From 7e514800eb5127e31ca01b728600f0fd3d1a570e Mon Sep 17 00:00:00 2001 From: Jeremy Siek Date: Tue, 10 Mar 2020 09:44:41 -0400 Subject: [PATCH] improved some proofs --- src/plfa/part2/BigStep.lagda.md | 6 +++--- src/plfa/part2/Confluence.lagda.md | 33 +++++++++++++++--------------- 2 files changed, 20 insertions(+), 19 deletions(-) diff --git a/src/plfa/part2/BigStep.lagda.md b/src/plfa/part2/BigStep.lagda.md index 97fbbaf1..814e1f06 100644 --- a/src/plfa/part2/BigStep.lagda.md +++ b/src/plfa/part2/BigStep.lagda.md @@ -172,7 +172,7 @@ the environment `γ` to an equivalent substitution `σ`. The case for `⇓-app` also requires that we strengthen the conclusion. In the case for `⇓-app` we have `γ ⊢ L ⇓ clos (λ N) δ` and the induction hypothesis gives us `L —↠ ƛ N′`, but we need to know -that `N` and `N′` are equivalent. In particular, that `N ≡ subst τ N′` +that `N` and `N′` are equivalent. In particular, that `N′ ≡ subst τ N` where `τ` is the substitution that is equivalent to `δ`. Therefore we expand the conclusion of the statement, stating that the results are equivalent. @@ -289,11 +289,11 @@ below. with ⇓→—↠×≈{σ = τ} δ⊢L⇓V δ≈ₑτ ... | ⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩ rewrite σx≡τL = ⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩ -⇓→—↠×≈ {σ = σ} {V = clos (ƛ N) γ} ⇓-lam γ≈ₑσ = +⇓→—↠×≈ {σ = σ} {V = clos (ƛ N) γ} (⇓-lam) γ≈ₑσ = ⟨ subst σ (ƛ N) , ⟨ subst σ (ƛ N) ∎ , ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ ⟩ ⟩ ⇓→—↠×≈{Γ}{γ} {σ = σ} {L · M} {V} (⇓-app {N = N} L⇓ƛNδ N⇓V) γ≈ₑσ with ⇓→—↠×≈{σ = σ} L⇓ƛNδ γ≈ₑσ -... | ⟨ _ , ⟨ σL—↠ƛτN , ⟨ τ , ⟨ δ≈ₑτ , ≡ƛτN ⟩ ⟩ ⟩ ⟩ rewrite ≡ƛτN +... | ⟨ _ , ⟨ σL—↠ƛτN , ⟨ τ , ⟨ δ≈ₑτ , ≡ƛτN ⟩ ⟩ ⟩ ⟩ rewrite ≡ƛτN with ⇓→—↠×≈ {σ = ext-subst τ (subst σ M)} N⇓V (λ {x} → ≈ₑ-ext{σ = τ} δ≈ₑτ ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ {x}) | β{∅}{subst (exts τ) N}{subst σ M} diff --git a/src/plfa/part2/Confluence.lagda.md b/src/plfa/part2/Confluence.lagda.md index 17faee5a..48651bc9 100644 --- a/src/plfa/part2/Confluence.lagda.md +++ b/src/plfa/part2/Confluence.lagda.md @@ -67,7 +67,7 @@ open import Data.Product using (_×_; Σ; Σ-syntax; ∃; ∃-syntax; proj₁; p renaming (_,_ to ⟨_,_⟩) open import plfa.part2.Substitution using (Rename; Subst) open import plfa.part2.Untyped - using (_—→_; β; ξ₁; ξ₂; ζ; _—↠_; _—→⟨_⟩_; _∎; + using (_—→_; β; ξ₁; ξ₂; ζ; _—↠_; begin_; _—→⟨_⟩_; _—↠⟨_⟩_; _∎; abs-cong; appL-cong; appR-cong; —↠-trans; _⊢_; _∋_; `_; #_; _,_; ★; ƛ_; _·_; _[_]; rename; ext; exts; Z; S_; subst; subst-zero) @@ -195,17 +195,19 @@ par-betas : ∀{Γ A}{M N : Γ ⊢ A} → M —↠ N par-betas {Γ} {A} {.(` _)} (pvar{x = x}) = (` x) ∎ par-betas {Γ} {★} {ƛ N} (pabs p) = abs-cong (par-betas p) -par-betas {Γ} {★} {L · M} (papp p₁ p₂) = - —↠-trans (appL-cong{M = M} (par-betas p₁)) (appR-cong (par-betas p₂)) +par-betas {Γ} {★} {L · M} (papp {L = L}{L′}{M}{M′} p₁ p₂) = + begin + L · M —↠⟨ appL-cong{M = M} (par-betas p₁) ⟩ + L′ · M —↠⟨ appR-cong (par-betas p₂) ⟩ + L′ · M′ + ∎ par-betas {Γ} {★} {(ƛ N) · M} (pbeta{N′ = N′}{M′ = M′} p₁ p₂) = - let ih₁ = par-betas p₁ in - let ih₂ = par-betas p₂ in - let a : (ƛ N) · M —↠ (ƛ N′) · M - a = appL-cong{M = M} (abs-cong ih₁) in - let b : (ƛ N′) · M —↠ (ƛ N′) · M′ - b = appR-cong{L = ƛ N′} ih₂ in - let c = (ƛ N′) · M′ —→⟨ β ⟩ N′ [ M′ ] ∎ in - —↠-trans (—↠-trans a b) c + begin + (ƛ N) · M —↠⟨ appL-cong{M = M} (abs-cong (par-betas p₁)) ⟩ + (ƛ N′) · M —↠⟨ appR-cong{L = ƛ N′} (par-betas p₂) ⟩ + (ƛ N′) · M′ —→⟨ β ⟩ + N′ [ M′ ] + ∎ ``` The proof is by induction on `M ⇛ N`. @@ -219,14 +221,13 @@ The proof is by induction on `M ⇛ N`. * Suppose `L · M ⇛ L′ · M′` because `L ⇛ L′` and `M ⇛ M′`. By the induction hypothesis, we have `L —↠ L′` and `M —↠ M′`. So `L · M —↠ L′ · M` and then `L′ · M —↠ L′ · M′` - because `—↠` is a congruence. We conclude using the transitity - of `—↠`. + because `—↠` is a congruence. * Suppose `(ƛ N) · M ⇛ N′ [ M′ ]` because `N ⇛ N′` and `M ⇛ M′`. By similar reasoning, we have - `(ƛ N) · M —↠ (ƛ N′) · M′`. - Of course, `(ƛ N′) · M′ —→ N′ [ M′ ]`, so we can conclude - using the transitivity of `—↠`. + `(ƛ N) · M —↠ (ƛ N′) · M′` + which we can following with the β reduction + `(ƛ N′) · M′ —→ N′ [ M′ ]`. With this lemma in hand, we complete the proof that `M ⇛* N` implies `M —↠ N` with a simple induction on `M ⇛* N`.