failed attempt at string ids
This commit is contained in:
parent
c4bc06e2f5
commit
74427956f3
3 changed files with 1008 additions and 183 deletions
123
src/Typed.lagda
123
src/Typed.lagda
|
@ -15,15 +15,45 @@ module Typed where
|
|||
import Relation.Binary.PropositionalEquality as Eq
|
||||
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.List using (List; []; _∷_; [_]; _++_; map; foldr; filter)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_; _≤_; _⊔_; _≟_)
|
||||
open import Data.List using (List; []; _∷_; _++_; map; foldr; filter)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_; _≤_; _⊔_)
|
||||
open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n)
|
||||
open import Data.String using (String)
|
||||
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Function using (_∘_)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Relation.Nullary.Negation using (¬?)
|
||||
open import Collections
|
||||
|
||||
import Data.Nat as Nat
|
||||
import Data.String as String
|
||||
|
||||
pattern [_] x = x ∷ []
|
||||
pattern [_,_] x y = x ∷ y ∷ []
|
||||
pattern [_,_,_] x y z = x ∷ y ∷ z ∷ []
|
||||
\end{code}
|
||||
|
||||
|
||||
## Identifiers
|
||||
|
||||
\begin{code}
|
||||
data Id : Set where
|
||||
id : String → ℕ → Id
|
||||
|
||||
_≟_ : ∀ (x y : Id) → Dec (x ≡ y)
|
||||
id s m ≟ id t n with s String.≟ t | m Nat.≟ n
|
||||
... | yes refl | yes refl = yes refl
|
||||
... | yes refl | no m≢n = no (λ {refl → m≢n refl})
|
||||
... | no s≢t | _ = no (λ {refl → s≢t refl})
|
||||
|
||||
{-
|
||||
_≠_ : ∀ (x y : Id) → x ≢ y
|
||||
x ≠ y with x ≟ y
|
||||
... | no x≢y = x≢y
|
||||
... | yes _ = impossible
|
||||
where postulate impossible : _
|
||||
-}
|
||||
\end{code}
|
||||
|
||||
|
||||
|
@ -40,9 +70,6 @@ infix 7 `suc_ `pred_ `Y_
|
|||
infixl 8 _·_
|
||||
infix 9 `_
|
||||
|
||||
Id : Set
|
||||
Id = ℕ
|
||||
|
||||
data Type : Set where
|
||||
`ℕ : Type
|
||||
_⇒_ : Type → Type → Type
|
||||
|
@ -122,11 +149,11 @@ data _⊢_⦂_ : Env → Term → Type → Set where
|
|||
|
||||
\begin{code}
|
||||
m n s z : Id
|
||||
p = 0
|
||||
m = 1
|
||||
n = 2
|
||||
s = 3
|
||||
z = 4
|
||||
p = id "p" 0 -- 0
|
||||
m = id "m" 0 -- 1
|
||||
n = id "n" 0 -- 2
|
||||
s = id "s" 0 -- 3
|
||||
z = id "z" 0 -- 4
|
||||
|
||||
s≢z : s ≢ z
|
||||
s≢z ()
|
||||
|
@ -281,15 +308,35 @@ free (`Y M) = free M
|
|||
### Fresh identifier
|
||||
|
||||
\begin{code}
|
||||
fresh : List Id → Id
|
||||
fresh = foldr _⊔_ 0 ∘ map suc
|
||||
bump : String → Id → ℕ
|
||||
bump s (id t n) with s String.≟ t
|
||||
... | yes refl = suc n
|
||||
... | no _ = 0
|
||||
|
||||
⊔-lemma : ∀ {w xs} → w ∈ xs → suc w ≤ fresh xs
|
||||
⊔-lemma {_} {_ ∷ xs} here = m≤m⊔n _ (fresh xs)
|
||||
⊔-lemma {_} {_ ∷ xs} (there x∈) = ≤-trans (⊔-lemma x∈) (n≤m⊔n _ (fresh xs))
|
||||
next : String → List Id → ℕ
|
||||
next s = foldr _⊔_ 0 ∘ map (bump s)
|
||||
|
||||
fresh-lemma : ∀ {x xs} → x ∈ xs → x ≢ fresh xs
|
||||
fresh-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)
|
||||
⊔-lemma : ∀ {s w xs} → w ∈ xs → bump s w ≤ next s xs
|
||||
⊔-lemma {s} {_} {_ ∷ xs} here = m≤m⊔n _ (next s xs)
|
||||
⊔-lemma {s} {_} {_ ∷ xs} (there x∈) = ≤-trans (⊔-lemma x∈) (n≤m⊔n _ (next s xs))
|
||||
|
||||
fresh : Id → List Id → Id
|
||||
fresh (id s _) xs = id s (next s xs)
|
||||
|
||||
fresh-lemma : ∀ {w x xs} → w ∈ xs → w ≢ fresh x xs
|
||||
fresh-lemma {w @ (id t n)} {x @ (id s _)} {xs} w∈ w≢fr = {! (⊔-lemma {s} {w} {xs} w∈)!} -- with s String.≟ t
|
||||
{-
|
||||
... | yes refl = {! (⊔-lemma {s} {w} {xs} w∈)!}
|
||||
... | no s≢t = {!!}
|
||||
|
||||
|
||||
with s String.≟ t | fresh x xs
|
||||
... | yes refl | fr = {! (⊔-lemma {s} {w} {xs} w∈)!}
|
||||
... | no s≢t | _ = s≢t refl
|
||||
|
||||
|
||||
next-lemma : ∀ {x xs} → x ∈ xs → x ≢ next xs
|
||||
next-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)
|
||||
\end{code}
|
||||
|
||||
### Identifier maps
|
||||
|
@ -326,6 +373,23 @@ _[_:=_] : Term → Id → Term → Term
|
|||
N [ x := M ] = subst (free M ++ (free N \\ x)) (∅ , x ↦ M) N
|
||||
\end{code}
|
||||
|
||||
### Testing substitution
|
||||
|
||||
\begin{code}
|
||||
_ : (` s · ` s · ` z) [ z := `zero ] ≡ (` s · ` s · `zero)
|
||||
_ = refl
|
||||
|
||||
_ : (` s · ` s · ` z) [ s := (`λ m ⇒ `suc ` m) ] [ z := `zero ]
|
||||
≡ ((`λ p ⇒ `suc ` p) · (`λ p ⇒ `suc ` p) · `zero)
|
||||
_ = refl
|
||||
|
||||
_ : (`λ m ⇒ ` m · ` n) [ n := ` m ] ≡ (`λ n ⇒ ` n · ` m)
|
||||
_ = refl
|
||||
|
||||
_ : subst [ m , n ] (∅ , m ↦ ` n , n ↦ ` m) (` m · ` n) ≡ (` n · ` m)
|
||||
_ = refl
|
||||
\end{code}
|
||||
|
||||
|
||||
## Values
|
||||
|
||||
|
@ -705,19 +769,20 @@ preservation : ∀ {Γ M N A}
|
|||
→ Γ ⊢ N ⦂ A
|
||||
preservation (Ax ⊢x) ()
|
||||
preservation (⊢λ ⊢N) ()
|
||||
preservation (⊢L · ⊢M) (ξ-·₁ L⟶L′) = preservation ⊢L L⟶L′ · ⊢M
|
||||
preservation (⊢V · ⊢M) (ξ-·₂ _ M⟶M′) = ⊢V · preservation ⊢M M⟶M′
|
||||
preservation ((⊢λ ⊢N) · ⊢W) (β-⇒ _) = ⊢substitution ⊢N ⊢W
|
||||
preservation (⊢L · ⊢M) (ξ-·₁ L⟶) = preservation ⊢L L⟶ · ⊢M
|
||||
preservation (⊢V · ⊢M) (ξ-·₂ _ M⟶) = ⊢V · preservation ⊢M M⟶
|
||||
preservation ((⊢λ ⊢N) · ⊢W) (β-⇒ _) = ⊢substitution ⊢N ⊢W
|
||||
preservation (⊢zero) ()
|
||||
preservation (⊢suc ⊢M) (ξ-suc M⟶M′) = ⊢suc (preservation ⊢M M⟶M′)
|
||||
preservation (⊢pred ⊢M) (ξ-pred M⟶M′) = ⊢pred (preservation ⊢M M⟶M′)
|
||||
preservation (⊢pred ⊢zero) (β-pred-zero) = ⊢zero
|
||||
preservation (⊢pred (⊢suc ⊢M)) (β-pred-suc _) = ⊢M
|
||||
preservation (⊢if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶L′) = ⊢if0 (preservation ⊢L L⟶L′) ⊢M ⊢N
|
||||
preservation (⊢if0 ⊢zero ⊢M ⊢N) β-if0-zero = ⊢M
|
||||
preservation (⊢if0 (⊢suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N
|
||||
preservation (⊢Y ⊢M) (ξ-Y M⟶M′) = ⊢Y (preservation ⊢M M⟶M′)
|
||||
preservation (⊢Y (⊢λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (⊢Y (⊢λ ⊢N))
|
||||
preservation (⊢suc ⊢M) (ξ-suc M⟶) = ⊢suc (preservation ⊢M M⟶)
|
||||
preservation (⊢pred ⊢M) (ξ-pred M⟶) = ⊢pred (preservation ⊢M M⟶)
|
||||
preservation (⊢pred ⊢zero) (β-pred-zero) = ⊢zero
|
||||
preservation (⊢pred (⊢suc ⊢M)) (β-pred-suc _) = ⊢M
|
||||
preservation (⊢if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶) = ⊢if0 (preservation ⊢L L⟶) ⊢M ⊢N
|
||||
preservation (⊢if0 ⊢zero ⊢M ⊢N) β-if0-zero = ⊢M
|
||||
preservation (⊢if0 (⊢suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N
|
||||
preservation (⊢Y ⊢M) (ξ-Y M⟶) = ⊢Y (preservation ⊢M M⟶)
|
||||
preservation (⊢Y (⊢λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (⊢Y (⊢λ ⊢N))
|
||||
-}
|
||||
\end{code}
|
||||
|
||||
|
||||
|
|
|
@ -15,33 +15,30 @@ module Typed where
|
|||
import Relation.Binary.PropositionalEquality as Eq
|
||||
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.List using (List; []; _∷_; [_]; _++_; map; foldr; filter)
|
||||
open import Data.List.Any using (Any; here; there)
|
||||
open import Data.List using (List; []; _∷_; _++_; map; foldr; filter)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_; _≤_; _⊔_; _≟_)
|
||||
open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n)
|
||||
open import Data.Product using (_×_; proj₁; proj₂; ∃; ∃-syntax)
|
||||
renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Data.Unit using (⊤; tt)
|
||||
open import Function using (_∘_)
|
||||
open import Function.Equality using (≡-setoid)
|
||||
open import Function.Equivalence using (_⇔_; equivalence)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Relation.Nullary.Negation using (contraposition; ¬?)
|
||||
open import Relation.Nullary.Product using (_×-dec_)
|
||||
open import Collections using (_↔_)
|
||||
open import Relation.Nullary.Negation using (¬?)
|
||||
open import Collections
|
||||
|
||||
pattern [_] x = x ∷ []
|
||||
pattern [_,_] x y = x ∷ y ∷ []
|
||||
pattern [_,_,_] x y z = x ∷ y ∷ z ∷ []
|
||||
\end{code}
|
||||
|
||||
|
||||
## Syntax
|
||||
|
||||
\begin{code}
|
||||
infixr 5 _⟹_
|
||||
infixr 5 _⇒_
|
||||
infixl 5 _,_⦂_
|
||||
infix 4 _∋_⦂_
|
||||
infix 4 _⊢_⦂_
|
||||
infix 5 `λ_⇒_
|
||||
infix 5 `λ_
|
||||
infixl 6 `if0_then_else_
|
||||
infix 7 `suc_ `pred_ `Y_
|
||||
infixl 8 _·_
|
||||
|
@ -52,7 +49,7 @@ Id = ℕ
|
|||
|
||||
data Type : Set where
|
||||
`ℕ : Type
|
||||
_⟹_ : Type → Type → Type
|
||||
_⇒_ : Type → Type → Type
|
||||
|
||||
data Env : Set where
|
||||
ε : Env
|
||||
|
@ -82,45 +79,45 @@ data _∋_⦂_ : Env → Id → Type → Set where
|
|||
|
||||
data _⊢_⦂_ : Env → Term → Type → Set where
|
||||
|
||||
`_ : ∀ {Γ A x}
|
||||
Ax : ∀ {Γ A x}
|
||||
→ Γ ∋ x ⦂ A
|
||||
---------------------
|
||||
→ Γ ⊢ ` x ⦂ A
|
||||
|
||||
`λ_ : ∀ {Γ x N A B}
|
||||
⊢λ : ∀ {Γ x N A B}
|
||||
→ Γ , x ⦂ A ⊢ N ⦂ B
|
||||
------------------------
|
||||
→ Γ ⊢ (`λ x ⇒ N) ⦂ A ⟹ B
|
||||
→ Γ ⊢ (`λ x ⇒ N) ⦂ A ⇒ B
|
||||
|
||||
_·_ : ∀ {Γ L M A B}
|
||||
→ Γ ⊢ L ⦂ A ⟹ B
|
||||
→ Γ ⊢ L ⦂ A ⇒ B
|
||||
→ Γ ⊢ M ⦂ A
|
||||
--------------
|
||||
→ Γ ⊢ L · M ⦂ B
|
||||
|
||||
`zero : ∀ {Γ}
|
||||
⊢zero : ∀ {Γ}
|
||||
--------------
|
||||
→ Γ ⊢ `zero ⦂ `ℕ
|
||||
|
||||
`suc_ : ∀ {Γ M}
|
||||
⊢suc : ∀ {Γ M}
|
||||
→ Γ ⊢ M ⦂ `ℕ
|
||||
---------------
|
||||
→ Γ ⊢ `suc M ⦂ `ℕ
|
||||
|
||||
`pred_ : ∀ {Γ M}
|
||||
⊢pred : ∀ {Γ M}
|
||||
→ Γ ⊢ M ⦂ `ℕ
|
||||
----------------
|
||||
→ Γ ⊢ `pred M ⦂ `ℕ
|
||||
|
||||
`if0 : ∀ {Γ L M N A}
|
||||
⊢if0 : ∀ {Γ L M N A}
|
||||
→ Γ ⊢ L ⦂ `ℕ
|
||||
→ Γ ⊢ M ⦂ A
|
||||
→ Γ ⊢ N ⦂ A
|
||||
----------------------------
|
||||
→ Γ ⊢ `if0 L then M else N ⦂ A
|
||||
|
||||
`Y_ : ∀ {Γ M A}
|
||||
→ Γ ⊢ M ⦂ A ⟹ A
|
||||
⊢Y : ∀ {Γ M A}
|
||||
→ Γ ⊢ M ⦂ A ⇒ A
|
||||
---------------
|
||||
→ Γ ⊢ `Y M ⦂ A
|
||||
\end{code}
|
||||
|
@ -163,13 +160,13 @@ two : Term
|
|||
two = `suc `suc `zero
|
||||
|
||||
⊢two : ε ⊢ two ⦂ `ℕ
|
||||
⊢two = `suc `suc `zero
|
||||
⊢two = (⊢suc (⊢suc ⊢zero))
|
||||
|
||||
plus : Term
|
||||
plus = `Y (`λ p ⇒ `λ m ⇒ `λ n ⇒ `if0 ` m then ` n else ` p · (`pred ` m) · ` n)
|
||||
|
||||
⊢plus : ε ⊢ plus ⦂ `ℕ ⟹ `ℕ ⟹ `ℕ
|
||||
⊢plus = `Y (`λ `λ `λ `if0 (` ⊢m) (` ⊢n) (` ⊢p · (`pred ` ⊢m) · ` ⊢n))
|
||||
⊢plus : ε ⊢ plus ⦂ `ℕ ⇒ `ℕ ⇒ `ℕ
|
||||
⊢plus = (⊢Y (⊢λ (⊢λ (⊢λ (⊢if0 (Ax ⊢m) (Ax ⊢n) (Ax ⊢p · (⊢pred (Ax ⊢m)) · Ax ⊢n))))))
|
||||
where
|
||||
⊢p = S p≢n (S p≢m Z)
|
||||
⊢m = S m≢n Z
|
||||
|
@ -182,13 +179,13 @@ four = plus · two · two
|
|||
⊢four = ⊢plus · ⊢two · ⊢two
|
||||
|
||||
Ch : Type
|
||||
Ch = (`ℕ ⟹ `ℕ) ⟹ `ℕ ⟹ `ℕ
|
||||
Ch = (`ℕ ⇒ `ℕ) ⇒ `ℕ ⇒ `ℕ
|
||||
|
||||
twoCh : Term
|
||||
twoCh = `λ s ⇒ `λ z ⇒ (` s · (` s · ` z))
|
||||
|
||||
⊢twoCh : ε ⊢ twoCh ⦂ Ch
|
||||
⊢twoCh = `λ `λ ` ⊢s · (` ⊢s · ` ⊢z)
|
||||
⊢twoCh = (⊢λ (⊢λ (Ax ⊢s · (Ax ⊢s · Ax ⊢z))))
|
||||
where
|
||||
⊢s = S s≢z Z
|
||||
⊢z = Z
|
||||
|
@ -196,8 +193,8 @@ twoCh = `λ s ⇒ `λ z ⇒ (` s · (` s · ` z))
|
|||
plusCh : Term
|
||||
plusCh = `λ m ⇒ `λ n ⇒ `λ s ⇒ `λ z ⇒ ` m · ` s · (` n · ` s · ` z)
|
||||
|
||||
⊢plusCh : ε ⊢ plusCh ⦂ Ch ⟹ Ch ⟹ Ch
|
||||
⊢plusCh = `λ `λ `λ `λ ` ⊢m · ` ⊢s · (` ⊢n · ` ⊢s · ` ⊢z)
|
||||
⊢plusCh : ε ⊢ plusCh ⦂ Ch ⇒ Ch ⇒ Ch
|
||||
⊢plusCh = (⊢λ (⊢λ (⊢λ (⊢λ (Ax ⊢m · Ax ⊢s · (Ax ⊢n · Ax ⊢s · Ax ⊢z))))))
|
||||
where
|
||||
⊢m = S m≢z (S m≢s (S m≢n Z))
|
||||
⊢n = S n≢z (S n≢s Z)
|
||||
|
@ -207,8 +204,8 @@ plusCh = `λ m ⇒ `λ n ⇒ `λ s ⇒ `λ z ⇒ ` m · ` s · (` n · ` s · `
|
|||
fromCh : Term
|
||||
fromCh = `λ m ⇒ ` m · (`λ s ⇒ `suc ` s) · `zero
|
||||
|
||||
⊢fromCh : ε ⊢ fromCh ⦂ Ch ⟹ `ℕ
|
||||
⊢fromCh = `λ ` ⊢m · (`λ `suc ` ⊢s) · `zero
|
||||
⊢fromCh : ε ⊢ fromCh ⦂ Ch ⇒ `ℕ
|
||||
⊢fromCh = (⊢λ (Ax ⊢m · (⊢λ (⊢suc (Ax ⊢s))) · ⊢zero))
|
||||
where
|
||||
⊢m = Z
|
||||
⊢s = Z
|
||||
|
@ -221,63 +218,22 @@ fourCh = fromCh · (plusCh · twoCh · twoCh)
|
|||
\end{code}
|
||||
|
||||
|
||||
# Denotational semantics
|
||||
|
||||
\begin{code}
|
||||
⟦_⟧ᵀ : Type → Set
|
||||
⟦ `ℕ ⟧ᵀ = ℕ
|
||||
⟦ A ⟹ B ⟧ᵀ = ⟦ A ⟧ᵀ → ⟦ B ⟧ᵀ
|
||||
|
||||
⟦_⟧ᴱ : Env → Set
|
||||
⟦ ε ⟧ᴱ = ⊤
|
||||
⟦ Γ , x ⦂ A ⟧ᴱ = ⟦ Γ ⟧ᴱ × ⟦ A ⟧ᵀ
|
||||
|
||||
⟦_⟧ⱽ : ∀ {Γ x A} → Γ ∋ x ⦂ A → ⟦ Γ ⟧ᴱ → ⟦ A ⟧ᵀ
|
||||
⟦ Z ⟧ⱽ ⟨ ρ , v ⟩ = v
|
||||
⟦ S _ x ⟧ⱽ ⟨ ρ , v ⟩ = ⟦ x ⟧ⱽ ρ
|
||||
|
||||
⟦_⟧ : ∀ {Γ M A} → Γ ⊢ M ⦂ A → ⟦ Γ ⟧ᴱ → ⟦ A ⟧ᵀ
|
||||
⟦ ` x ⟧ ρ = ⟦ x ⟧ⱽ ρ
|
||||
⟦ `λ ⊢N ⟧ ρ = λ{ v → ⟦ ⊢N ⟧ ⟨ ρ , v ⟩ }
|
||||
⟦ ⊢L · ⊢M ⟧ ρ = (⟦ ⊢L ⟧ ρ) (⟦ ⊢M ⟧ ρ)
|
||||
⟦ `zero ⟧ ρ = zero
|
||||
⟦ `suc ⊢M ⟧ ρ = suc (⟦ ⊢M ⟧ ρ)
|
||||
⟦ `pred ⊢M ⟧ ρ = pred (⟦ ⊢M ⟧ ρ)
|
||||
where
|
||||
pred : ℕ → ℕ
|
||||
pred zero = zero
|
||||
pred (suc n) = n
|
||||
⟦ `if0 ⊢L ⊢M ⊢N ⟧ ρ = if0 ⟦ ⊢L ⟧ ρ then ⟦ ⊢M ⟧ ρ else ⟦ ⊢N ⟧ ρ
|
||||
where
|
||||
if0_then_else_ : ∀ {A} → ℕ → A → A → A
|
||||
if0 zero then m else n = m
|
||||
if0 suc _ then m else n = n
|
||||
⟦ `Y ⊢M ⟧ ρ = {!!}
|
||||
|
||||
-- _ : ⟦ ⊢four ⟧ tt ≡ 4
|
||||
-- _ = refl
|
||||
|
||||
_ : ⟦ ⊢fourCh ⟧ tt ≡ 4
|
||||
_ = refl
|
||||
\end{code}
|
||||
|
||||
|
||||
## Erasure
|
||||
|
||||
\begin{code}
|
||||
lookup : ∀ {Γ x A} → Γ ∋ x ⦂ A → Id
|
||||
lookup {Γ , x ⦂ A} Z = x
|
||||
lookup {Γ , x ⦂ A} (S _ k) = lookup {Γ} k
|
||||
lookup {Γ , x ⦂ A} Z = x
|
||||
lookup {Γ , x ⦂ A} (S _ ⊢w) = lookup {Γ} ⊢w
|
||||
|
||||
erase : ∀ {Γ M A} → Γ ⊢ M ⦂ A → Term
|
||||
erase (` k) = ` lookup k
|
||||
erase (`λ_ {x = x} ⊢N) = `λ x ⇒ erase ⊢N
|
||||
erase (Ax ⊢w) = ` lookup ⊢w
|
||||
erase (⊢λ {x = x} ⊢N) = `λ x ⇒ erase ⊢N
|
||||
erase (⊢L · ⊢M) = erase ⊢L · erase ⊢M
|
||||
erase (`zero) = `zero
|
||||
erase (`suc ⊢M) = `suc (erase ⊢M)
|
||||
erase (`pred ⊢M) = `pred (erase ⊢M)
|
||||
erase (`if0 ⊢L ⊢M ⊢N) = `if0 (erase ⊢L) then (erase ⊢M) else (erase ⊢N)
|
||||
erase (`Y ⊢M) = `Y (erase ⊢M)
|
||||
erase (⊢zero) = `zero
|
||||
erase (⊢suc ⊢M) = `suc (erase ⊢M)
|
||||
erase (⊢pred ⊢M) = `pred (erase ⊢M)
|
||||
erase (⊢if0 ⊢L ⊢M ⊢N) = `if0 (erase ⊢L) then (erase ⊢M) else (erase ⊢N)
|
||||
erase (⊢Y ⊢M) = `Y (erase ⊢M)
|
||||
\end{code}
|
||||
|
||||
### Properties of erasure
|
||||
|
@ -288,19 +244,19 @@ cong₃ : ∀ {A B C D : Set} (f : A → B → C → D) {s t u v x y} →
|
|||
cong₃ f refl refl refl = refl
|
||||
|
||||
lookup-lemma : ∀ {Γ x A} → (⊢x : Γ ∋ x ⦂ A) → lookup ⊢x ≡ x
|
||||
lookup-lemma Z = refl
|
||||
lookup-lemma (S _ k) = lookup-lemma k
|
||||
lookup-lemma Z = refl
|
||||
lookup-lemma (S _ ⊢w) = lookup-lemma ⊢w
|
||||
|
||||
erase-lemma : ∀ {Γ M A} → (⊢M : Γ ⊢ M ⦂ A) → erase ⊢M ≡ M
|
||||
erase-lemma (` ⊢x) = cong `_ (lookup-lemma ⊢x)
|
||||
erase-lemma (`λ_ {x = x} ⊢N) = cong (`λ x ⇒_) (erase-lemma ⊢N)
|
||||
erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (erase-lemma ⊢M)
|
||||
erase-lemma (`zero) = refl
|
||||
erase-lemma (`suc ⊢M) = cong `suc_ (erase-lemma ⊢M)
|
||||
erase-lemma (`pred ⊢M) = cong `pred_ (erase-lemma ⊢M)
|
||||
erase-lemma (`if0 ⊢L ⊢M ⊢N) = cong₃ `if0_then_else_
|
||||
(erase-lemma ⊢L) (erase-lemma ⊢M) (erase-lemma ⊢N)
|
||||
erase-lemma (`Y ⊢M) = cong `Y_ (erase-lemma ⊢M)
|
||||
erase-lemma (Ax ⊢x) = cong `_ (lookup-lemma ⊢x)
|
||||
erase-lemma (⊢λ {x = x} ⊢N) = cong (`λ x ⇒_) (erase-lemma ⊢N)
|
||||
erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (erase-lemma ⊢M)
|
||||
erase-lemma (⊢zero) = refl
|
||||
erase-lemma (⊢suc ⊢M) = cong `suc_ (erase-lemma ⊢M)
|
||||
erase-lemma (⊢pred ⊢M) = cong `pred_ (erase-lemma ⊢M)
|
||||
erase-lemma (⊢if0 ⊢L ⊢M ⊢N) = cong₃ `if0_then_else_
|
||||
(erase-lemma ⊢L) (erase-lemma ⊢M) (erase-lemma ⊢N)
|
||||
erase-lemma (⊢Y ⊢M) = cong `Y_ (erase-lemma ⊢M)
|
||||
\end{code}
|
||||
|
||||
|
||||
|
@ -374,6 +330,23 @@ _[_:=_] : Term → Id → Term → Term
|
|||
N [ x := M ] = subst (free M ++ (free N \\ x)) (∅ , x ↦ M) N
|
||||
\end{code}
|
||||
|
||||
### Testing substitution
|
||||
|
||||
\begin{code}
|
||||
_ : (` s · ` s · ` z) [ z := `zero ] ≡ (` s · ` s · `zero)
|
||||
_ = refl
|
||||
|
||||
_ : (` s · ` s · ` z) [ s := (`λ m ⇒ `suc ` m) ] [ z := `zero ]
|
||||
≡ ((`λ p ⇒ `suc ` p) · (`λ p ⇒ `suc ` p) · `zero)
|
||||
_ = refl
|
||||
|
||||
_ : (`λ m ⇒ ` m · ` n) [ n := ` m ] ≡ (`λ n ⇒ ` n · ` m)
|
||||
_ = refl
|
||||
|
||||
_ : subst [ m , n ] (∅ , m ↦ ` n , n ↦ ` m) (` m · ` n) ≡ (` n · ` m)
|
||||
_ = refl
|
||||
\end{code}
|
||||
|
||||
|
||||
## Values
|
||||
|
||||
|
@ -412,7 +385,7 @@ data _⟶_ : Term → Term → Set where
|
|||
----------------
|
||||
→ V · M ⟶ V · M′
|
||||
|
||||
β-⟹ : ∀ {x N V}
|
||||
β-⇒ : ∀ {x N V}
|
||||
→ Value V
|
||||
------------------------------
|
||||
→ (`λ x ⇒ N) · V ⟶ N [ x := V ]
|
||||
|
@ -503,7 +476,7 @@ data Canonical : Term → Type → Set where
|
|||
Fun : ∀ {x N A B}
|
||||
→ ε , x ⦂ A ⊢ N ⦂ B
|
||||
------------------------------
|
||||
→ Canonical (`λ x ⇒ N) (A ⟹ B)
|
||||
→ Canonical (`λ x ⇒ N) (A ⇒ B)
|
||||
\end{code}
|
||||
|
||||
## Canonical forms lemma
|
||||
|
@ -516,9 +489,9 @@ canonical : ∀ {V A}
|
|||
→ Value V
|
||||
-------------
|
||||
→ Canonical V A
|
||||
canonical `zero Zero = Zero
|
||||
canonical (`suc ⊢V) (Suc VV) = Suc (canonical ⊢V VV)
|
||||
canonical (`λ ⊢N) Fun = Fun ⊢N
|
||||
canonical ⊢zero Zero = Zero
|
||||
canonical (⊢suc ⊢V) (Suc VV) = Suc (canonical ⊢V VV)
|
||||
canonical (⊢λ ⊢N) Fun = Fun ⊢N
|
||||
\end{code}
|
||||
|
||||
Every canonical form has a type and a value.
|
||||
|
@ -528,9 +501,9 @@ type : ∀ {V A}
|
|||
→ Canonical V A
|
||||
-------------
|
||||
→ ε ⊢ V ⦂ A
|
||||
type Zero = `zero
|
||||
type (Suc CV) = `suc (type CV)
|
||||
type (Fun ⊢N) = `λ ⊢N
|
||||
type Zero = ⊢zero
|
||||
type (Suc CV) = ⊢suc (type CV)
|
||||
type (Fun ⊢N) = ⊢λ ⊢N
|
||||
|
||||
value : ∀ {V A}
|
||||
→ Canonical V A
|
||||
|
@ -555,26 +528,26 @@ data Progress (M : Term) (A : Type) : Set where
|
|||
→ Progress M A
|
||||
|
||||
progress : ∀ {M A} → ε ⊢ M ⦂ A → Progress M A
|
||||
progress (` ())
|
||||
progress (`λ ⊢N) = done (Fun ⊢N)
|
||||
progress (Ax ())
|
||||
progress (⊢λ ⊢N) = done (Fun ⊢N)
|
||||
progress (⊢L · ⊢M) with progress ⊢L
|
||||
... | step L⟶L′ = step (ξ-·₁ L⟶L′)
|
||||
... | done (Fun _) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-·₂ Fun M⟶M′)
|
||||
... | done CM = step (β-⟹ (value CM))
|
||||
progress `zero = done Zero
|
||||
progress (`suc ⊢M) with progress ⊢M
|
||||
... | done CM = step (β-⇒ (value CM))
|
||||
progress ⊢zero = done Zero
|
||||
progress (⊢suc ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-suc M⟶M′)
|
||||
... | done CM = done (Suc CM)
|
||||
progress (`pred ⊢M) with progress ⊢M
|
||||
progress (⊢pred ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-pred M⟶M′)
|
||||
... | done Zero = step β-pred-zero
|
||||
... | done (Suc CM) = step (β-pred-suc (value CM))
|
||||
progress (`if0 ⊢L ⊢M ⊢N) with progress ⊢L
|
||||
progress (⊢if0 ⊢L ⊢M ⊢N) with progress ⊢L
|
||||
... | step L⟶L′ = step (ξ-if0 L⟶L′)
|
||||
... | done Zero = step β-if0-zero
|
||||
... | done (Suc CM) = step (β-if0-suc (value CM))
|
||||
progress (`Y ⊢M) with progress ⊢M
|
||||
progress (⊢Y ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-Y M⟶M′)
|
||||
... | done (Fun _) = step (β-Y Fun refl)
|
||||
\end{code}
|
||||
|
@ -594,23 +567,23 @@ dom-lemma Z = here
|
|||
dom-lemma (S x≢y ⊢y) = there (dom-lemma ⊢y)
|
||||
|
||||
free-lemma : ∀ {Γ M A} → Γ ⊢ M ⦂ A → free M ⊆ dom Γ
|
||||
free-lemma (` ⊢x) w∈ with w∈
|
||||
... | here = dom-lemma ⊢x
|
||||
... | there ()
|
||||
free-lemma {Γ} (`λ_ {N = N} ⊢N) = ∷-to-\\ (free-lemma ⊢N)
|
||||
free-lemma (Ax ⊢x) w∈ with w∈
|
||||
... | here = dom-lemma ⊢x
|
||||
... | there ()
|
||||
free-lemma {Γ} (⊢λ {N = N} ⊢N) = ∷-to-\\ (free-lemma ⊢N)
|
||||
free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
||||
... | inj₁ ∈L = free-lemma ⊢L ∈L
|
||||
... | inj₂ ∈M = free-lemma ⊢M ∈M
|
||||
free-lemma `zero ()
|
||||
free-lemma (`suc ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
free-lemma (`pred ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
free-lemma (`if0 ⊢L ⊢M ⊢N) w∈
|
||||
free-lemma ⊢zero ()
|
||||
free-lemma (⊢suc ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
free-lemma (⊢pred ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
free-lemma (⊢if0 ⊢L ⊢M ⊢N) w∈
|
||||
with ++-to-⊎ w∈
|
||||
... | inj₁ ∈L = free-lemma ⊢L ∈L
|
||||
... | inj₂ ∈MN with ++-to-⊎ ∈MN
|
||||
... | inj₁ ∈M = free-lemma ⊢M ∈M
|
||||
... | inj₂ ∈N = free-lemma ⊢N ∈N
|
||||
free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
free-lemma (⊢Y ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
\end{code}
|
||||
|
||||
### Renaming
|
||||
|
@ -620,11 +593,11 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
|
|||
→ (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A)
|
||||
--------------------------------------------------
|
||||
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A)
|
||||
⊢rename ⊢σ ⊆xs (` ⊢x) = ` ⊢σ ∈xs ⊢x
|
||||
⊢rename ⊢σ ⊆xs (Ax ⊢x) = Ax (⊢σ ∈xs ⊢x)
|
||||
where
|
||||
∈xs = ⊆xs here
|
||||
⊢rename {Γ} {Δ} {xs} ⊢σ ⊆xs (`λ_ {x = x} {N = N} {A = A} ⊢N)
|
||||
= `λ (⊢rename {Γ′} {Δ′} {xs′} ⊢σ′ ⊆xs′ ⊢N)
|
||||
⊢rename {Γ} {Δ} {xs} ⊢σ ⊆xs (⊢λ {x = x} {N = N} {A = A} ⊢N)
|
||||
= ⊢λ (⊢rename {Γ′} {Δ′} {xs′} ⊢σ′ ⊆xs′ ⊢N)
|
||||
where
|
||||
Γ′ = Γ , x ⦂ A
|
||||
Δ′ = Δ , x ⦂ A
|
||||
|
@ -642,16 +615,16 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
|
|||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
|
||||
⊢rename ⊢σ ⊆xs (`zero) = `zero
|
||||
⊢rename ⊢σ ⊆xs (`suc ⊢M) = `suc (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
⊢rename ⊢σ ⊆xs (`pred ⊢M) = `pred (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
⊢rename ⊢σ ⊆xs (`if0 {L = L} ⊢L ⊢M ⊢N)
|
||||
= `if0 (⊢rename ⊢σ L⊆ ⊢L) (⊢rename ⊢σ M⊆ ⊢M) (⊢rename ⊢σ N⊆ ⊢N)
|
||||
⊢rename ⊢σ ⊆xs (⊢zero) = ⊢zero
|
||||
⊢rename ⊢σ ⊆xs (⊢suc ⊢M) = ⊢suc (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
⊢rename ⊢σ ⊆xs (⊢pred ⊢M) = ⊢pred (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
⊢rename ⊢σ ⊆xs (⊢if0 {L = L} ⊢L ⊢M ⊢N)
|
||||
= ⊢if0 (⊢rename ⊢σ L⊆ ⊢L) (⊢rename ⊢σ M⊆ ⊢M) (⊢rename ⊢σ N⊆ ⊢N)
|
||||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
⊢rename ⊢σ ⊆xs (`Y ⊢M) = `Y (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
⊢rename ⊢σ ⊆xs (⊢Y ⊢M) = ⊢Y (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
|
||||
\end{code}
|
||||
|
||||
|
@ -664,10 +637,10 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
|
|||
→ (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ⊢ ρ x ⦂ A)
|
||||
-------------------------------------------------------------
|
||||
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ subst ys ρ M ⦂ A)
|
||||
⊢subst Σ ⊢ρ ⊆xs (` ⊢x)
|
||||
⊢subst Σ ⊢ρ ⊆xs (Ax ⊢x)
|
||||
= ⊢ρ (⊆xs here) ⊢x
|
||||
⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (`λ_ {x = x} {N = N} {A = A} ⊢N)
|
||||
= `λ_ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs′} {ys′} {ρ′} Σ′ ⊢ρ′ ⊆xs′ ⊢N)
|
||||
⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (⊢λ {x = x} {N = N} {A = A} ⊢N)
|
||||
= ⊢λ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs′} {ys′} {ρ′} Σ′ ⊢ρ′ ⊆xs′ ⊢N)
|
||||
where
|
||||
y = fresh ys
|
||||
Γ′ = Γ , x ⦂ A
|
||||
|
@ -689,7 +662,7 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
|
|||
|
||||
⊢ρ′ : ∀ {w C} → w ∈ xs′ → Γ′ ∋ w ⦂ C → Δ′ ⊢ ρ′ w ⦂ C
|
||||
⊢ρ′ {w} _ Z with w ≟ x
|
||||
... | yes _ = ` Z
|
||||
... | yes _ = Ax Z
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ′ {w} w∈′ (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
|
@ -702,16 +675,16 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
|
|||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
|
||||
⊢subst Σ ⊢ρ ⊆xs `zero = `zero
|
||||
⊢subst Σ ⊢ρ ⊆xs (`suc ⊢M) = `suc (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
⊢subst Σ ⊢ρ ⊆xs (`pred ⊢M) = `pred (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
⊢subst Σ ⊢ρ ⊆xs (`if0 {L = L} ⊢L ⊢M ⊢N)
|
||||
= `if0 (⊢subst Σ ⊢ρ L⊆ ⊢L) (⊢subst Σ ⊢ρ M⊆ ⊢M) (⊢subst Σ ⊢ρ N⊆ ⊢N)
|
||||
⊢subst Σ ⊢ρ ⊆xs ⊢zero = ⊢zero
|
||||
⊢subst Σ ⊢ρ ⊆xs (⊢suc ⊢M) = ⊢suc (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
⊢subst Σ ⊢ρ ⊆xs (⊢pred ⊢M) = ⊢pred (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
⊢subst Σ ⊢ρ ⊆xs (⊢if0 {L = L} ⊢L ⊢M ⊢N)
|
||||
= ⊢if0 (⊢subst Σ ⊢ρ L⊆ ⊢L) (⊢subst Σ ⊢ρ M⊆ ⊢M) (⊢subst Σ ⊢ρ N⊆ ⊢N)
|
||||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
⊢subst Σ ⊢ρ ⊆xs (`Y ⊢M) = `Y (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
⊢subst Σ ⊢ρ ⊆xs (⊢Y ⊢M) = ⊢Y (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
|
||||
⊢substitution : ∀ {Γ x A N B M} →
|
||||
Γ , x ⦂ A ⊢ N ⦂ B →
|
||||
|
@ -737,7 +710,7 @@ free-lemma (`Y ⊢M) w∈ = free-lemma ⊢M w∈
|
|||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ {w} w∈ (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = ` ⊢w
|
||||
... | no _ = Ax ⊢w
|
||||
|
||||
⊆xs : free N ⊆ xs
|
||||
⊆xs x∈ = x∈
|
||||
|
@ -751,22 +724,21 @@ preservation : ∀ {Γ M N A}
|
|||
→ M ⟶ N
|
||||
---------
|
||||
→ Γ ⊢ N ⦂ A
|
||||
preservation (` ⊢x) ()
|
||||
preservation (`λ ⊢N) ()
|
||||
preservation (⊢L · ⊢M) (ξ-·₁ L⟶L′) = preservation ⊢L L⟶L′ · ⊢M
|
||||
preservation (⊢V · ⊢M) (ξ-·₂ _ M⟶M′) = ⊢V · preservation ⊢M M⟶M′
|
||||
preservation ((`λ ⊢N) · ⊢W) (β-⟹ _) = ⊢substitution ⊢N ⊢W
|
||||
preservation (`zero) ()
|
||||
preservation (`suc ⊢M) (ξ-suc M⟶M′) = `suc (preservation ⊢M M⟶M′)
|
||||
preservation (`pred ⊢M) (ξ-pred M⟶M′) = `pred (preservation ⊢M M⟶M′)
|
||||
preservation (`pred `zero) (β-pred-zero) = `zero
|
||||
preservation (`pred (`suc ⊢M)) (β-pred-suc _) = ⊢M
|
||||
preservation (`if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶L′) = `if0 (preservation ⊢L L⟶L′) ⊢M ⊢N
|
||||
preservation (`if0 `zero ⊢M ⊢N) β-if0-zero = ⊢M
|
||||
preservation (`if0 (`suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N
|
||||
preservation (`Y ⊢M) (ξ-Y M⟶M′) = `Y (preservation ⊢M M⟶M′)
|
||||
preservation (`Y (`λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (`Y (`λ ⊢N))
|
||||
preservation (Ax ⊢x) ()
|
||||
preservation (⊢λ ⊢N) ()
|
||||
preservation (⊢L · ⊢M) (ξ-·₁ L⟶) = preservation ⊢L L⟶ · ⊢M
|
||||
preservation (⊢V · ⊢M) (ξ-·₂ _ M⟶) = ⊢V · preservation ⊢M M⟶
|
||||
preservation ((⊢λ ⊢N) · ⊢W) (β-⇒ _) = ⊢substitution ⊢N ⊢W
|
||||
preservation (⊢zero) ()
|
||||
preservation (⊢suc ⊢M) (ξ-suc M⟶) = ⊢suc (preservation ⊢M M⟶)
|
||||
preservation (⊢pred ⊢M) (ξ-pred M⟶) = ⊢pred (preservation ⊢M M⟶)
|
||||
preservation (⊢pred ⊢zero) (β-pred-zero) = ⊢zero
|
||||
preservation (⊢pred (⊢suc ⊢M)) (β-pred-suc _) = ⊢M
|
||||
preservation (⊢if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶) = ⊢if0 (preservation ⊢L L⟶) ⊢M ⊢N
|
||||
preservation (⊢if0 ⊢zero ⊢M ⊢N) β-if0-zero = ⊢M
|
||||
preservation (⊢if0 (⊢suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N
|
||||
preservation (⊢Y ⊢M) (ξ-Y M⟶) = ⊢Y (preservation ⊢M M⟶)
|
||||
preservation (⊢Y (⊢λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (⊢Y (⊢λ ⊢N))
|
||||
\end{code}
|
||||
|
||||
|
||||
|
||||
|
|
788
src/extra/Typed-string.lagda
Normal file
788
src/extra/Typed-string.lagda
Normal file
|
@ -0,0 +1,788 @@
|
|||
---
|
||||
title : "Typed: Typed Lambda term representation"
|
||||
layout : page
|
||||
permalink : /Typed
|
||||
---
|
||||
|
||||
|
||||
## Imports
|
||||
|
||||
\begin{code}
|
||||
module Typed where
|
||||
\end{code}
|
||||
|
||||
\begin{code}
|
||||
import Relation.Binary.PropositionalEquality as Eq
|
||||
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.List using (List; []; _∷_; _++_; map; foldr; filter)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_; _≤_; _⊔_)
|
||||
open import Data.Nat.Properties using (≤-refl; ≤-trans; m≤m⊔n; n≤m⊔n; 1+n≰n)
|
||||
open import Data.String using (String)
|
||||
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Function using (_∘_)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Relation.Nullary.Negation using (¬?)
|
||||
open import Collections
|
||||
|
||||
import Data.Nat as Nat
|
||||
import Data.String as String
|
||||
|
||||
pattern [_] x = x ∷ []
|
||||
pattern [_,_] x y = x ∷ y ∷ []
|
||||
pattern [_,_,_] x y z = x ∷ y ∷ z ∷ []
|
||||
\end{code}
|
||||
|
||||
|
||||
## Identifiers
|
||||
|
||||
\begin{code}
|
||||
data Id : Set where
|
||||
id : String → ℕ → Id
|
||||
|
||||
_≟_ : ∀ (x y : Id) → Dec (x ≡ y)
|
||||
id s m ≟ id t n with s String.≟ t | m Nat.≟ n
|
||||
... | yes refl | yes refl = yes refl
|
||||
... | yes refl | no m≢n = no (λ {refl → m≢n refl})
|
||||
... | no s≢t | _ = no (λ {refl → s≢t refl})
|
||||
|
||||
{-
|
||||
_≠_ : ∀ (x y : Id) → x ≢ y
|
||||
x ≠ y with x ≟ y
|
||||
... | no x≢y = x≢y
|
||||
... | yes _ = impossible
|
||||
where postulate impossible : _
|
||||
-}
|
||||
\end{code}
|
||||
|
||||
|
||||
## Syntax
|
||||
|
||||
\begin{code}
|
||||
infixr 5 _⇒_
|
||||
infixl 5 _,_⦂_
|
||||
infix 4 _∋_⦂_
|
||||
infix 4 _⊢_⦂_
|
||||
infix 5 `λ_⇒_
|
||||
infixl 6 `if0_then_else_
|
||||
infix 7 `suc_ `pred_ `Y_
|
||||
infixl 8 _·_
|
||||
infix 9 `_
|
||||
|
||||
data Type : Set where
|
||||
`ℕ : Type
|
||||
_⇒_ : Type → Type → Type
|
||||
|
||||
data Env : Set where
|
||||
ε : Env
|
||||
_,_⦂_ : Env → Id → Type → Env
|
||||
|
||||
data Term : Set where
|
||||
`_ : Id → Term
|
||||
`λ_⇒_ : Id → Term → Term
|
||||
_·_ : Term → Term → Term
|
||||
`zero : Term
|
||||
`suc_ : Term → Term
|
||||
`pred_ : Term → Term
|
||||
`if0_then_else_ : Term → Term → Term → Term
|
||||
`Y_ : Term → Term
|
||||
|
||||
data _∋_⦂_ : Env → Id → Type → Set where
|
||||
|
||||
Z : ∀ {Γ A x}
|
||||
-----------------
|
||||
→ Γ , x ⦂ A ∋ x ⦂ A
|
||||
|
||||
S : ∀ {Γ A B x w}
|
||||
→ w ≢ x
|
||||
→ Γ ∋ w ⦂ B
|
||||
-----------------
|
||||
→ Γ , x ⦂ A ∋ w ⦂ B
|
||||
|
||||
data _⊢_⦂_ : Env → Term → Type → Set where
|
||||
|
||||
Ax : ∀ {Γ A x}
|
||||
→ Γ ∋ x ⦂ A
|
||||
---------------------
|
||||
→ Γ ⊢ ` x ⦂ A
|
||||
|
||||
⊢λ : ∀ {Γ x N A B}
|
||||
→ Γ , x ⦂ A ⊢ N ⦂ B
|
||||
------------------------
|
||||
→ Γ ⊢ (`λ x ⇒ N) ⦂ A ⇒ B
|
||||
|
||||
_·_ : ∀ {Γ L M A B}
|
||||
→ Γ ⊢ L ⦂ A ⇒ B
|
||||
→ Γ ⊢ M ⦂ A
|
||||
--------------
|
||||
→ Γ ⊢ L · M ⦂ B
|
||||
|
||||
⊢zero : ∀ {Γ}
|
||||
--------------
|
||||
→ Γ ⊢ `zero ⦂ `ℕ
|
||||
|
||||
⊢suc : ∀ {Γ M}
|
||||
→ Γ ⊢ M ⦂ `ℕ
|
||||
---------------
|
||||
→ Γ ⊢ `suc M ⦂ `ℕ
|
||||
|
||||
⊢pred : ∀ {Γ M}
|
||||
→ Γ ⊢ M ⦂ `ℕ
|
||||
----------------
|
||||
→ Γ ⊢ `pred M ⦂ `ℕ
|
||||
|
||||
⊢if0 : ∀ {Γ L M N A}
|
||||
→ Γ ⊢ L ⦂ `ℕ
|
||||
→ Γ ⊢ M ⦂ A
|
||||
→ Γ ⊢ N ⦂ A
|
||||
----------------------------
|
||||
→ Γ ⊢ `if0 L then M else N ⦂ A
|
||||
|
||||
⊢Y : ∀ {Γ M A}
|
||||
→ Γ ⊢ M ⦂ A ⇒ A
|
||||
---------------
|
||||
→ Γ ⊢ `Y M ⦂ A
|
||||
\end{code}
|
||||
|
||||
## Test examples
|
||||
|
||||
\begin{code}
|
||||
m n s z : Id
|
||||
p = id "p" 0 -- 0
|
||||
m = id "m" 0 -- 1
|
||||
n = id "n" 0 -- 2
|
||||
s = id "s" 0 -- 3
|
||||
z = id "z" 0 -- 4
|
||||
|
||||
s≢z : s ≢ z
|
||||
s≢z ()
|
||||
|
||||
n≢z : n ≢ z
|
||||
n≢z ()
|
||||
|
||||
n≢s : n ≢ s
|
||||
n≢s ()
|
||||
|
||||
m≢z : m ≢ z
|
||||
m≢z ()
|
||||
|
||||
m≢s : m ≢ s
|
||||
m≢s ()
|
||||
|
||||
m≢n : m ≢ n
|
||||
m≢n ()
|
||||
|
||||
p≢n : p ≢ n
|
||||
p≢n ()
|
||||
|
||||
p≢m : p ≢ m
|
||||
p≢m ()
|
||||
|
||||
two : Term
|
||||
two = `suc `suc `zero
|
||||
|
||||
⊢two : ε ⊢ two ⦂ `ℕ
|
||||
⊢two = (⊢suc (⊢suc ⊢zero))
|
||||
|
||||
plus : Term
|
||||
plus = `Y (`λ p ⇒ `λ m ⇒ `λ n ⇒ `if0 ` m then ` n else ` p · (`pred ` m) · ` n)
|
||||
|
||||
⊢plus : ε ⊢ plus ⦂ `ℕ ⇒ `ℕ ⇒ `ℕ
|
||||
⊢plus = (⊢Y (⊢λ (⊢λ (⊢λ (⊢if0 (Ax ⊢m) (Ax ⊢n) (Ax ⊢p · (⊢pred (Ax ⊢m)) · Ax ⊢n))))))
|
||||
where
|
||||
⊢p = S p≢n (S p≢m Z)
|
||||
⊢m = S m≢n Z
|
||||
⊢n = Z
|
||||
|
||||
four : Term
|
||||
four = plus · two · two
|
||||
|
||||
⊢four : ε ⊢ four ⦂ `ℕ
|
||||
⊢four = ⊢plus · ⊢two · ⊢two
|
||||
|
||||
Ch : Type
|
||||
Ch = (`ℕ ⇒ `ℕ) ⇒ `ℕ ⇒ `ℕ
|
||||
|
||||
twoCh : Term
|
||||
twoCh = `λ s ⇒ `λ z ⇒ (` s · (` s · ` z))
|
||||
|
||||
⊢twoCh : ε ⊢ twoCh ⦂ Ch
|
||||
⊢twoCh = (⊢λ (⊢λ (Ax ⊢s · (Ax ⊢s · Ax ⊢z))))
|
||||
where
|
||||
⊢s = S s≢z Z
|
||||
⊢z = Z
|
||||
|
||||
plusCh : Term
|
||||
plusCh = `λ m ⇒ `λ n ⇒ `λ s ⇒ `λ z ⇒ ` m · ` s · (` n · ` s · ` z)
|
||||
|
||||
⊢plusCh : ε ⊢ plusCh ⦂ Ch ⇒ Ch ⇒ Ch
|
||||
⊢plusCh = (⊢λ (⊢λ (⊢λ (⊢λ (Ax ⊢m · Ax ⊢s · (Ax ⊢n · Ax ⊢s · Ax ⊢z))))))
|
||||
where
|
||||
⊢m = S m≢z (S m≢s (S m≢n Z))
|
||||
⊢n = S n≢z (S n≢s Z)
|
||||
⊢s = S s≢z Z
|
||||
⊢z = Z
|
||||
|
||||
fromCh : Term
|
||||
fromCh = `λ m ⇒ ` m · (`λ s ⇒ `suc ` s) · `zero
|
||||
|
||||
⊢fromCh : ε ⊢ fromCh ⦂ Ch ⇒ `ℕ
|
||||
⊢fromCh = (⊢λ (Ax ⊢m · (⊢λ (⊢suc (Ax ⊢s))) · ⊢zero))
|
||||
where
|
||||
⊢m = Z
|
||||
⊢s = Z
|
||||
|
||||
fourCh : Term
|
||||
fourCh = fromCh · (plusCh · twoCh · twoCh)
|
||||
|
||||
⊢fourCh : ε ⊢ fourCh ⦂ `ℕ
|
||||
⊢fourCh = ⊢fromCh · (⊢plusCh · ⊢twoCh · ⊢twoCh)
|
||||
\end{code}
|
||||
|
||||
|
||||
## Erasure
|
||||
|
||||
\begin{code}
|
||||
lookup : ∀ {Γ x A} → Γ ∋ x ⦂ A → Id
|
||||
lookup {Γ , x ⦂ A} Z = x
|
||||
lookup {Γ , x ⦂ A} (S _ ⊢w) = lookup {Γ} ⊢w
|
||||
|
||||
erase : ∀ {Γ M A} → Γ ⊢ M ⦂ A → Term
|
||||
erase (Ax ⊢w) = ` lookup ⊢w
|
||||
erase (⊢λ {x = x} ⊢N) = `λ x ⇒ erase ⊢N
|
||||
erase (⊢L · ⊢M) = erase ⊢L · erase ⊢M
|
||||
erase (⊢zero) = `zero
|
||||
erase (⊢suc ⊢M) = `suc (erase ⊢M)
|
||||
erase (⊢pred ⊢M) = `pred (erase ⊢M)
|
||||
erase (⊢if0 ⊢L ⊢M ⊢N) = `if0 (erase ⊢L) then (erase ⊢M) else (erase ⊢N)
|
||||
erase (⊢Y ⊢M) = `Y (erase ⊢M)
|
||||
\end{code}
|
||||
|
||||
### Properties of erasure
|
||||
|
||||
\begin{code}
|
||||
cong₃ : ∀ {A B C D : Set} (f : A → B → C → D) {s t u v x y} →
|
||||
s ≡ t → u ≡ v → x ≡ y → f s u x ≡ f t v y
|
||||
cong₃ f refl refl refl = refl
|
||||
|
||||
lookup-lemma : ∀ {Γ x A} → (⊢x : Γ ∋ x ⦂ A) → lookup ⊢x ≡ x
|
||||
lookup-lemma Z = refl
|
||||
lookup-lemma (S _ ⊢w) = lookup-lemma ⊢w
|
||||
|
||||
erase-lemma : ∀ {Γ M A} → (⊢M : Γ ⊢ M ⦂ A) → erase ⊢M ≡ M
|
||||
erase-lemma (Ax ⊢x) = cong `_ (lookup-lemma ⊢x)
|
||||
erase-lemma (⊢λ {x = x} ⊢N) = cong (`λ x ⇒_) (erase-lemma ⊢N)
|
||||
erase-lemma (⊢L · ⊢M) = cong₂ _·_ (erase-lemma ⊢L) (erase-lemma ⊢M)
|
||||
erase-lemma (⊢zero) = refl
|
||||
erase-lemma (⊢suc ⊢M) = cong `suc_ (erase-lemma ⊢M)
|
||||
erase-lemma (⊢pred ⊢M) = cong `pred_ (erase-lemma ⊢M)
|
||||
erase-lemma (⊢if0 ⊢L ⊢M ⊢N) = cong₃ `if0_then_else_
|
||||
(erase-lemma ⊢L) (erase-lemma ⊢M) (erase-lemma ⊢N)
|
||||
erase-lemma (⊢Y ⊢M) = cong `Y_ (erase-lemma ⊢M)
|
||||
\end{code}
|
||||
|
||||
|
||||
## Substitution
|
||||
|
||||
### Lists as sets
|
||||
|
||||
\begin{code}
|
||||
open Collections.CollectionDec (Id) (_≟_)
|
||||
\end{code}
|
||||
|
||||
### Free variables
|
||||
|
||||
\begin{code}
|
||||
free : Term → List Id
|
||||
free (` x) = [ x ]
|
||||
free (`λ x ⇒ N) = free N \\ x
|
||||
free (L · M) = free L ++ free M
|
||||
free (`zero) = []
|
||||
free (`suc M) = free M
|
||||
free (`pred M) = free M
|
||||
free (`if0 L then M else N) = free L ++ free M ++ free N
|
||||
free (`Y M) = free M
|
||||
\end{code}
|
||||
|
||||
### Fresh identifier
|
||||
|
||||
\begin{code}
|
||||
bump : String → Id → ℕ
|
||||
bump s (id t n) with s String.≟ t
|
||||
... | yes refl = suc n
|
||||
... | no _ = 0
|
||||
|
||||
next : String → List Id → ℕ
|
||||
next s = foldr _⊔_ 0 ∘ map (bump s)
|
||||
|
||||
⊔-lemma : ∀ {s w xs} → w ∈ xs → bump s w ≤ next s xs
|
||||
⊔-lemma {s} {_} {_ ∷ xs} here = m≤m⊔n _ (next s xs)
|
||||
⊔-lemma {s} {_} {_ ∷ xs} (there x∈) = ≤-trans (⊔-lemma x∈) (n≤m⊔n _ (next s xs))
|
||||
|
||||
fresh : Id → List Id → Id
|
||||
fresh (id s _) xs = id s (next s xs)
|
||||
|
||||
fresh-lemma : ∀ {w x xs} → w ∈ xs → w ≢ fresh x xs
|
||||
fresh-lemma {w @ (id t n)} {x @ (id s _)} {xs} w∈ w≢fr = {! (⊔-lemma {s} {w} {xs} w∈)!} -- with s String.≟ t
|
||||
{-
|
||||
... | yes refl = {! (⊔-lemma {s} {w} {xs} w∈)!}
|
||||
... | no s≢t = {!!}
|
||||
|
||||
|
||||
with s String.≟ t | fresh x xs
|
||||
... | yes refl | fr = {! (⊔-lemma {s} {w} {xs} w∈)!}
|
||||
... | no s≢t | _ = s≢t refl
|
||||
|
||||
|
||||
next-lemma : ∀ {x xs} → x ∈ xs → x ≢ next xs
|
||||
next-lemma x∈ refl = 1+n≰n (⊔-lemma x∈)
|
||||
\end{code}
|
||||
|
||||
### Identifier maps
|
||||
|
||||
\begin{code}
|
||||
∅ : Id → Term
|
||||
∅ x = ` x
|
||||
|
||||
infixl 5 _,_↦_
|
||||
|
||||
_,_↦_ : (Id → Term) → Id → Term → (Id → Term)
|
||||
(ρ , x ↦ M) w with w ≟ x
|
||||
... | yes _ = M
|
||||
... | no _ = ρ w
|
||||
\end{code}
|
||||
|
||||
### Substitution
|
||||
|
||||
\begin{code}
|
||||
subst : List Id → (Id → Term) → Term → Term
|
||||
subst ys ρ (` x) = ρ x
|
||||
subst ys ρ (`λ x ⇒ N) = `λ y ⇒ subst (y ∷ ys) (ρ , x ↦ ` y) N
|
||||
where
|
||||
y = fresh ys
|
||||
subst ys ρ (L · M) = subst ys ρ L · subst ys ρ M
|
||||
subst ys ρ (`zero) = `zero
|
||||
subst ys ρ (`suc M) = `suc (subst ys ρ M)
|
||||
subst ys ρ (`pred M) = `pred (subst ys ρ M)
|
||||
subst ys ρ (`if0 L then M else N)
|
||||
= `if0 (subst ys ρ L) then (subst ys ρ M) else (subst ys ρ N)
|
||||
subst ys ρ (`Y M) = `Y (subst ys ρ M)
|
||||
|
||||
_[_:=_] : Term → Id → Term → Term
|
||||
N [ x := M ] = subst (free M ++ (free N \\ x)) (∅ , x ↦ M) N
|
||||
\end{code}
|
||||
|
||||
### Testing substitution
|
||||
|
||||
\begin{code}
|
||||
_ : (` s · ` s · ` z) [ z := `zero ] ≡ (` s · ` s · `zero)
|
||||
_ = refl
|
||||
|
||||
_ : (` s · ` s · ` z) [ s := (`λ m ⇒ `suc ` m) ] [ z := `zero ]
|
||||
≡ ((`λ p ⇒ `suc ` p) · (`λ p ⇒ `suc ` p) · `zero)
|
||||
_ = refl
|
||||
|
||||
_ : (`λ m ⇒ ` m · ` n) [ n := ` m ] ≡ (`λ n ⇒ ` n · ` m)
|
||||
_ = refl
|
||||
|
||||
_ : subst [ m , n ] (∅ , m ↦ ` n , n ↦ ` m) (` m · ` n) ≡ (` n · ` m)
|
||||
_ = refl
|
||||
\end{code}
|
||||
|
||||
|
||||
## Values
|
||||
|
||||
\begin{code}
|
||||
data Value : Term → Set where
|
||||
|
||||
Zero :
|
||||
----------
|
||||
Value `zero
|
||||
|
||||
Suc : ∀ {V}
|
||||
→ Value V
|
||||
--------------
|
||||
→ Value (`suc V)
|
||||
|
||||
Fun : ∀ {x N}
|
||||
---------------
|
||||
→ Value (`λ x ⇒ N)
|
||||
\end{code}
|
||||
|
||||
## Reduction
|
||||
|
||||
\begin{code}
|
||||
infix 4 _⟶_
|
||||
|
||||
data _⟶_ : Term → Term → Set where
|
||||
|
||||
ξ-·₁ : ∀ {L L′ M}
|
||||
→ L ⟶ L′
|
||||
----------------
|
||||
→ L · M ⟶ L′ · M
|
||||
|
||||
ξ-·₂ : ∀ {V M M′}
|
||||
→ Value V
|
||||
→ M ⟶ M′
|
||||
----------------
|
||||
→ V · M ⟶ V · M′
|
||||
|
||||
β-⇒ : ∀ {x N V}
|
||||
→ Value V
|
||||
------------------------------
|
||||
→ (`λ x ⇒ N) · V ⟶ N [ x := V ]
|
||||
|
||||
ξ-suc : ∀ {M M′}
|
||||
→ M ⟶ M′
|
||||
------------------
|
||||
→ `suc M ⟶ `suc M′
|
||||
|
||||
ξ-pred : ∀ {M M′}
|
||||
→ M ⟶ M′
|
||||
--------------------
|
||||
→ `pred M ⟶ `pred M′
|
||||
|
||||
β-pred-zero :
|
||||
---------------------
|
||||
`pred `zero ⟶ `zero
|
||||
|
||||
β-pred-suc : ∀ {V}
|
||||
→ Value V
|
||||
--------------------
|
||||
→ `pred (`suc V) ⟶ V
|
||||
|
||||
ξ-if0 : ∀ {L L′ M N}
|
||||
→ L ⟶ L′
|
||||
----------------------------------------------
|
||||
→ `if0 L then M else N ⟶ `if0 L′ then M else N
|
||||
|
||||
β-if0-zero : ∀ {M N}
|
||||
------------------------------
|
||||
→ `if0 `zero then M else N ⟶ M
|
||||
|
||||
β-if0-suc : ∀ {V M N}
|
||||
→ Value V
|
||||
---------------------------------
|
||||
→ `if0 (`suc V) then M else N ⟶ N
|
||||
|
||||
ξ-Y : ∀ {M M′}
|
||||
→ M ⟶ M′
|
||||
--------------
|
||||
→ `Y M ⟶ `Y M′
|
||||
|
||||
β-Y : ∀ {V x N}
|
||||
→ Value V
|
||||
→ V ≡ `λ x ⇒ N
|
||||
------------------------
|
||||
→ `Y V ⟶ N [ x := `Y V ]
|
||||
\end{code}
|
||||
|
||||
## Reflexive and transitive closure
|
||||
|
||||
\begin{code}
|
||||
infix 2 _⟶*_
|
||||
infix 1 begin_
|
||||
infixr 2 _⟶⟨_⟩_
|
||||
infix 3 _∎
|
||||
|
||||
data _⟶*_ : Term → Term → Set where
|
||||
|
||||
_∎ : ∀ {M}
|
||||
-------------
|
||||
→ M ⟶* M
|
||||
|
||||
_⟶⟨_⟩_ : ∀ (L : Term) {M N}
|
||||
→ L ⟶ M
|
||||
→ M ⟶* N
|
||||
---------
|
||||
→ L ⟶* N
|
||||
|
||||
begin_ : ∀ {M N} → (M ⟶* N) → (M ⟶* N)
|
||||
begin M⟶*N = M⟶*N
|
||||
\end{code}
|
||||
|
||||
## Canonical forms
|
||||
|
||||
\begin{code}
|
||||
data Canonical : Term → Type → Set where
|
||||
|
||||
Zero :
|
||||
------------------
|
||||
Canonical `zero `ℕ
|
||||
|
||||
Suc : ∀ {V}
|
||||
→ Canonical V `ℕ
|
||||
---------------------
|
||||
→ Canonical (`suc V) `ℕ
|
||||
|
||||
Fun : ∀ {x N A B}
|
||||
→ ε , x ⦂ A ⊢ N ⦂ B
|
||||
------------------------------
|
||||
→ Canonical (`λ x ⇒ N) (A ⇒ B)
|
||||
\end{code}
|
||||
|
||||
## Canonical forms lemma
|
||||
|
||||
Every typed value is canonical.
|
||||
|
||||
\begin{code}
|
||||
canonical : ∀ {V A}
|
||||
→ ε ⊢ V ⦂ A
|
||||
→ Value V
|
||||
-------------
|
||||
→ Canonical V A
|
||||
canonical ⊢zero Zero = Zero
|
||||
canonical (⊢suc ⊢V) (Suc VV) = Suc (canonical ⊢V VV)
|
||||
canonical (⊢λ ⊢N) Fun = Fun ⊢N
|
||||
\end{code}
|
||||
|
||||
Every canonical form has a type and a value.
|
||||
|
||||
\begin{code}
|
||||
type : ∀ {V A}
|
||||
→ Canonical V A
|
||||
-------------
|
||||
→ ε ⊢ V ⦂ A
|
||||
type Zero = ⊢zero
|
||||
type (Suc CV) = ⊢suc (type CV)
|
||||
type (Fun ⊢N) = ⊢λ ⊢N
|
||||
|
||||
value : ∀ {V A}
|
||||
→ Canonical V A
|
||||
-------------
|
||||
→ Value V
|
||||
value Zero = Zero
|
||||
value (Suc CV) = Suc (value CV)
|
||||
value (Fun ⊢N) = Fun
|
||||
\end{code}
|
||||
|
||||
## Progress
|
||||
|
||||
\begin{code}
|
||||
data Progress (M : Term) (A : Type) : Set where
|
||||
step : ∀ {N}
|
||||
→ M ⟶ N
|
||||
----------
|
||||
→ Progress M A
|
||||
done :
|
||||
Canonical M A
|
||||
-------------
|
||||
→ Progress M A
|
||||
|
||||
progress : ∀ {M A} → ε ⊢ M ⦂ A → Progress M A
|
||||
progress (Ax ())
|
||||
progress (⊢λ ⊢N) = done (Fun ⊢N)
|
||||
progress (⊢L · ⊢M) with progress ⊢L
|
||||
... | step L⟶L′ = step (ξ-·₁ L⟶L′)
|
||||
... | done (Fun _) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-·₂ Fun M⟶M′)
|
||||
... | done CM = step (β-⇒ (value CM))
|
||||
progress ⊢zero = done Zero
|
||||
progress (⊢suc ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-suc M⟶M′)
|
||||
... | done CM = done (Suc CM)
|
||||
progress (⊢pred ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-pred M⟶M′)
|
||||
... | done Zero = step β-pred-zero
|
||||
... | done (Suc CM) = step (β-pred-suc (value CM))
|
||||
progress (⊢if0 ⊢L ⊢M ⊢N) with progress ⊢L
|
||||
... | step L⟶L′ = step (ξ-if0 L⟶L′)
|
||||
... | done Zero = step β-if0-zero
|
||||
... | done (Suc CM) = step (β-if0-suc (value CM))
|
||||
progress (⊢Y ⊢M) with progress ⊢M
|
||||
... | step M⟶M′ = step (ξ-Y M⟶M′)
|
||||
... | done (Fun _) = step (β-Y Fun refl)
|
||||
\end{code}
|
||||
|
||||
|
||||
## Preservation
|
||||
|
||||
### Domain of an environment
|
||||
|
||||
\begin{code}
|
||||
dom : Env → List Id
|
||||
dom ε = []
|
||||
dom (Γ , x ⦂ A) = x ∷ dom Γ
|
||||
|
||||
dom-lemma : ∀ {Γ y B} → Γ ∋ y ⦂ B → y ∈ dom Γ
|
||||
dom-lemma Z = here
|
||||
dom-lemma (S x≢y ⊢y) = there (dom-lemma ⊢y)
|
||||
|
||||
free-lemma : ∀ {Γ M A} → Γ ⊢ M ⦂ A → free M ⊆ dom Γ
|
||||
free-lemma (Ax ⊢x) w∈ with w∈
|
||||
... | here = dom-lemma ⊢x
|
||||
... | there ()
|
||||
free-lemma {Γ} (⊢λ {N = N} ⊢N) = ∷-to-\\ (free-lemma ⊢N)
|
||||
free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
||||
... | inj₁ ∈L = free-lemma ⊢L ∈L
|
||||
... | inj₂ ∈M = free-lemma ⊢M ∈M
|
||||
free-lemma ⊢zero ()
|
||||
free-lemma (⊢suc ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
free-lemma (⊢pred ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
free-lemma (⊢if0 ⊢L ⊢M ⊢N) w∈
|
||||
with ++-to-⊎ w∈
|
||||
... | inj₁ ∈L = free-lemma ⊢L ∈L
|
||||
... | inj₂ ∈MN with ++-to-⊎ ∈MN
|
||||
... | inj₁ ∈M = free-lemma ⊢M ∈M
|
||||
... | inj₂ ∈N = free-lemma ⊢N ∈N
|
||||
free-lemma (⊢Y ⊢M) w∈ = free-lemma ⊢M w∈
|
||||
\end{code}
|
||||
|
||||
### Renaming
|
||||
|
||||
\begin{code}
|
||||
⊢rename : ∀ {Γ Δ xs}
|
||||
→ (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ∋ x ⦂ A)
|
||||
--------------------------------------------------
|
||||
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ M ⦂ A)
|
||||
⊢rename ⊢σ ⊆xs (Ax ⊢x) = Ax (⊢σ ∈xs ⊢x)
|
||||
where
|
||||
∈xs = ⊆xs here
|
||||
⊢rename {Γ} {Δ} {xs} ⊢σ ⊆xs (⊢λ {x = x} {N = N} {A = A} ⊢N)
|
||||
= ⊢λ (⊢rename {Γ′} {Δ′} {xs′} ⊢σ′ ⊆xs′ ⊢N)
|
||||
where
|
||||
Γ′ = Γ , x ⦂ A
|
||||
Δ′ = Δ , x ⦂ A
|
||||
xs′ = x ∷ xs
|
||||
|
||||
⊢σ′ : ∀ {w B} → w ∈ xs′ → Γ′ ∋ w ⦂ B → Δ′ ∋ w ⦂ B
|
||||
⊢σ′ w∈′ Z = Z
|
||||
⊢σ′ w∈′ (S w≢ ⊢w) = S w≢ (⊢σ ∈w ⊢w)
|
||||
where
|
||||
∈w = there⁻¹ w∈′ w≢
|
||||
|
||||
⊆xs′ : free N ⊆ xs′
|
||||
⊆xs′ = \\-to-∷ ⊆xs
|
||||
⊢rename ⊢σ ⊆xs (⊢L · ⊢M) = ⊢rename ⊢σ L⊆ ⊢L · ⊢rename ⊢σ M⊆ ⊢M
|
||||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
|
||||
⊢rename ⊢σ ⊆xs (⊢zero) = ⊢zero
|
||||
⊢rename ⊢σ ⊆xs (⊢suc ⊢M) = ⊢suc (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
⊢rename ⊢σ ⊆xs (⊢pred ⊢M) = ⊢pred (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
⊢rename ⊢σ ⊆xs (⊢if0 {L = L} ⊢L ⊢M ⊢N)
|
||||
= ⊢if0 (⊢rename ⊢σ L⊆ ⊢L) (⊢rename ⊢σ M⊆ ⊢M) (⊢rename ⊢σ N⊆ ⊢N)
|
||||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
⊢rename ⊢σ ⊆xs (⊢Y ⊢M) = ⊢Y (⊢rename ⊢σ ⊆xs ⊢M)
|
||||
|
||||
\end{code}
|
||||
|
||||
|
||||
### Substitution preserves types
|
||||
|
||||
\begin{code}
|
||||
⊢subst : ∀ {Γ Δ xs ys ρ}
|
||||
→ (∀ {x} → x ∈ xs → free (ρ x) ⊆ ys)
|
||||
→ (∀ {x A} → x ∈ xs → Γ ∋ x ⦂ A → Δ ⊢ ρ x ⦂ A)
|
||||
-------------------------------------------------------------
|
||||
→ (∀ {M A} → free M ⊆ xs → Γ ⊢ M ⦂ A → Δ ⊢ subst ys ρ M ⦂ A)
|
||||
⊢subst Σ ⊢ρ ⊆xs (Ax ⊢x)
|
||||
= ⊢ρ (⊆xs here) ⊢x
|
||||
⊢subst {Γ} {Δ} {xs} {ys} {ρ} Σ ⊢ρ ⊆xs (⊢λ {x = x} {N = N} {A = A} ⊢N)
|
||||
= ⊢λ {x = y} {A = A} (⊢subst {Γ′} {Δ′} {xs′} {ys′} {ρ′} Σ′ ⊢ρ′ ⊆xs′ ⊢N)
|
||||
where
|
||||
y = fresh ys
|
||||
Γ′ = Γ , x ⦂ A
|
||||
Δ′ = Δ , y ⦂ A
|
||||
xs′ = x ∷ xs
|
||||
ys′ = y ∷ ys
|
||||
ρ′ = ρ , x ↦ ` y
|
||||
|
||||
Σ′ : ∀ {w} → w ∈ xs′ → free (ρ′ w) ⊆ ys′
|
||||
Σ′ {w} w∈′ with w ≟ x
|
||||
... | yes refl = ⊆-++₁
|
||||
... | no w≢ = ⊆-++₂ ∘ Σ (there⁻¹ w∈′ w≢)
|
||||
|
||||
⊆xs′ : free N ⊆ xs′
|
||||
⊆xs′ = \\-to-∷ ⊆xs
|
||||
|
||||
⊢σ : ∀ {w C} → w ∈ ys → Δ ∋ w ⦂ C → Δ′ ∋ w ⦂ C
|
||||
⊢σ w∈ ⊢w = S (fresh-lemma w∈) ⊢w
|
||||
|
||||
⊢ρ′ : ∀ {w C} → w ∈ xs′ → Γ′ ∋ w ⦂ C → Δ′ ⊢ ρ′ w ⦂ C
|
||||
⊢ρ′ {w} _ Z with w ≟ x
|
||||
... | yes _ = Ax Z
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ′ {w} w∈′ (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = ⊢rename {Δ} {Δ′} {ys} ⊢σ (Σ w∈) (⊢ρ w∈ ⊢w)
|
||||
where
|
||||
w∈ = there⁻¹ w∈′ w≢
|
||||
|
||||
⊢subst Σ ⊢ρ ⊆xs (⊢L · ⊢M)
|
||||
= ⊢subst Σ ⊢ρ L⊆ ⊢L · ⊢subst Σ ⊢ρ M⊆ ⊢M
|
||||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₂ ⊆xs
|
||||
⊢subst Σ ⊢ρ ⊆xs ⊢zero = ⊢zero
|
||||
⊢subst Σ ⊢ρ ⊆xs (⊢suc ⊢M) = ⊢suc (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
⊢subst Σ ⊢ρ ⊆xs (⊢pred ⊢M) = ⊢pred (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
⊢subst Σ ⊢ρ ⊆xs (⊢if0 {L = L} ⊢L ⊢M ⊢N)
|
||||
= ⊢if0 (⊢subst Σ ⊢ρ L⊆ ⊢L) (⊢subst Σ ⊢ρ M⊆ ⊢M) (⊢subst Σ ⊢ρ N⊆ ⊢N)
|
||||
where
|
||||
L⊆ = trans-⊆ ⊆-++₁ ⊆xs
|
||||
M⊆ = trans-⊆ ⊆-++₁ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
N⊆ = trans-⊆ ⊆-++₂ (trans-⊆ (⊆-++₂ {free L}) ⊆xs)
|
||||
⊢subst Σ ⊢ρ ⊆xs (⊢Y ⊢M) = ⊢Y (⊢subst Σ ⊢ρ ⊆xs ⊢M)
|
||||
|
||||
⊢substitution : ∀ {Γ x A N B M} →
|
||||
Γ , x ⦂ A ⊢ N ⦂ B →
|
||||
Γ ⊢ M ⦂ A →
|
||||
--------------------
|
||||
Γ ⊢ N [ x := M ] ⦂ B
|
||||
⊢substitution {Γ} {x} {A} {N} {B} {M} ⊢N ⊢M =
|
||||
⊢subst {Γ′} {Γ} {xs} {ys} {ρ} Σ ⊢ρ {N} {B} ⊆xs ⊢N
|
||||
where
|
||||
Γ′ = Γ , x ⦂ A
|
||||
xs = free N
|
||||
ys = free M ++ (free N \\ x)
|
||||
ρ = ∅ , x ↦ M
|
||||
|
||||
Σ : ∀ {w} → w ∈ xs → free (ρ w) ⊆ ys
|
||||
Σ {w} w∈ y∈ with w ≟ x
|
||||
... | yes _ = ⊆-++₁ y∈
|
||||
... | no w≢ rewrite ∈-[_] y∈ = ⊆-++₂ (∈-≢-to-\\ w∈ w≢)
|
||||
|
||||
⊢ρ : ∀ {w B} → w ∈ xs → Γ′ ∋ w ⦂ B → Γ ⊢ ρ w ⦂ B
|
||||
⊢ρ {w} w∈ Z with w ≟ x
|
||||
... | yes _ = ⊢M
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ {w} w∈ (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = Ax ⊢w
|
||||
|
||||
⊆xs : free N ⊆ xs
|
||||
⊆xs x∈ = x∈
|
||||
\end{code}
|
||||
|
||||
### Preservation
|
||||
|
||||
\begin{code}
|
||||
preservation : ∀ {Γ M N A}
|
||||
→ Γ ⊢ M ⦂ A
|
||||
→ M ⟶ N
|
||||
---------
|
||||
→ Γ ⊢ N ⦂ A
|
||||
preservation (Ax ⊢x) ()
|
||||
preservation (⊢λ ⊢N) ()
|
||||
preservation (⊢L · ⊢M) (ξ-·₁ L⟶) = preservation ⊢L L⟶ · ⊢M
|
||||
preservation (⊢V · ⊢M) (ξ-·₂ _ M⟶) = ⊢V · preservation ⊢M M⟶
|
||||
preservation ((⊢λ ⊢N) · ⊢W) (β-⇒ _) = ⊢substitution ⊢N ⊢W
|
||||
preservation (⊢zero) ()
|
||||
preservation (⊢suc ⊢M) (ξ-suc M⟶) = ⊢suc (preservation ⊢M M⟶)
|
||||
preservation (⊢pred ⊢M) (ξ-pred M⟶) = ⊢pred (preservation ⊢M M⟶)
|
||||
preservation (⊢pred ⊢zero) (β-pred-zero) = ⊢zero
|
||||
preservation (⊢pred (⊢suc ⊢M)) (β-pred-suc _) = ⊢M
|
||||
preservation (⊢if0 ⊢L ⊢M ⊢N) (ξ-if0 L⟶) = ⊢if0 (preservation ⊢L L⟶) ⊢M ⊢N
|
||||
preservation (⊢if0 ⊢zero ⊢M ⊢N) β-if0-zero = ⊢M
|
||||
preservation (⊢if0 (⊢suc ⊢V) ⊢M ⊢N) (β-if0-suc _) = ⊢N
|
||||
preservation (⊢Y ⊢M) (ξ-Y M⟶) = ⊢Y (preservation ⊢M M⟶)
|
||||
preservation (⊢Y (⊢λ ⊢N)) (β-Y _ refl) = ⊢substitution ⊢N (⊢Y (⊢λ ⊢N))
|
||||
-}
|
||||
\end{code}
|
||||
|
||||
|
Loading…
Reference in a new issue