actually publish Assignment 3
This commit is contained in:
parent
8c893ca669
commit
7daec17224
1 changed files with 524 additions and 0 deletions
524
courses/tspl/2019/Assignment3.lagda.md
Normal file
524
courses/tspl/2019/Assignment3.lagda.md
Normal file
|
@ -0,0 +1,524 @@
|
||||||
|
---
|
||||||
|
title : "Assignment3: TSPL Assignment 3"
|
||||||
|
layout : page
|
||||||
|
permalink : /TSPL/2019/Assignment3/
|
||||||
|
---
|
||||||
|
|
||||||
|
```
|
||||||
|
module Assignment3 where
|
||||||
|
```
|
||||||
|
|
||||||
|
## YOUR NAME AND EMAIL GOES HERE
|
||||||
|
|
||||||
|
## Introduction
|
||||||
|
|
||||||
|
You must do _all_ the exercises labelled "(recommended)".
|
||||||
|
|
||||||
|
Exercises labelled "(stretch)" are there to provide an extra challenge.
|
||||||
|
You don't need to do all of these, but should attempt at least a few.
|
||||||
|
|
||||||
|
Exercises labelled "(practice)" are included for those who want extra practice.
|
||||||
|
|
||||||
|
Submit your homework using the "submit" command.
|
||||||
|
Please ensure your files execute correctly under Agda!
|
||||||
|
|
||||||
|
|
||||||
|
## Good Scholarly Practice.
|
||||||
|
|
||||||
|
Please remember the University requirement as
|
||||||
|
regards all assessed work. Details about this can be found at:
|
||||||
|
|
||||||
|
> [http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct](http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct)
|
||||||
|
|
||||||
|
Furthermore, you are required to take reasonable measures to protect
|
||||||
|
your assessed work from unauthorised access. For example, if you put
|
||||||
|
any such work on a public repository then you must set access
|
||||||
|
permissions appropriately (generally permitting access only to
|
||||||
|
yourself, or your group in the case of group practicals).
|
||||||
|
|
||||||
|
|
||||||
|
## Imports
|
||||||
|
|
||||||
|
```
|
||||||
|
import Relation.Binary.PropositionalEquality as Eq
|
||||||
|
open Eq using (_≡_; refl; cong; sym)
|
||||||
|
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
|
||||||
|
open import Data.Bool.Base using (Bool; true; false; T; _∧_; _∨_; not)
|
||||||
|
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; s≤s; z≤n)
|
||||||
|
open import Data.Nat.Properties using
|
||||||
|
(+-assoc; +-identityˡ; +-identityʳ; *-assoc; *-identityˡ; *-identityʳ)
|
||||||
|
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||||
|
open import Data.Product using (_×_; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩)
|
||||||
|
open import Data.Empty using (⊥; ⊥-elim)
|
||||||
|
open import Function using (_∘_)
|
||||||
|
open import Algebra.Structures using (IsMonoid)
|
||||||
|
open import Level using (Level)
|
||||||
|
open import Relation.Unary using (Decidable)
|
||||||
|
open import plfa.part1.Relations using (_<_; z<s; s<s)
|
||||||
|
open import plfa.part1.Isomorphism using (_≃_; ≃-sym; ≃-trans; _≲_; extensionality)
|
||||||
|
open plfa.part1.Isomorphism.≃-Reasoning
|
||||||
|
open import plfa.part1.Lists using (List; []; _∷_; [_]; [_,_]; [_,_,_]; [_,_,_,_];
|
||||||
|
_++_; reverse; map; foldr; sum; All; Any; here; there; _∈_)
|
||||||
|
open import plfa.part2.Lambda hiding (ƛ′_⇒_; case′_[zero⇒_|suc_⇒_]; μ′_⇒_; plus′)
|
||||||
|
open import plfa.part2.Properties hiding (value?; unstuck; preserves; wttdgs)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Lists
|
||||||
|
|
||||||
|
#### Exercise `reverse-++-distrib` (recommended)
|
||||||
|
|
||||||
|
Show that the reverse of one list appended to another is the
|
||||||
|
reverse of the second appended to the reverse of the first:
|
||||||
|
|
||||||
|
reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `reverse-involutive` (recommended)
|
||||||
|
|
||||||
|
A function is an _involution_ if when applied twice it acts
|
||||||
|
as the identity function. Show that reverse is an involution:
|
||||||
|
|
||||||
|
reverse (reverse xs) ≡ xs
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `map-compose` (practice)
|
||||||
|
|
||||||
|
Prove that the map of a composition is equal to the composition of two maps:
|
||||||
|
|
||||||
|
map (g ∘ f) ≡ map g ∘ map f
|
||||||
|
|
||||||
|
The last step of the proof requires extensionality.
|
||||||
|
|
||||||
|
#### Exercise `map-++-distribute` (practice)
|
||||||
|
|
||||||
|
Prove the following relationship between map and append:
|
||||||
|
|
||||||
|
map f (xs ++ ys) ≡ map f xs ++ map f ys
|
||||||
|
|
||||||
|
#### Exercise `map-Tree` (practice)
|
||||||
|
|
||||||
|
Define a type of trees with leaves of type `A` and internal
|
||||||
|
nodes of type `B`:
|
||||||
|
```
|
||||||
|
data Tree (A B : Set) : Set where
|
||||||
|
leaf : A → Tree A B
|
||||||
|
node : Tree A B → B → Tree A B → Tree A B
|
||||||
|
```
|
||||||
|
Define a suitable map operator over trees:
|
||||||
|
```
|
||||||
|
postulate
|
||||||
|
map-Tree : ∀ {A B C D : Set}
|
||||||
|
→ (A → C) → (B → D) → Tree A B → Tree C D
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `product` (recommended)
|
||||||
|
|
||||||
|
Use fold to define a function to find the product of a list of numbers.
|
||||||
|
For example:
|
||||||
|
|
||||||
|
product [ 1 , 2 , 3 , 4 ] ≡ 24
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Exercise `foldr-++` (recommended)
|
||||||
|
|
||||||
|
Show that fold and append are related as follows:
|
||||||
|
```
|
||||||
|
postulate
|
||||||
|
foldr-++ : ∀ {A B : Set} (_⊗_ : A → B → B) (e : B) (xs ys : List A) →
|
||||||
|
foldr _⊗_ e (xs ++ ys) ≡ foldr _⊗_ (foldr _⊗_ e ys) xs
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `map-is-foldr` (practice)
|
||||||
|
|
||||||
|
Show that map can be defined using fold:
|
||||||
|
```
|
||||||
|
postulate
|
||||||
|
map-is-foldr : ∀ {A B : Set} {f : A → B} →
|
||||||
|
map f ≡ foldr (λ x xs → f x ∷ xs) []
|
||||||
|
```
|
||||||
|
This requires extensionality.
|
||||||
|
|
||||||
|
#### Exercise `fold-Tree` (practice)
|
||||||
|
|
||||||
|
Define a suitable fold function for the type of trees given earlier:
|
||||||
|
```
|
||||||
|
postulate
|
||||||
|
fold-Tree : ∀ {A B C : Set}
|
||||||
|
→ (A → C) → (C → B → C → C) → Tree A B → C
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Exercise `map-is-fold-Tree` (practice)
|
||||||
|
|
||||||
|
Demonstrate an analogue of `map-is-foldr` for the type of trees.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Exercise `sum-downFrom` (stretch)
|
||||||
|
|
||||||
|
Define a function that counts down as follows:
|
||||||
|
```
|
||||||
|
downFrom : ℕ → List ℕ
|
||||||
|
downFrom zero = []
|
||||||
|
downFrom (suc n) = n ∷ downFrom n
|
||||||
|
```
|
||||||
|
For example:
|
||||||
|
```
|
||||||
|
_ : downFrom 3 ≡ [ 2 , 1 , 0 ]
|
||||||
|
_ = refl
|
||||||
|
```
|
||||||
|
Prove that the sum of the numbers `(n - 1) + ⋯ + 0` is
|
||||||
|
equal to `n * (n ∸ 1) / 2`:
|
||||||
|
```
|
||||||
|
postulate
|
||||||
|
sum-downFrom : ∀ (n : ℕ)
|
||||||
|
→ sum (downFrom n) * 2 ≡ n * (n ∸ 1)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `foldl` (practice)
|
||||||
|
|
||||||
|
Define a function `foldl` which is analogous to `foldr`, but where
|
||||||
|
operations associate to the left rather than the right. For example:
|
||||||
|
|
||||||
|
foldr _⊗_ e [ x , y , z ] = x ⊗ (y ⊗ (z ⊗ e))
|
||||||
|
foldl _⊗_ e [ x , y , z ] = ((e ⊗ x) ⊗ y) ⊗ z
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `foldr-monoid-foldl` (practice)
|
||||||
|
|
||||||
|
Show that if `_⊗_` and `e` form a monoid, then `foldr _⊗_ e` and
|
||||||
|
`foldl _⊗_ e` always compute the same result.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `Any-++-⇔` (recommended)
|
||||||
|
|
||||||
|
Prove a result similar to `All-++-⇔`, but with `Any` in place of `All`, and a suitable
|
||||||
|
replacement for `_×_`. As a consequence, demonstrate an equivalence relating
|
||||||
|
`_∈_` and `_++_`.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Exercise `All-++-≃` (stretch)
|
||||||
|
|
||||||
|
Show that the equivalence `All-++-⇔` can be extended to an isomorphism.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Exercise `¬Any≃All¬` (recommended)
|
||||||
|
|
||||||
|
Show that `Any` and `All` satisfy a version of De Morgan's Law:
|
||||||
|
|
||||||
|
(¬_ ∘ Any P) xs ≃ All (¬_ ∘ P) xs
|
||||||
|
|
||||||
|
(Can you see why it is important that here `_∘_` is generalised
|
||||||
|
to arbitrary levels, as described in the section on
|
||||||
|
[universe polymorphism]({{ site.baseurl }}/Equality/#unipoly)?)
|
||||||
|
|
||||||
|
Do we also have the following?
|
||||||
|
|
||||||
|
(¬_ ∘ All P) xs ≃ Any (¬_ ∘ P) xs
|
||||||
|
|
||||||
|
If so, prove; if not, explain why.
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `All-∀` (practice)
|
||||||
|
|
||||||
|
Show that `All P xs` is isomorphic to `∀ {x} → x ∈ xs → P x`.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- You code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `Any-∃` (practice)
|
||||||
|
|
||||||
|
Show that `Any P xs` is isomorphic to `∃[ x ] (x ∈ xs × P x)`.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- You code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `any?` (stretch)
|
||||||
|
|
||||||
|
Just as `All` has analogues `all` and `All?` which determine whether a
|
||||||
|
predicate holds for every element of a list, so does `Any` have
|
||||||
|
analogues `any` and `Any?` which determine whether a predicate holds
|
||||||
|
for some element of a list. Give their definitions.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `filter?` (stretch)
|
||||||
|
|
||||||
|
Define the following variant of the traditional `filter` function on lists,
|
||||||
|
which given a decidable predicate and a list returns all elements of the
|
||||||
|
list satisfying the predicate:
|
||||||
|
```
|
||||||
|
postulate
|
||||||
|
filter? : ∀ {A : Set} {P : A → Set}
|
||||||
|
→ (P? : Decidable P) → List A → ∃[ ys ]( All P ys )
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Lambda
|
||||||
|
|
||||||
|
#### Exercise `mul` (recommended)
|
||||||
|
|
||||||
|
Write out the definition of a lambda term that multiplies
|
||||||
|
two natural numbers. Your definition may use `plus` as
|
||||||
|
defined earlier.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `mulᶜ` (practice)
|
||||||
|
|
||||||
|
Write out the definition of a lambda term that multiplies
|
||||||
|
two natural numbers represented as Church numerals. Your
|
||||||
|
definition may use `plusᶜ` as defined earlier (or may not
|
||||||
|
— there are nice definitions both ways).
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `primed` (stretch) {#primed}
|
||||||
|
|
||||||
|
Some people find it annoying to write `` ` "x" `` instead of `x`.
|
||||||
|
We can make examples with lambda terms slightly easier to write
|
||||||
|
by adding the following definitions:
|
||||||
|
```
|
||||||
|
ƛ′_⇒_ : Term → Term → Term
|
||||||
|
ƛ′ (` x) ⇒ N = ƛ x ⇒ N
|
||||||
|
ƛ′ _ ⇒ _ = ⊥-elim impossible
|
||||||
|
where postulate impossible : ⊥
|
||||||
|
|
||||||
|
case′_[zero⇒_|suc_⇒_] : Term → Term → Term → Term → Term
|
||||||
|
case′ L [zero⇒ M |suc (` x) ⇒ N ] = case L [zero⇒ M |suc x ⇒ N ]
|
||||||
|
case′ _ [zero⇒ _ |suc _ ⇒ _ ] = ⊥-elim impossible
|
||||||
|
where postulate impossible : ⊥
|
||||||
|
|
||||||
|
μ′_⇒_ : Term → Term → Term
|
||||||
|
μ′ (` x) ⇒ N = μ x ⇒ N
|
||||||
|
μ′ _ ⇒ _ = ⊥-elim impossible
|
||||||
|
where postulate impossible : ⊥
|
||||||
|
```
|
||||||
|
We intend to apply the function only when the first term is a variable, which we
|
||||||
|
indicate by postulating a term `impossible` of the empty type `⊥`. If we use
|
||||||
|
C-c C-n to normalise the term
|
||||||
|
|
||||||
|
ƛ′ two ⇒ two
|
||||||
|
|
||||||
|
Agda will return an answer warning us that the impossible has occurred:
|
||||||
|
|
||||||
|
⊥-elim (plfa.part2.Lambda.impossible (`` `suc (`suc `zero)) (`suc (`suc `zero)) ``)
|
||||||
|
|
||||||
|
While postulating the impossible is a useful technique, it must be
|
||||||
|
used with care, since such postulation could allow us to provide
|
||||||
|
evidence of _any_ proposition whatsoever, regardless of its truth.
|
||||||
|
|
||||||
|
The definition of `plus` can now be written as follows:
|
||||||
|
```
|
||||||
|
plus′ : Term
|
||||||
|
plus′ = μ′ + ⇒ ƛ′ m ⇒ ƛ′ n ⇒
|
||||||
|
case′ m
|
||||||
|
[zero⇒ n
|
||||||
|
|suc m ⇒ `suc (+ · m · n) ]
|
||||||
|
where
|
||||||
|
+ = ` "+"
|
||||||
|
m = ` "m"
|
||||||
|
n = ` "n"
|
||||||
|
```
|
||||||
|
Write out the definition of multiplication in the same style.
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `_[_:=_]′` (stretch)
|
||||||
|
|
||||||
|
The definition of substitution above has three clauses (`ƛ`, `case`,
|
||||||
|
and `μ`) that invoke a `with` clause to deal with bound variables.
|
||||||
|
Rewrite the definition to factor the common part of these three
|
||||||
|
clauses into a single function, defined by mutual recursion with
|
||||||
|
substitution.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `—↠≲—↠′` (practice)
|
||||||
|
|
||||||
|
Show that the first notion of reflexive and transitive closure
|
||||||
|
above embeds into the second. Why are they not isomorphic?
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Exercise `plus-example` (practice)
|
||||||
|
|
||||||
|
Write out the reduction sequence demonstrating that one plus one is two.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `Context-≃` (practice)
|
||||||
|
|
||||||
|
Show that `Context` is isomorphic to `List (Id × Type)`.
|
||||||
|
For instance, the isomorphism relates the context
|
||||||
|
|
||||||
|
∅ , "s" ⦂ `ℕ ⇒ `ℕ , "z" ⦂ `ℕ
|
||||||
|
|
||||||
|
to the list
|
||||||
|
|
||||||
|
[ ⟨ "z" , `ℕ ⟩ , ⟨ "s" , `ℕ ⇒ `ℕ ⟩ ]
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Exercise `mul-type` (recommended)
|
||||||
|
|
||||||
|
Using the term `mul` you defined earlier, write out the derivation
|
||||||
|
showing that it is well typed.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `mulᶜ-type` (practice)
|
||||||
|
|
||||||
|
Using the term `mulᶜ` you defined earlier, write out the derivation
|
||||||
|
showing that it is well typed.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
#### Exercise `Progress-≃` (practice)
|
||||||
|
|
||||||
|
Show that `Progress M` is isomorphic to `Value M ⊎ ∃[ N ](M —→ N)`.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Exercise `progress′` (practice)
|
||||||
|
|
||||||
|
Write out the proof of `progress′` in full, and compare it to the
|
||||||
|
proof of `progress` above.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Exercise `value?` (practice)
|
||||||
|
|
||||||
|
Combine `progress` and `—→¬V` to write a program that decides
|
||||||
|
whether a well-typed term is a value:
|
||||||
|
```
|
||||||
|
postulate
|
||||||
|
value? : ∀ {A M} → ∅ ⊢ M ⦂ A → Dec (Value M)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Exercise `subst′` (stretch)
|
||||||
|
|
||||||
|
Rewrite `subst` to work with the modified definition `_[_:=_]′`
|
||||||
|
from the exercise in the previous chapter. As before, this
|
||||||
|
should factor dealing with bound variables into a single function,
|
||||||
|
defined by mutual recursion with the proof that substitution
|
||||||
|
preserves types.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `mul-eval` (recommended)
|
||||||
|
|
||||||
|
Using the evaluator, confirm that two times two is four.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise: `progress-preservation` (practice)
|
||||||
|
|
||||||
|
Without peeking at their statements above, write down the progress
|
||||||
|
and preservation theorems for the simply typed lambda-calculus.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `subject_expansion` (practice)
|
||||||
|
|
||||||
|
We say that `M` _reduces_ to `N` if `M —→ N`,
|
||||||
|
but we can also describe the same situation by saying
|
||||||
|
that `N` _expands_ to `M`.
|
||||||
|
The preservation property is sometimes called _subject reduction_.
|
||||||
|
Its opposite is _subject expansion_, which holds if
|
||||||
|
`M —→ N` and `∅ ⊢ N ⦂ A` imply `∅ ⊢ M ⦂ A`.
|
||||||
|
Find two counter-examples to subject expansion, one
|
||||||
|
with case expressions and one not involving case expressions.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Exercise `stuck` (practice)
|
||||||
|
|
||||||
|
Give an example of an ill-typed term that does get stuck.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Exercise `unstuck` (recommended)
|
||||||
|
|
||||||
|
Provide proofs of the three postulates, `unstuck`, `preserves`, and `wttdgs` above.
|
||||||
|
|
||||||
|
```
|
||||||
|
-- Your code goes here
|
||||||
|
```
|
||||||
|
|
Loading…
Reference in a new issue