : List Id → Id
fresh = foldr _⊔_ 0 ∘ map suc
bump : String → Id →
bump s (id t n) with s String.≟ t
... | yes refl = suc n
... | no _ = 0
⊔-lemma : ∀ {w xs} → w ∈ xs → suc w ≤ fresh xs
⊔-lemma {_} {_ ∷ xs} here = m≤m⊔n _ (fresh xs)
⊔-lemma {_} {_ ∷ xs} (there x∈) = ≤-trans (⊔-lemma x∈) (n≤m⊔n _ (fresh xs))
next : String → List Id →
next s = foldr _⊔_ 0 ∘ map (bump s)
fresh-lemma : ∀ {x xs} → x ∈ xs → x ≢ fresh xs
fresh-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)
⊔-lemma : ∀ {s w xs} → w ∈ xs → bump s w ≤ next s xs
⊔-lemma {s} {_} {_ ∷ xs} here = m≤m⊔n _ (next s xs)
⊔-lemma {s} {_} {_ ∷ xs} (there x∈) = ≤-trans (⊔-lemma x∈) (n≤m⊔n _ (next s xs))
fresh : Id → List Id → Id
fresh (id s _) xs = id s (next s xs)
fresh-lemma : ∀ {w x xs} → w ∈ xs → w ≢ fresh x xs
fresh-lemma {w @ (id t n)} {x @ (id s _)} {xs} w∈ w≢fr = {! (⊔-lemma {s} {w} {xs} w∈)!} -- with s String.≟ t
{-
... | yes refl = {! (⊔-lemma {s} {w} {xs} w∈)!}
... | no s≢t = {!!}
with s String.≟ t | fresh x xs
... | yes refl | fr = {! (⊔-lemma {s} {w} {xs} w∈)!}
... | no s≢t | _ = s≢t refl
next-lemma : ∀ {x xs} → x ∈ xs → x ≢ next xs
next-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)
\end{code}
### Identifier maps
@ -326,6 +373,23 @@ _[_:=_] : Term → Id → Term → Term
N [ x := M ] = subst (free M ++ (free N \\ x)) (∅ , x ↦ M) N
\end{code}
### Testing substitution
\begin{code}
_ : (` s · ` s · ` z) [ z := `zero ] ≡ (` s · ` s · `zero)
_ = refl
_ : (` s · ` s · ` z) [ s := (`λ m ⇒ `suc ` m) ] [ z := `zero ]
≡ ((`λ p ⇒ `suc ` p) · (`λ p ⇒ `suc ` p) · `zero)
_ = refl
_ : (`λ m ⇒ ` m · ` n) [ n := ` m ] ≡ (`λ n ⇒ ` n · ` m)
_ = refl
_ : subst [ m , n ] (∅ , m ↦ ` n , n ↦ ` m) (` m · ` n) ≡ (` n · ` m)
_ = refl
\end{code}
## Values
@ -705,19 +769,20 @@ preservation : ∀ {Γ M N A}
→ Γ ⊢ N ⦂ A
preservation (Ax ⊢x) ()
preservation (⊢λ ⊢N) ()
preservation (⊢L · ⊢M) (ξ-·₁ L⟶L) = preservation ⊢L L⟶L · ⊢M
preservation (⊢V · ⊢M) (ξ-·₂ _ M⟶M) = ⊢V · preservation ⊢M M⟶M
preservation ((⊢λ ⊢N) · ⊢W) (β-⇒ _) = ⊢substitution ⊢N ⊢W
preservation (⊢L · ⊢M) (ξ-·₁ L⟶) = preservation ⊢L L⟶ · ⊢M
preservation (⊢V · ⊢M) (ξ-·₂ _ M⟶) = ⊢V · preservation ⊢M M⟶
preservation ((⊢λ ⊢N) · ⊢W) (β-⇒ _) = ⊢substitution ⊢N ⊢W
preservation (⊢zero) ()
preservation (⊢suc ⊢M) (ξ-suc M⟶M) = ⊢suc (preservation ⊢M M⟶M)
preservation (⊢pred ⊢M) (ξ-pred M⟶M) = ⊢pred (preservation ⊢M M⟶M)
preservation (⊢pred ⊢zero) (β-pred-zero) = ⊢zero
preservation (⊢pred (⊢suc ⊢M)) (β-pred-suc _) = ⊢M
preservation (⊢if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶L) = ⊢if0 (preservation ⊢L L⟶L) ⊢M ⊢N
preservation (⊢if0 ⊢zero ⊢M ⊢N) β-if0-zero = ⊢M
preservation (⊢if0 (⊢suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N
preservation (⊢Y ⊢M) (ξ-Y M⟶M) = ⊢Y (preservation ⊢M M⟶M)
preservation (⊢Y (⊢λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (⊢Y (⊢λ ⊢N))
preservation (⊢suc ⊢M) (ξ-suc M⟶) = ⊢suc (preservation ⊢M M⟶)
preservation (⊢pred ⊢M) (ξ-pred M⟶) = ⊢pred (preservation ⊢M M⟶)
preservation (⊢pred ⊢zero) (β-pred-zero) = ⊢zero
preservation (⊢pred (⊢suc ⊢M)) (β-pred-suc _) = ⊢M
preservation (⊢if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶) = ⊢if0 (preservation ⊢L L⟶) ⊢M ⊢N
preservation (⊢if0 ⊢zero ⊢M ⊢N) β-if0-zero = ⊢M
preservation (⊢if0 (⊢suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N
preservation (⊢Y ⊢M) (ξ-Y M⟶) = ⊢Y (preservation ⊢M M⟶)
preservation (⊢Y (⊢λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (⊢Y (⊢λ ⊢N))
-}
\end{code}

View file

@ -15,33 +15,30 @@ module Typed where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List using (List; []; _∷_; [_]; _++_; map; foldr; filter)
open import Data.List.Any using (Any; here; there)
open import Data.List using (List; []; _∷_; _++_; map; foldr; filter)
open import Data.Nat using (; zero; suc; _+_; _∸_; _≤_; _⊔_; _≟_)
open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n)
open import Data.Product using (_×_; proj₁; proj₂; ∃; ∃-syntax)
renaming (_,_ to ⟨_,_⟩)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Unit using (; tt)
open import Function using (_∘_)
open import Function.Equality using (≡-setoid)
open import Function.Equivalence using (_⇔_; equivalence)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Negation using (contraposition; ¬?)
open import Relation.Nullary.Product using (_×-dec_)
open import Collections using (_↔_)
open import Relation.Nullary.Negation using (¬?)
open import Collections
pattern [_] x = x ∷ []
pattern [_,_] x y = x ∷ y ∷ []
pattern [_,_,_] x y z = x ∷ y ∷ z ∷ []
\end{code}
## Syntax
\begin{code}
infixr 5 __
infixr 5 __
infixl 5 _,_⦂_
infix 4 _∋_⦂_
infix 4 _⊢_⦂_
infix 5 `λ_⇒_
infix 5 `λ_
infixl 6 `if0_then_else_
infix 7 `suc_ `pred_ `Y_
infixl 8 _·_
@ -52,7 +49,7 @@ Id =
data Type : Set where
` : Type
__ : Type → Type → Type
__ : Type → Type → Type
data Env : Set where
ε : Env
@ -82,45 +79,45 @@ data _∋_⦂_ : Env → Id → Type → Set where
data _⊢_⦂_ : Env → Term → Type → Set where
`_ : ∀ {Γ A x}
Ax : ∀ {Γ A x}
→ Γ ∋ x ⦂ A
---------------------
→ Γ ⊢ ` x ⦂ A
`λ_ : ∀ {Γ x N A B}
⊢λ : ∀ {Γ x N A B}
→ Γ , x ⦂ A ⊢ N ⦂ B
------------------------
→ Γ ⊢ (`λ x ⇒ N) ⦂ A B
→ Γ ⊢ (`λ x ⇒ N) ⦂ A B
_·_ : ∀ {Γ L M A B}
→ Γ ⊢ L ⦂ A B
→ Γ ⊢ L ⦂ A B
→ Γ ⊢ M ⦂ A
--------------
→ Γ ⊢ L · M ⦂ B
`zero : ∀ {Γ}
zero : ∀ {Γ}
--------------
→ Γ ⊢ `zero ⦂ `
`suc_ : ∀ {Γ M}
⊢suc : ∀ {Γ M}
→ Γ ⊢ M ⦂ `
---------------
→ Γ ⊢ `suc M ⦂ `
`pred_ : ∀ {Γ M}
⊢pred : ∀ {Γ M}
→ Γ ⊢ M ⦂ `
----------------
→ Γ ⊢ `pred M ⦂ `
`if0 : ∀ {Γ L M N A}
if0 : ∀ {Γ L M N A}
→ Γ ⊢ L ⦂ `
→ Γ ⊢ M ⦂ A
→ Γ ⊢ N ⦂ A
----------------------------
→ Γ ⊢ `if0 L then M else N ⦂ A
`Y_ : ∀ {Γ M A}
→ Γ ⊢ M ⦂ A A
⊢Y : ∀ {Γ M A}
→ Γ ⊢ M ⦂ A A
---------------
→ Γ ⊢ `Y M ⦂ A
\end{code}
@ -163,13 +160,13 @@ two : Term
two = `suc `suc `zero
⊢two : ε ⊢ two ⦂ `
⊢two = `suc `suc `zero
⊢two = (⊢suc (⊢suc ⊢zero))
plus : Term
plus = `Y (`λ p ⇒ `λ m ⇒ `λ n ⇒ `if0 ` m then ` n else ` p · (`pred ` m) · ` n)
⊢plus : ε ⊢ plus ⦂ ` ⟹ ` `
⊢plus = `Y (`λ `λ `λ `if0 (` ⊢m) (` ⊢n) (` ⊢p · (`pred ` ⊢m) · ` ⊢n))
⊢plus : ε ⊢ plus ⦂ ` ⇒ ` `
⊢plus = (⊢Y (⊢λ (⊢λ (⊢λ (⊢if0 (Ax ⊢m) (Ax ⊢n) (Ax ⊢p · (⊢pred (Ax ⊢m)) · Ax ⊢n))))))
where
⊢p = S p≢n (S p≢m Z)
⊢m = S m≢n Z
@ -182,13 +179,13 @@ four = plus · two · two
⊢four = ⊢plus · ⊢two · ⊢two
Ch : Type
Ch = (` ⟹ `) ⟹ ` `
Ch = (` ⇒ `) ⇒ ` `
twoCh : Term
twoCh = `λ s ⇒ `λ z ⇒ (` s · (` s · ` z))
⊢twoCh : ε ⊢ twoCh ⦂ Ch
⊢twoCh = `λ `λ ` ⊢s · (` ⊢s · ` ⊢z)
⊢twoCh = (⊢λ (⊢λ (Ax ⊢s · (Ax ⊢s · Ax ⊢z))))
where
⊢s = S s≢z Z
⊢z = Z
@ -196,8 +193,8 @@ twoCh = `λ s ⇒ `λ z ⇒ (` s · (` s · ` z))
plusCh : Term
plusCh = `λ m ⇒ `λ n ⇒ `λ s ⇒ `λ z ⇒ ` m · ` s · (` n · ` s · ` z)
⊢plusCh : ε ⊢ plusCh ⦂ Ch ⟹ Ch ⟹ Ch
⊢plusCh = `λ `λ `λ `λ ` ⊢m · ` ⊢s · (` ⊢n · ` ⊢s · ` ⊢z)
⊢plusCh : ε ⊢ plusCh ⦂ Ch ⇒ Ch ⇒ Ch
⊢plusCh = (⊢λ (⊢λ (⊢λ (⊢λ (Ax ⊢m · Ax ⊢s · (Ax ⊢n · Ax ⊢s · Ax ⊢z))))))
where
⊢m = S m≢z (S m≢s (S m≢n Z))
⊢n = S n≢z (S n≢s Z)
@ -207,8 +204,8 @@ plusCh = `λ m ⇒ `λ n ⇒ `λ s ⇒ `λ z ⇒ ` m · ` s · (` n · ` s · `
fromCh : Term
fromCh = `λ m ⇒ ` m · (`λ s ⇒ `suc ` s) · `zero
⊢fromCh : ε ⊢ fromCh ⦂ Ch `
⊢fromCh = `λ ` ⊢m · (`λ `suc ` ⊢s) · `zero
⊢fromCh : ε ⊢ fromCh ⦂ Ch `
⊢fromCh = (⊢λ (Ax ⊢m · (⊢λ (⊢suc (Ax ⊢s))) · ⊢zero))
where
⊢m = Z
⊢s = Z
@ -221,63 +218,22 @@ fourCh = fromCh · (plusCh · twoCh · twoCh)
\end{code}
# Denotational semantics
\begin{code}
⟦_⟧ᵀ : Type → Set
⟦ ` ⟧ᵀ =
⟦ A ⟹ B ⟧ᵀ = ⟦ A ⟧ᵀ → ⟦ B ⟧ᵀ
⟦_⟧ᴱ : Env → Set
⟦ ε ⟧ᴱ =
⟦ Γ , x ⦂ A ⟧ᴱ = ⟦ Γ ⟧ᴱ × ⟦ A ⟧ᵀ
⟦_⟧ⱽ : ∀ {Γ x A} → Γ ∋ x ⦂ A → ⟦ Γ ⟧ᴱ → ⟦ A ⟧ᵀ
⟦ Z ⟧ⱽ ⟨ ρ , v ⟩ = v
⟦ S _ x ⟧ⱽ ⟨ ρ , v ⟩ = ⟦ x ⟧ⱽ ρ
⟦_⟧ : ∀ {Γ M A} → Γ ⊢ M ⦂ A → ⟦ Γ ⟧ᴱ → ⟦ A ⟧ᵀ
⟦ ` x ⟧ ρ = ⟦ x ⟧ⱽ ρ
⟦ `λ ⊢N ⟧ ρ = λ{ v → ⟦ ⊢N ⟧ ⟨ ρ , v ⟩ }
⟦ ⊢L · ⊢M ⟧ ρ = (⟦ ⊢L ⟧ ρ) (⟦ ⊢M ⟧ ρ)
⟦ `zero ⟧ ρ = zero
⟦ `suc ⊢M ⟧ ρ = suc (⟦ ⊢M ⟧ ρ)
⟦ `pred ⊢M ⟧ ρ = pred (⟦ ⊢M ⟧ ρ)
where
pred :
pred zero = zero
pred (suc n) = n
⟦ `if0 ⊢L ⊢M ⊢N ⟧ ρ = if0 ⟦ ⊢L ⟧ ρ then ⟦ ⊢M ⟧ ρ else ⟦ ⊢N ⟧ ρ
where
if0_then_else_ : ∀ {A} → → A → A → A
if0 zero then m else n = m
if0 suc _ then m else n = n
⟦ `Y ⊢M ⟧ ρ = {!!}
-- _ : ⟦ ⊢four ⟧ tt ≡ 4
-- _ = refl
_ : ⟦ ⊢fourCh ⟧ tt ≡ 4
_ = refl
\end{code}
## Erasure
\begin{code}
lookup : ∀ {Γ x A} → Γ ∋ x ⦂ A → Id
lookup {Γ , x ⦂ A} Z = x
lookup {Γ , x ⦂ A} (S _ k) = lookup {Γ} k
lookup {Γ , x ⦂ A} Z = x
lookup {Γ , x ⦂ A} (S _ ⊢w) = lookup {Γ} ⊢w
erase : ∀ {Γ M A} → Γ ⊢ M ⦂ A → Term
erase (` k) = ` lookup k
erase (`λ_ {x = x} ⊢N) = `λ x ⇒ erase ⊢N
erase (Ax ⊢w) = ` lookup ⊢w
erase (⊢λ {x = x} ⊢N) = `λ x ⇒ erase ⊢N
erase (⊢L · ⊢M) = erase ⊢L · erase ⊢M
erase (`zero) = `zero
erase (`suc ⊢M) = `suc (erase ⊢M)
erase (`pred ⊢M) = `pred (erase ⊢M)
erase (`if0 ⊢L ⊢M ⊢N) = `if0 (erase ⊢L) then (erase ⊢M) else (erase ⊢N)
erase (`Y ⊢M) = `Y (erase ⊢M)
erase (⊢zero) = `zero
erase (⊢suc ⊢M) = `suc (erase ⊢M)
erase (⊢pred ⊢M) = `pred (erase ⊢M)
erase (⊢if0 ⊢L ⊢M ⊢N) = `if0 (erase ⊢L) then (erase ⊢M) else (erase ⊢N)
erase (⊢Y ⊢M) = `Y (erase ⊢M)
\end{code}
### Properties of erasure
@ -288,19 +244,19 @@ cong₃ : ∀ {A B C D : Set} (f : A → B → C → D) {s t u v x y} →
cong₃ f refl refl refl = refl
lookup-lemma : ∀ {Γ x A} → (⊢x : Γ ∋ x ⦂ A) → lookup ⊢x ≡ x
lookup-lemma Z = refl
lookup-lemma (S _ k) = lookup-lemma k
lookup-lemma Z = refl
lookup-lemma (S _ ⊢w) = lookup-lemma ⊢w
erase-lemma : ∀ {Γ M A} → (⊢M : Γ ⊢ M ⦂ A) → erase ⊢M ≡ M
erase-lemma (` ⊢x) = cong `_ (lookup-lemma ⊢x)
erase-lemma (`λ_ {x = x} ⊢N) = cong (`λ x ⇒_) (erase-lemma ⊢N)
erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (erase-lemma ⊢M)
erase-lemma (`zero) = refl
erase-lemma (`suc ⊢M) = cong `suc_ (erase-lemma ⊢M)
erase-lemma (`pred ⊢M) = cong `pred_ (erase-lemma ⊢M)
erase-lemma (`if0 ⊢L ⊢M ⊢N) = cong₃ `if0_then_else_
(erase-lemma ⊢L) (erase-lemma ⊢M) (erase-lemma ⊢N)
erase-lemma (`Y ⊢M) = cong `Y_ (erase-lemma ⊢M)
erase-lemma (Ax ⊢x) = cong `_ (lookup-lemma ⊢x)
erase-lemma (⊢λ {x = x} ⊢N) = cong (`λ x ⇒_) (erase-lemma ⊢N)
erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (erase-lemma ⊢M)
erase-lemma (⊢zero) = refl
erase-lemma (⊢suc ⊢M) = cong `suc_ (erase-lemma ⊢M)
erase-lemma (⊢pred ⊢M) = cong `pred_ (erase-lemma ⊢M)
erase-lemma (⊢if0 ⊢L ⊢M ⊢N) = cong₃ `if0_then_else_
(erase-lemma ⊢L) (erase-lemma ⊢M) (erase-lemma ⊢N)
erase-lemma (⊢Y ⊢M) = cong `Y_ (erase-lemma ⊢M)
\end{code}
@ -374,6 +330,23 @@ _[_:=_] : Term → Id → Term → Term
N [ x := M ] = subst (free M ++ (free N \\ x)) (∅ , x ↦ M) N
\end{code}
### Testing substitution
\begin{code}
_ : (` s · ` s · ` z) [ z := `zero ] ≡ (` s · ` s · `zero)
_ = refl
_ : (` s · ` s · ` z) [ s := (`λ m ⇒ `suc ` m) ] [ z := `zero ]
≡ ((`λ p ⇒ `suc ` p) · (`λ p ⇒ `suc ` p) · `zero)
_ = refl
_ : (`λ m ⇒ ` m · ` n) [ n := ` m ] ≡ (`λ n ⇒ ` n · ` m)
_ = refl
_ : subst [ m , n ] (∅ , m ↦ ` n , n ↦ ` m) (` m · ` n) ≡ (` n · ` m)
_ = refl
\end{code}
## Values
@ -412,7 +385,7 @@ data _⟶_ : Term → Term → Set where
----------------
→ V · M ⟶ V · M
β- : ∀ {x N V}
β- : ∀ {x N V}
→ Value V
------------------------------
→ (`λ x ⇒ N) · V ⟶ N [ x := V ]
@ -503,7 +476,7 @@ data Canonical : Term → Type → Set where
Fun : ∀ {x N A B}
→ ε , x ⦂ A ⊢ N ⦂ B
------------------------------
→ Canonical (`λ x ⇒ N) (A B)
→ Canonical (`λ x ⇒ N) (A B)
\end{code}
## Canonical forms lemma
@ -516,9 +489,9 @@ canonical : ∀ {V A}
→ Value V
-------------
→ Canonical V A
canonical `zero Zero = Zero
canonical (`suc ⊢V) (Suc VV) = Suc (canonical ⊢V VV)
canonical (`λ ⊢N) Fun = Fun ⊢N
canonical zero Zero = Zero
canonical (suc ⊢V) (Suc VV) = Suc (canonical ⊢V VV)
canonical (λ ⊢N) Fun = Fun ⊢N
\end{code}
Every canonical form has a type and a value.
@ -528,9 +501,9 @@ type : ∀ {V A}
→ Canonical V A
-------------
→ ε ⊢ V ⦂ A
type Zero = `zero
type (Suc CV) = `suc (type CV)
type (Fun ⊢N) = `λ ⊢N
type Zero = zero
type (Suc CV) = suc (type CV)
type (Fun ⊢N) = λ ⊢N
value : ∀ {V A}
→ Canonical V A
@ -555,26 +528,26 @@ data Progress (M : Term) (A : Type) : Set where
→ Progress M A
progress : ∀ {M A} → ε ⊢ M ⦂ A → Progress M A
progress (` ())
progress (`λ ⊢N) = done (Fun ⊢N)
progress (Ax ())
progress (λ ⊢N) = done (Fun ⊢N)
progress (⊢L · ⊢M) with progress ⊢L
... | step L⟶L = step (ξ-·₁ L⟶L)
... | done (Fun _) with progress ⊢M
... | step M⟶M = step (ξ-·₂ Fun M⟶M)
... | done CM = step (β- (value CM))
progress `zero = done Zero
progress (`suc ⊢M) with progress ⊢M
... | done CM = step (β- (value CM))
progress zero = done Zero
progress (suc ⊢M) with progress ⊢M
... | step M⟶M = step (ξ-suc M⟶M)
... | done CM = done (Suc CM)
progress (`pred ⊢M) with progress ⊢M
progress (pred ⊢M) with progress ⊢M
... | step M⟶M = step (ξ-pred M⟶M)
... | done Zero = step β-pred-zero
... | done (Suc CM) = step (β-pred-suc (value CM))
progress (`if0 ⊢L ⊢M ⊢N) with progress ⊢L
progress (if0 ⊢L ⊢M ⊢N) with progress ⊢L
... | step L⟶L = step (ξ-if0 L⟶L)
... | done Zero = step β-if0-zero
... | done (Suc CM) = step (β-if0-suc (value CM))
progress (`Y ⊢M) with progress ⊢M
progress (Y ⊢M) with progress ⊢M
... | step M⟶M = step (ξ-Y M⟶M)
... | done (Fun _) = step (β-Y Fun refl)
\end{code}
@ -594,23 +567,23 @@ dom-lemma Z = here
dom-lemma (S x≢y ⊢y) = there (dom-lemma ⊢y)
free-lemma : ∀ {Γ M A} → Γ ⊢ M ⦂ A → free M ⊆ dom Γ
free-lemma (` ⊢x) w∈ with w∈
... | here = dom-lemma ⊢x
... | there ()
free-lemma {Γ} (`λ_ {N = N} ⊢N) = ∷-to-\\ (free-lemma ⊢N)
free-lemma (Ax ⊢x) w∈ with w∈
... | here = dom-lemma ⊢x
... | there ()
free-lemma {Γ} (⊢λ {N = N} ⊢N) = ∷-to-\\ (free-lemma ⊢N)
free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
... | inj₁ ∈L = free-lemma ⊢L ∈L
... | inj₂ ∈M = free-lemma ⊢M ∈M
free-lemma `zero ()
free-lemma (`suc ⊢M) w∈ = free-lemma ⊢M w∈
free-lemma (`pred ⊢M) w∈ = free-lemma ⊢M w∈
free-lemma (`if0 ⊢L ⊢M ⊢N) w∈
free-lemma zero ()
free-lemma (suc ⊢M) w∈ = free-lemma ⊢M w∈
free-lemma (pred ⊢M) w∈ = free-lemma ⊢M w∈
free-lemma (if0 ⊢L ⊢M ⊢N) w∈
with ++-to-⊎ w∈
... | inj₁ ∈L = free-lemma ⊢L ∈L
... | inj₂ ∈MN with ++-to-⊎ ∈MN
... | inj₁ ∈M = free-lemma ⊢M ∈M
... | inj₂ ∈N = free-lemma ⊢N ∈N
free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
free-lemma (Y ⊢M) w∈ = free-lemma ⊢M w∈
\end{code}
### Renaming
@ -620,11 +593,11 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
→ (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A)
--------------------------------------------------
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A)
⊢rename ⊢σ ⊆xs (` ⊢x) = ` ⊢σ ∈xs ⊢x
⊢rename ⊢σ ⊆xs (Ax ⊢x) = Ax (⊢σ ∈xs ⊢x)
where
∈xs = ⊆xs here
⊢rename {Γ} {Δ} {xs} ⊢σ ⊆xs (`λ_ {x = x} {N = N} {A = A} ⊢N)
= `λ (⊢rename {Γ′} {Δ′} {xs} ⊢σ′ ⊆xs ⊢N)
⊢rename {Γ} {Δ} {xs} ⊢σ ⊆xs (⊢λ {x = x} {N = N} {A = A} ⊢N)
= λ (⊢rename {Γ′} {Δ′} {xs} ⊢σ′ ⊆xs ⊢N)
where
Γ′ = Γ , x ⦂ A
Δ′ = Δ , x ⦂ A
@ -642,16 +615,16 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
where
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
⊢rename ⊢σ ⊆xs (`zero) = `zero
⊢rename ⊢σ ⊆xs (`suc ⊢M) = `suc (⊢rename ⊢σ ⊆xs ⊢M)
⊢rename ⊢σ ⊆xs (`pred ⊢M) = `pred (⊢rename ⊢σ ⊆xs ⊢M)
⊢rename ⊢σ ⊆xs (`if0 {L = L} ⊢L ⊢M ⊢N)
= `if0 (⊢rename ⊢σ L⊆ ⊢L) (⊢rename ⊢σ M⊆ ⊢M) (⊢rename ⊢σ N⊆ ⊢N)
⊢rename ⊢σ ⊆xs (⊢zero) = ⊢zero
⊢rename ⊢σ ⊆xs (⊢suc ⊢M) = ⊢suc (⊢rename ⊢σ ⊆xs ⊢M)
⊢rename ⊢σ ⊆xs (⊢pred ⊢M) = ⊢pred (⊢rename ⊢σ ⊆xs ⊢M)
⊢rename ⊢σ ⊆xs (if0 {L = L} ⊢L ⊢M ⊢N)
= if0 (⊢rename ⊢σ L⊆ ⊢L) (⊢rename ⊢σ M⊆ ⊢M) (⊢rename ⊢σ N⊆ ⊢N)
where
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
⊢rename ⊢σ ⊆xs (`Y ⊢M) = `Y (⊢rename ⊢σ ⊆xs ⊢M)
⊢rename ⊢σ ⊆xs (⊢Y ⊢M) = ⊢Y (⊢rename ⊢σ ⊆xs ⊢M)
\end{code}
@ -664,10 +637,10 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
→ (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ⊢ ρ x ⦂ A)
-------------------------------------------------------------
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ subst ys ρ M ⦂ A)
⊢subst Σ ⊢ρ ⊆xs (` ⊢x)
⊢subst Σ ⊢ρ ⊆xs (Ax ⊢x)
= ⊢ρ (⊆xs here) ⊢x
⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (`λ_ {x = x} {N = N} {A = A} ⊢N)
= `λ_ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs} {ys} {ρ} Σ′ ⊢ρ′ ⊆xs ⊢N)
⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (⊢λ {x = x} {N = N} {A = A} ⊢N)
= ⊢λ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs} {ys} {ρ} Σ′ ⊢ρ′ ⊆xs ⊢N)
where
y = fresh ys
Γ′ = Γ , x ⦂ A
@ -689,7 +662,7 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
⊢ρ′ : ∀ {w C} → w ∈ xs → Γ′ ∋ w ⦂ C → Δ′ ⊢ ρ w ⦂ C
⊢ρ′ {w} _ Z with w ≟ x
... | yes _ = ` Z
... | yes _ = Ax Z
... | no w≢ = ⊥-elim (w≢ refl)
⊢ρ′ {w} w∈ (S w≢ ⊢w) with w ≟ x
... | yes refl = ⊥-elim (w≢ refl)
@ -702,16 +675,16 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
where
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
⊢subst Σ ⊢ρ ⊆xs `zero = `zero
⊢subst Σ ⊢ρ ⊆xs (`suc ⊢M) = `suc (⊢subst Σ ⊢ρ ⊆xs ⊢M)
⊢subst Σ ⊢ρ ⊆xs (`pred ⊢M) = `pred (⊢subst Σ ⊢ρ ⊆xs ⊢M)
⊢subst Σ ⊢ρ ⊆xs (`if0 {L = L} ⊢L ⊢M ⊢N)
= `if0 (⊢subst Σ ⊢ρ L⊆ ⊢L) (⊢subst Σ ⊢ρ M⊆ ⊢M) (⊢subst Σ ⊢ρ N⊆ ⊢N)
⊢subst Σ ⊢ρ ⊆xs ⊢zero = ⊢zero
⊢subst Σ ⊢ρ ⊆xs (⊢suc ⊢M) = ⊢suc (⊢subst Σ ⊢ρ ⊆xs ⊢M)
⊢subst Σ ⊢ρ ⊆xs (⊢pred ⊢M) = ⊢pred (⊢subst Σ ⊢ρ ⊆xs ⊢M)
⊢subst Σ ⊢ρ ⊆xs (if0 {L = L} ⊢L ⊢M ⊢N)
= if0 (⊢subst Σ ⊢ρ L⊆ ⊢L) (⊢subst Σ ⊢ρ M⊆ ⊢M) (⊢subst Σ ⊢ρ N⊆ ⊢N)
where
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
⊢subst Σ ⊢ρ ⊆xs (`Y ⊢M) = `Y (⊢subst Σ ⊢ρ ⊆xs ⊢M)
⊢subst Σ ⊢ρ ⊆xs (⊢Y ⊢M) = ⊢Y (⊢subst Σ ⊢ρ ⊆xs ⊢M)
⊢substitution : ∀ {Γ x A N B M} →
Γ , x ⦂ A ⊢ N ⦂ B →
@ -737,7 +710,7 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
... | no w≢ = ⊥-elim (w≢ refl)
⊢ρ {w} w∈ (S w≢ ⊢w) with w ≟ x
... | yes refl = ⊥-elim (w≢ refl)
... | no _ = ` ⊢w
... | no _ = Ax ⊢w
⊆xs : free N ⊆ xs
⊆xs x∈ = x∈
@ -751,22 +724,21 @@ preservation : ∀ {Γ M N A}
→ M ⟶ N
---------
→ Γ ⊢ N ⦂ A
preservation (` ⊢x) ()
preservation (`λ ⊢N) ()
preservation (⊢L · ⊢M) (ξ-·₁ L⟶L) = preservation ⊢L L⟶L · ⊢M
preservation (⊢V · ⊢M) (ξ-·₂ _ M⟶M) = ⊢V · preservation ⊢M M⟶M
preservation ((`λ ⊢N) · ⊢W) (β-⟹ _) = ⊢substitution ⊢N ⊢W
preservation (`zero) ()
preservation (`suc ⊢M) (ξ-suc M⟶M) = `suc (preservation ⊢M M⟶M)
preservation (`pred ⊢M) (ξ-pred M⟶M) = `pred (preservation ⊢M M⟶M)
preservation (`pred `zero) (β-pred-zero) = `zero
preservation (`pred (`suc ⊢M)) (β-pred-suc _) = ⊢M
preservation (`if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶L) = `if0 (preservation ⊢L L⟶L) ⊢M ⊢N
preservation (`if0 `zero ⊢M ⊢N) β-if0-zero = ⊢M
preservation (`if0 (`suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N
preservation (`Y ⊢M) (ξ-Y M⟶M) = `Y (preservation ⊢M M⟶M)
preservation (`Y (`λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (`Y (`λ ⊢N))
preservation (Ax ⊢x) ()
preservation (λ ⊢N) ()
preservation (⊢L · ⊢M) (ξ-·₁ L⟶) = preservation ⊢L L⟶ · ⊢M
preservation (⊢V · ⊢M) (ξ-·₂ _ M⟶) = ⊢V · preservation ⊢M M⟶
preservation ((⊢λ ⊢N) · ⊢W) (β-⇒ _) = ⊢substitution ⊢N ⊢W
preservation (zero) ()
preservation (⊢suc ⊢M) (ξ-suc M⟶) = ⊢suc (preservation ⊢M M⟶)
preservation (⊢pred ⊢M) (ξ-pred M⟶) = ⊢pred (preservation ⊢M M⟶)
preservation (⊢pred ⊢zero) (β-pred-zero) = ⊢zero
preservation (⊢pred (⊢suc ⊢M)) (β-pred-suc _) = ⊢M
preservation (⊢if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶) = ⊢if0 (preservation ⊢L L⟶) ⊢M ⊢N
preservation (⊢if0 ⊢zero ⊢M ⊢N) β-if0-zero = ⊢M
preservation (⊢if0 (⊢suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N
preservation (⊢Y ⊢M) (ξ-Y M⟶) = ⊢Y (preservation ⊢M M⟶)
preservation (⊢Y (⊢λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (⊢Y (⊢λ ⊢N))
\end{code}

View file

@ -0,0 +1,788 @@
---
title : "Typed: Typed Lambda term representation"
layout : page
permalink : /Typed
---
## Imports
\begin{code}
module Typed where
\end{code}
\begin{code}
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List using (List; []; _∷_; _++_; map; foldr; filter)
open import Data.Nat using (; zero; suc; _+_; _∸_; _≤_; _⊔_)
open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n)
open import Data.String using (String)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_∘_)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Negation using (¬?)
open import Collections
import Data.Nat as Nat
import Data.String as String
pattern [_] x = x ∷ []
pattern [_,_] x y = x ∷ y ∷ []
pattern [_,_,_] x y z = x ∷ y ∷ z ∷ []
\end{code}
## Identifiers
\begin{code}
data Id : Set where
id : String → → Id
_≟_ : ∀ (x y : Id) → Dec (x ≡ y)
id s m ≟ id t n with s String.≟ t | m Nat.≟ n
... | yes refl | yes refl = yes refl
... | yes refl | no m≢n = no (λ {refl → m≢n refl})
... | no s≢t | _ = no (λ {refl → s≢t refl})
{-
_≠_ : ∀ (x y : Id) → x ≢ y
x ≠ y with x ≟ y
... | no x≢y = x≢y
... | yes _ = impossible
where postulate impossible : _
-}
\end{code}
## Syntax
\begin{code}
infixr 5 _⇒_
infixl 5 _,_⦂_
infix 4 _∋_⦂_
infix 4 _⊢_⦂_
infix 5 `λ_⇒_
infixl 6 `if0_then_else_
infix 7 `suc_ `pred_ `Y_
infixl 8 _·_
infix 9 `_
data Type : Set where
` : Type
_⇒_ : Type → Type → Type
data Env : Set where
ε : Env
_,_⦂_ : Env → Id → Type → Env
data Term : Set where
`_ : Id → Term
`λ_⇒_ : Id → Term → Term
_·_ : Term → Term → Term
`zero : Term
`suc_ : Term → Term
`pred_ : Term → Term
`if0_then_else_ : Term → Term → Term → Term
`Y_ : Term → Term
data _∋_⦂_ : Env → Id → Type → Set where
Z : ∀ {Γ A x}
-----------------
→ Γ , x ⦂ A ∋ x ⦂ A
S : ∀ {Γ A B x w}
→ w ≢ x
→ Γ ∋ w ⦂ B
-----------------
→ Γ , x ⦂ A ∋ w ⦂ B
data _⊢_⦂_ : Env → Term → Type → Set where
Ax : ∀ {Γ A x}
→ Γ ∋ x ⦂ A
---------------------
→ Γ ⊢ ` x ⦂ A
⊢λ : ∀ {Γ x N A B}
→ Γ , x ⦂ A ⊢ N ⦂ B
------------------------
→ Γ ⊢ (`λ x ⇒ N) ⦂ A ⇒ B
_·_ : ∀ {Γ L M A B}
→ Γ ⊢ L ⦂ A ⇒ B
→ Γ ⊢ M ⦂ A
--------------
→ Γ ⊢ L · M ⦂ B
⊢zero : ∀ {Γ}
--------------
→ Γ ⊢ `zero ⦂ `
⊢suc : ∀ {Γ M}
→ Γ ⊢ M ⦂ `
---------------
→ Γ ⊢ `suc M ⦂ `
⊢pred : ∀ {Γ M}
→ Γ ⊢ M ⦂ `
----------------
→ Γ ⊢ `pred M ⦂ `
⊢if0 : ∀ {Γ L M N A}
→ Γ ⊢ L ⦂ `
→ Γ ⊢ M ⦂ A
→ Γ ⊢ N ⦂ A
----------------------------
→ Γ ⊢ `if0 L then M else N ⦂ A
⊢Y : ∀ {Γ M A}
→ Γ ⊢ M ⦂ A ⇒ A
---------------
→ Γ ⊢ `Y M ⦂ A
\end{code}
## Test examples
\begin{code}
m n s z : Id
p = id "p" 0 -- 0
m = id "m" 0 -- 1
n = id "n" 0 -- 2
s = id "s" 0 -- 3
z = id "z" 0 -- 4
s≢z : s ≢ z
s≢z ()
n≢z : n ≢ z
n≢z ()
n≢s : n ≢ s
n≢s ()
m≢z : m ≢ z
m≢z ()
m≢s : m ≢ s
m≢s ()
m≢n : m ≢ n
m≢n ()
p≢n : p ≢ n
p≢n ()
p≢m : p ≢ m
p≢m ()
two : Term
two = `suc `suc `zero
⊢two : ε ⊢ two ⦂ `
⊢two = (⊢suc (⊢suc ⊢zero))
plus : Term
plus = `Y (`λ p ⇒ `λ m ⇒ `λ n ⇒ `if0 ` m then ` n else ` p · (`pred ` m) · ` n)
⊢plus : ε ⊢ plus ⦂ ` ⇒ ` ⇒ `
⊢plus = (⊢Y (⊢λ (⊢λ (⊢λ (⊢if0 (Ax ⊢m) (Ax ⊢n) (Ax ⊢p · (⊢pred (Ax ⊢m)) · Ax ⊢n))))))
where
⊢p = S p≢n (S p≢m Z)
⊢m = S m≢n Z
⊢n = Z
four : Term
four = plus · two · two
⊢four : ε ⊢ four ⦂ `
⊢four = ⊢plus · ⊢two · ⊢two
Ch : Type
Ch = (` ⇒ `) ⇒ ` ⇒ `
twoCh : Term
twoCh = `λ s ⇒ `λ z ⇒ (` s · (` s · ` z))
⊢twoCh : ε ⊢ twoCh ⦂ Ch
⊢twoCh = (⊢λ (⊢λ (Ax ⊢s · (Ax ⊢s · Ax ⊢z))))
where
⊢s = S s≢z Z
⊢z = Z
plusCh : Term
plusCh = `λ m ⇒ `λ n ⇒ `λ s ⇒ `λ z ⇒ ` m · ` s · (` n · ` s · ` z)
⊢plusCh : ε ⊢ plusCh ⦂ Ch ⇒ Ch ⇒ Ch
⊢plusCh = (⊢λ (⊢λ (⊢λ (⊢λ (Ax ⊢m · Ax ⊢s · (Ax ⊢n · Ax ⊢s · Ax ⊢z))))))
where
⊢m = S m≢z (S m≢s (S m≢n Z))
⊢n = S n≢z (S n≢s Z)
⊢s = S s≢z Z
⊢z = Z
fromCh : Term
fromCh = `λ m ⇒ ` m · (`λ s ⇒ `suc ` s) · `zero
⊢fromCh : ε ⊢ fromCh ⦂ Ch ⇒ `
⊢fromCh = (⊢λ (Ax ⊢m · (⊢λ (⊢suc (Ax ⊢s))) · ⊢zero))
where
⊢m = Z
⊢s = Z
fourCh : Term
fourCh = fromCh · (plusCh · twoCh · twoCh)
⊢fourCh : ε ⊢ fourCh ⦂ `
⊢fourCh = ⊢fromCh · (⊢plusCh · ⊢twoCh · ⊢twoCh)
\end{code}
## Erasure
\begin{code}
lookup : ∀ {Γ x A} → Γ ∋ x ⦂ A → Id
lookup {Γ , x ⦂ A} Z = x
lookup {Γ , x ⦂ A} (S _ ⊢w) = lookup {Γ} ⊢w
erase : ∀ {Γ M A} → Γ ⊢ M ⦂ A → Term
erase (Ax ⊢w) = ` lookup ⊢w
erase (⊢λ {x = x} ⊢N) = `λ x ⇒ erase ⊢N
erase (⊢L · ⊢M) = erase ⊢L · erase ⊢M
erase (⊢zero) = `zero
erase (⊢suc ⊢M) = `suc (erase ⊢M)
erase (⊢pred ⊢M) = `pred (erase ⊢M)
erase (⊢if0 ⊢L ⊢M ⊢N) = `if0 (erase ⊢L) then (erase ⊢M) else (erase ⊢N)
erase (⊢Y ⊢M) = `Y (erase ⊢M)
\end{code}
### Properties of erasure
\begin{code}
cong₃ : ∀ {A B C D : Set} (f : A → B → C → D) {s t u v x y} →
s ≡ t → u ≡ v → x ≡ y → f s u x ≡ f t v y
cong₃ f refl refl refl = refl
lookup-lemma : ∀ {Γ x A} → (⊢x : Γ ∋ x ⦂ A) → lookup ⊢x ≡ x
lookup-lemma Z = refl
lookup-lemma (S _ ⊢w) = lookup-lemma ⊢w
erase-lemma : ∀ {Γ M A} → (⊢M : Γ ⊢ M ⦂ A) → erase ⊢M ≡ M
erase-lemma (Ax ⊢x) = cong `_ (lookup-lemma ⊢x)
erase-lemma (⊢λ {x = x} ⊢N) = cong (`λ x ⇒_) (erase-lemma ⊢N)
erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (erase-lemma ⊢M)
erase-lemma (⊢zero) = refl
erase-lemma (⊢suc ⊢M) = cong `suc_ (erase-lemma ⊢M)
erase-lemma (⊢pred ⊢M) = cong `pred_ (erase-lemma ⊢M)
erase-lemma (⊢if0 ⊢L ⊢M ⊢N) = cong₃ `if0_then_else_
(erase-lemma ⊢L) (erase-lemma ⊢M) (erase-lemma ⊢N)
erase-lemma (⊢Y ⊢M) = cong `Y_ (erase-lemma ⊢M)
\end{code}
## Substitution
### Lists as sets
\begin{code}
open Collections.CollectionDec (Id) (_≟_)
\end{code}
### Free variables
\begin{code}
free : Term → List Id
free (` x) = [ x ]
free (`λ x ⇒ N) = free N \\ x
free (L · M) = free L ++ free M
free (`zero) = []
free (`suc M) = free M
free (`pred M) = free M
free (`if0 L then M else N) = free L ++ free M ++ free N
free (`Y M) = free M
\end{code}
### Fresh identifier
\begin{code}
bump : String → Id →
bump s (id t n) with s String.≟ t
... | yes refl = suc n
... | no _ = 0
next : String → List Id →
next s = foldr _⊔_ 0 ∘ map (bump s)
⊔-lemma : ∀ {s w xs} → w ∈ xs → bump s w ≤ next s xs
⊔-lemma {s} {_} {_ ∷ xs} here = m≤m⊔n _ (next s xs)
⊔-lemma {s} {_} {_ ∷ xs} (there x∈) = ≤-trans (⊔-lemma x∈) (n≤m⊔n _ (next s xs))
fresh : Id → List Id → Id
fresh (id s _) xs = id s (next s xs)
fresh-lemma : ∀ {w x xs} → w ∈ xs → w ≢ fresh x xs
fresh-lemma {w @ (id t n)} {x @ (id s _)} {xs} w∈ w≢fr = {! (⊔-lemma {s} {w} {xs} w∈)!} -- with s String.≟ t
{-
... | yes refl = {! (⊔-lemma {s} {w} {xs} w∈)!}
... | no s≢t = {!!}
with s String.≟ t | fresh x xs
... | yes refl | fr = {! (⊔-lemma {s} {w} {xs} w∈)!}
... | no s≢t | _ = s≢t refl
next-lemma : ∀ {x xs} → x ∈ xs → x ≢ next xs
next-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)
\end{code}
### Identifier maps
\begin{code}
∅ : Id → Term
∅ x = ` x
infixl 5 _,_↦_
_,_↦_ : (Id → Term) → Id → Term → (Id → Term)
(ρ , x ↦ M) w with w ≟ x
... | yes _ = M
... | no _ = ρ w
\end{code}
### Substitution
\begin{code}
subst : List Id → (Id → Term) → Term → Term
subst ys ρ (` x) = ρ x
subst ys ρ (`λ x ⇒ N) = `λ y ⇒ subst (y ∷ ys) (ρ , x ↦ ` y) N
where
y = fresh ys
subst ys ρ (L · M) = subst ys ρ L · subst ys ρ M
subst ys ρ (`zero) = `zero
subst ys ρ (`suc M) = `suc (subst ys ρ M)
subst ys ρ (`pred M) = `pred (subst ys ρ M)
subst ys ρ (`if0 L then M else N)
= `if0 (subst ys ρ L) then (subst ys ρ M) else (subst ys ρ N)
subst ys ρ (`Y M) = `Y (subst ys ρ M)
_[_:=_] : Term → Id → Term → Term
N [ x := M ] = subst (free M ++ (free N \\ x)) (∅ , x ↦ M) N
\end{code}
### Testing substitution
\begin{code}
_ : (` s · ` s · ` z) [ z := `zero ] ≡ (` s · ` s · `zero)
_ = refl
_ : (` s · ` s · ` z) [ s := (`λ m ⇒ `suc ` m) ] [ z := `zero ]
≡ ((`λ p ⇒ `suc ` p) · (`λ p ⇒ `suc ` p) · `zero)
_ = refl
_ : (`λ m ⇒ ` m · ` n) [ n := ` m ] ≡ (`λ n ⇒ ` n · ` m)
_ = refl
_ : subst [ m , n ] (∅ , m ↦ ` n , n ↦ ` m) (` m · ` n) ≡ (` n · ` m)
_ = refl
\end{code}
## Values
\begin{code}
data Value : Term → Set where
Zero :
----------
Value `zero
Suc : ∀ {V}
→ Value V
--------------
→ Value (`suc V)
Fun : ∀ {x N}
---------------
→ Value (`λ x ⇒ N)
\end{code}
## Reduction
\begin{code}
infix 4 _⟶_
data _⟶_ : Term → Term → Set where
ξ-·₁ : ∀ {L L M}
→ L ⟶ L
----------------
→ L · M ⟶ L · M
ξ-·₂ : ∀ {V M M}
→ Value V
→ M ⟶ M
----------------
→ V · M ⟶ V · M
β-⇒ : ∀ {x N V}
→ Value V
------------------------------
→ (`λ x ⇒ N) · V ⟶ N [ x := V ]
ξ-suc : ∀ {M M}
→ M ⟶ M
------------------
→ `suc M ⟶ `suc M
ξ-pred : ∀ {M M}
→ M ⟶ M
--------------------
→ `pred M ⟶ `pred M
β-pred-zero :
---------------------
`pred `zero ⟶ `zero
β-pred-suc : ∀ {V}
→ Value V
--------------------
→ `pred (`suc V) ⟶ V
ξ-if0 : ∀ {L L M N}
→ L ⟶ L
----------------------------------------------
→ `if0 L then M else N ⟶ `if0 L then M else N
β-if0-zero : ∀ {M N}
------------------------------
→ `if0 `zero then M else N ⟶ M
β-if0-suc : ∀ {V M N}
→ Value V
---------------------------------
→ `if0 (`suc V) then M else N ⟶ N
ξ-Y : ∀ {M M}
→ M ⟶ M
--------------
→ `Y M ⟶ `Y M
β-Y : ∀ {V x N}
→ Value V
→ V ≡ `λ x ⇒ N
------------------------
→ `Y V ⟶ N [ x := `Y V ]
\end{code}
## Reflexive and transitive closure
\begin{code}
infix 2 _⟶*_
infix 1 begin_
infixr 2 _⟶⟨_⟩_
infix 3 _∎
data _⟶*_ : Term → Term → Set where
_∎ : ∀ {M}
-------------
→ M ⟶* M
_⟶⟨_⟩_ : ∀ (L : Term) {M N}
→ L ⟶ M
→ M ⟶* N
---------
→ L ⟶* N
begin_ : ∀ {M N} → (M ⟶* N) → (M ⟶* N)
begin M⟶*N = M⟶*N
\end{code}
## Canonical forms
\begin{code}
data Canonical : Term → Type → Set where
Zero :
------------------
Canonical `zero `
Suc : ∀ {V}
→ Canonical V `
---------------------
→ Canonical (`suc V) `
Fun : ∀ {x N A B}
→ ε , x ⦂ A ⊢ N ⦂ B
------------------------------
→ Canonical (`λ x ⇒ N) (A ⇒ B)
\end{code}
## Canonical forms lemma
Every typed value is canonical.
\begin{code}
canonical : ∀ {V A}
→ ε ⊢ V ⦂ A
→ Value V
-------------
→ Canonical V A
canonical ⊢zero Zero = Zero
canonical (⊢suc ⊢V) (Suc VV) = Suc (canonical ⊢V VV)
canonical (⊢λ ⊢N) Fun = Fun ⊢N
\end{code}
Every canonical form has a type and a value.
\begin{code}
type : ∀ {V A}
→ Canonical V A
-------------
→ ε ⊢ V ⦂ A
type Zero = ⊢zero
type (Suc CV) = ⊢suc (type CV)
type (Fun ⊢N) = ⊢λ ⊢N
value : ∀ {V A}
→ Canonical V A
-------------
→ Value V
value Zero = Zero
value (Suc CV) = Suc (value CV)
value (Fun ⊢N) = Fun
\end{code}
## Progress
\begin{code}
data Progress (M : Term) (A : Type) : Set where
step : ∀ {N}
→ M ⟶ N
----------
→ Progress M A
done :
Canonical M A
-------------
→ Progress M A
progress : ∀ {M A} → ε ⊢ M ⦂ A → Progress M A
progress (Ax ())
progress (⊢λ ⊢N) = done (Fun ⊢N)
progress (⊢L · ⊢M) with progress ⊢L
... | step L⟶L = step (ξ-·₁ L⟶L)
... | done (Fun _) with progress ⊢M
... | step M⟶M = step (ξ-·₂ Fun M⟶M)
... | done CM = step (β-⇒ (value CM))
progress ⊢zero = done Zero
progress (⊢suc ⊢M) with progress ⊢M
... | step M⟶M = step (ξ-suc M⟶M)
... | done CM = done (Suc CM)
progress (⊢pred ⊢M) with progress ⊢M
... | step M⟶M = step (ξ-pred M⟶M)
... | done Zero = step β-pred-zero
... | done (Suc CM) = step (β-pred-suc (value CM))
progress (⊢if0 ⊢L ⊢M ⊢N) with progress ⊢L
... | step L⟶L = step (ξ-if0 L⟶L)
... | done Zero = step β-if0-zero
... | done (Suc CM) = step (β-if0-suc (value CM))
progress (⊢Y ⊢M) with progress ⊢M
... | step M⟶M = step (ξ-Y M⟶M)
... | done (Fun _) = step (β-Y Fun refl)
\end{code}
## Preservation
### Domain of an environment
\begin{code}
dom : Env → List Id
dom ε = []
dom (Γ , x ⦂ A) = x ∷ dom Γ
dom-lemma : ∀ {Γ y B} → Γ ∋ y ⦂ B → y ∈ dom Γ
dom-lemma Z = here
dom-lemma (S x≢y ⊢y) = there (dom-lemma ⊢y)
free-lemma : ∀ {Γ M A} → Γ ⊢ M ⦂ A → free M ⊆ dom Γ
free-lemma (Ax ⊢x) w∈ with w∈
... | here = dom-lemma ⊢x
... | there ()
free-lemma {Γ} (⊢λ {N = N} ⊢N) = ∷-to-\\ (free-lemma ⊢N)
free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
... | inj₁ ∈L = free-lemma ⊢L ∈L
... | inj₂ ∈M = free-lemma ⊢M ∈M
free-lemma ⊢zero ()
free-lemma (⊢suc ⊢M) w∈ = free-lemma ⊢M w∈
free-lemma (⊢pred ⊢M) w∈ = free-lemma ⊢M w∈
free-lemma (⊢if0 ⊢L ⊢M ⊢N) w∈
with ++-to-⊎ w∈
... | inj₁ ∈L = free-lemma ⊢L ∈L
... | inj₂ ∈MN with ++-to-⊎ ∈MN
... | inj₁ ∈M = free-lemma ⊢M ∈M
... | inj₂ ∈N = free-lemma ⊢N ∈N
free-lemma (⊢Y ⊢M) w∈ = free-lemma ⊢M w∈
\end{code}
### Renaming
\begin{code}
⊢rename : ∀ {Γ Δ xs}
→ (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A)
--------------------------------------------------
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A)
⊢rename ⊢σ ⊆xs (Ax ⊢x) = Ax (⊢σ ∈xs ⊢x)
where
∈xs = ⊆xs here
⊢rename {Γ} {Δ} {xs} ⊢σ ⊆xs (⊢λ {x = x} {N = N} {A = A} ⊢N)
= ⊢λ (⊢rename {Γ′} {Δ′} {xs} ⊢σ′ ⊆xs ⊢N)
where
Γ′ = Γ , x ⦂ A
Δ′ = Δ , x ⦂ A
xs = x ∷ xs
⊢σ′ : ∀ {w B} → w ∈ xs → Γ′ ∋ w ⦂ B → Δ′ ∋ w ⦂ B
⊢σ′ w∈ Z = Z
⊢σ′ w∈ (S w≢ ⊢w) = S w≢ (⊢σ ∈w ⊢w)
where
∈w = there⁻¹ w∈ w≢
⊆xs : free N ⊆ xs
⊆xs = \\-to-∷ ⊆xs
⊢rename ⊢σ ⊆xs (⊢L · ⊢M) = ⊢rename ⊢σ L⊆ ⊢L · ⊢rename ⊢σ M⊆ ⊢M
where
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
⊢rename ⊢σ ⊆xs (⊢zero) = ⊢zero
⊢rename ⊢σ ⊆xs (⊢suc ⊢M) = ⊢suc (⊢rename ⊢σ ⊆xs ⊢M)
⊢rename ⊢σ ⊆xs (⊢pred ⊢M) = ⊢pred (⊢rename ⊢σ ⊆xs ⊢M)
⊢rename ⊢σ ⊆xs (⊢if0 {L = L} ⊢L ⊢M ⊢N)
= ⊢if0 (⊢rename ⊢σ L⊆ ⊢L) (⊢rename ⊢σ M⊆ ⊢M) (⊢rename ⊢σ N⊆ ⊢N)
where
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
⊢rename ⊢σ ⊆xs (⊢Y ⊢M) = ⊢Y (⊢rename ⊢σ ⊆xs ⊢M)
\end{code}
### Substitution preserves types
\begin{code}
⊢subst : ∀ {Γ Δ xs ys ρ}
→ (∀ {x} → x ∈ xs → free (ρ x) ⊆ ys)
→ (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ⊢ ρ x ⦂ A)
-------------------------------------------------------------
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ subst ys ρ M ⦂ A)
⊢subst Σ ⊢ρ ⊆xs (Ax ⊢x)
= ⊢ρ (⊆xs here) ⊢x
⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (⊢λ {x = x} {N = N} {A = A} ⊢N)
= ⊢λ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs} {ys} {ρ} Σ′ ⊢ρ′ ⊆xs ⊢N)
where
y = fresh ys
Γ′ = Γ , x ⦂ A
Δ′ = Δ , y ⦂ A
xs = x ∷ xs
ys = y ∷ ys
ρ = ρ , x ↦ ` y
Σ′ : ∀ {w} → w ∈ xs → free (ρ w) ⊆ ys
Σ′ {w} w∈ with w ≟ x
... | yes refl = ⊆-++₁
... | no w≢ = ⊆-++₂ ∘ Σ (there⁻¹ w∈ w≢)
⊆xs : free N ⊆ xs
⊆xs = \\-to-∷ ⊆xs
⊢σ : ∀ {w C} → w ∈ ys → Δ ∋ w ⦂ C → Δ′ ∋ w ⦂ C
⊢σ w∈ ⊢w = S (fresh-lemma w∈) ⊢w
⊢ρ′ : ∀ {w C} → w ∈ xs → Γ′ ∋ w ⦂ C → Δ′ ⊢ ρ w ⦂ C
⊢ρ′ {w} _ Z with w ≟ x
... | yes _ = Ax Z
... | no w≢ = ⊥-elim (w≢ refl)
⊢ρ′ {w} w∈ (S w≢ ⊢w) with w ≟ x
... | yes refl = ⊥-elim (w≢ refl)
... | no _ = ⊢rename {Δ} {Δ′} {ys} ⊢σ (Σ w∈) (⊢ρ w∈ ⊢w)
where
w∈ = there⁻¹ w∈ w≢
⊢subst Σ ⊢ρ ⊆xs (⊢L · ⊢M)
= ⊢subst Σ ⊢ρ L⊆ ⊢L · ⊢subst Σ ⊢ρ M⊆ ⊢M
where
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
⊢subst Σ ⊢ρ ⊆xs ⊢zero = ⊢zero
⊢subst Σ ⊢ρ ⊆xs (⊢suc ⊢M) = ⊢suc (⊢subst Σ ⊢ρ ⊆xs ⊢M)
⊢subst Σ ⊢ρ ⊆xs (⊢pred ⊢M) = ⊢pred (⊢subst Σ ⊢ρ ⊆xs ⊢M)
⊢subst Σ ⊢ρ ⊆xs (⊢if0 {L = L} ⊢L ⊢M ⊢N)
= ⊢if0 (⊢subst Σ ⊢ρ L⊆ ⊢L) (⊢subst Σ ⊢ρ M⊆ ⊢M) (⊢subst Σ ⊢ρ N⊆ ⊢N)
where
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
⊢subst Σ ⊢ρ ⊆xs (⊢Y ⊢M) = ⊢Y (⊢subst Σ ⊢ρ ⊆xs ⊢M)
⊢substitution : ∀ {Γ x A N B M} →
Γ , x ⦂ A ⊢ N ⦂ B →
Γ ⊢ M ⦂ A →
--------------------
Γ ⊢ N [ x := M ] ⦂ B
⊢substitution {Γ} {x} {A} {N} {B} {M} ⊢N ⊢M =
⊢subst {Γ′} {Γ} {xs} {ys} {ρ} Σ ⊢ρ {N} {B} ⊆xs ⊢N
where
Γ′ = Γ , x ⦂ A
xs = free N
ys = free M ++ (free N \\ x)
ρ = ∅ , x ↦ M
Σ : ∀ {w} → w ∈ xs → free (ρ w) ⊆ ys
Σ {w} w∈ y∈ with w ≟ x
... | yes _ = ⊆-++₁ y∈
... | no w≢ rewrite ∈-[_] y∈ = ⊆-++₂ (∈-≢-to-\\ w∈ w≢)
⊢ρ : ∀ {w B} → w ∈ xs → Γ′ ∋ w ⦂ B → Γ ⊢ ρ w ⦂ B
⊢ρ {w} w∈ Z with w ≟ x
... | yes _ = ⊢M
... | no w≢ = ⊥-elim (w≢ refl)
⊢ρ {w} w∈ (S w≢ ⊢w) with w ≟ x
... | yes refl = ⊥-elim (w≢ refl)
... | no _ = Ax ⊢w
⊆xs : free N ⊆ xs
⊆xs x∈ = x∈
\end{code}
### Preservation
\begin{code}
preservation : ∀ {Γ M N A}
→ Γ ⊢ M ⦂ A
→ M ⟶ N
---------
→ Γ ⊢ N ⦂ A
preservation (Ax ⊢x) ()
preservation (⊢λ ⊢N) ()
preservation (⊢L · ⊢M) (ξ-·₁ L⟶) = preservation ⊢L L⟶ · ⊢M
preservation (⊢V · ⊢M) (ξ-·₂ _ M⟶) = ⊢V · preservation ⊢M M⟶
preservation ((⊢λ ⊢N) · ⊢W) (β-⇒ _) = ⊢substitution ⊢N ⊢W
preservation (⊢zero) ()
preservation (⊢suc ⊢M) (ξ-suc M⟶) = ⊢suc (preservation ⊢M M⟶)
preservation (⊢pred ⊢M) (ξ-pred M⟶) = ⊢pred (preservation ⊢M M⟶)
preservation (⊢pred ⊢zero) (β-pred-zero) = ⊢zero
preservation (⊢pred (⊢suc ⊢M)) (β-pred-suc _) = ⊢M
preservation (⊢if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶) = ⊢if0 (preservation ⊢L L⟶) ⊢M ⊢N
preservation (⊢if0 ⊢zero ⊢M ⊢N) β-if0-zero = ⊢M
preservation (⊢if0 (⊢suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N
preservation (⊢Y ⊢M) (ξ-Y M⟶) = ⊢Y (preservation ⊢M M⟶)
preservation (⊢Y (⊢λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (⊢Y (⊢λ ⊢N))
-}
\end{code}