append, length, reverse in Lists
This commit is contained in:
parent
e5d6f95e77
commit
8011389aa9
2 changed files with 196 additions and 26 deletions
219
src/Lists.lagda
219
src/Lists.lagda
|
@ -14,6 +14,7 @@ import Relation.Binary.PropositionalEquality as Eq
|
|||
open Eq using (_≡_; refl; sym; trans; cong)
|
||||
open Eq.≡-Reasoning
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
|
||||
open import Data.Nat.Properties.Simple using (distribʳ-*-+)
|
||||
\end{code}
|
||||
|
||||
## Lists
|
||||
|
@ -139,7 +140,8 @@ _++_ : ∀ {A : Set} → List A → List A → List A
|
|||
[] ++ ys = ys
|
||||
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
|
||||
\end{code}
|
||||
The type `A` is an implicit argument to append.
|
||||
The type `A` is an implicit argument to append, making it
|
||||
a *polymorphic* function (one that can be used at many types).
|
||||
The empty list appended to a list `ys` is the same as `ys`.
|
||||
A list with head `x` and tail `xs` appended to a list `ys`
|
||||
yields a list with head `x` and with tail consisting of
|
||||
|
@ -162,8 +164,12 @@ ex₂ =
|
|||
0 ∷ 1 ∷ 2 ∷ ([] ++ 3 ∷ 4 ∷ [])
|
||||
≡⟨⟩
|
||||
0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ []
|
||||
≡⟨⟩
|
||||
[ 0 , 1 , 2 , 3 , 4 ]
|
||||
∎
|
||||
\end{code}
|
||||
Appending two lists requires time proportional to the
|
||||
number of elements in the first list.
|
||||
|
||||
|
||||
## Reasoning about append
|
||||
|
@ -206,43 +212,90 @@ to the equivalence needed in the proof
|
|||
x ∷ (xs ++ (ys ++ zs)) ≡ x ∷ ((xs ++ ys) ++ zs)
|
||||
|
||||
The section notation `(x ∷)` makes it convenient to invoke the congruence.
|
||||
Else we would need to write `cong (_∷_ x)` or `cong (λ xs → x ∷ xs)`, each
|
||||
of which is longer and less pleasing to read.
|
||||
|
||||
It is also easy to show that `[]` is a left and right identity for `_++_`.
|
||||
That it is a left identity is immediate from the definition.
|
||||
\begin{code}
|
||||
++-identityˡ : ∀ {A : Set} (xs : List A) → [] ++ xs ≡ xs
|
||||
++-identityˡ xs =
|
||||
begin
|
||||
[] ++ xs
|
||||
≡⟨⟩
|
||||
xs
|
||||
∎
|
||||
\end{code}
|
||||
That it is a right identity follows by simple induction.
|
||||
\begin{code}
|
||||
++-identityʳ : ∀ {A : Set} (xs : List A) → xs ++ [] ≡ xs
|
||||
++-identityʳ [] =
|
||||
begin
|
||||
[] ++ []
|
||||
≡⟨⟩
|
||||
[]
|
||||
∎
|
||||
++-identityʳ (x ∷ xs) =
|
||||
begin
|
||||
(x ∷ xs) ++ []
|
||||
≡⟨⟩
|
||||
x ∷ (xs ++ [])
|
||||
≡⟨ cong (x ∷) (++-identityʳ xs) ⟩
|
||||
x ∷ xs
|
||||
∎
|
||||
\end{code}
|
||||
These three properties establish that `_++_` and `[]` form
|
||||
a *monoid* over lists.
|
||||
|
||||
## Length
|
||||
|
||||
Our next function finds the length of a list.
|
||||
\begin{code}
|
||||
length : ∀ {A : Set} → List A → ℕ
|
||||
length [] = zero
|
||||
length (x ∷ xs) = suc (length xs)
|
||||
\end{code}
|
||||
Again, it takes an implicit parameter `A`.
|
||||
The length of the empty list is zero.
|
||||
The length of the list with head `x` and tail `xs`
|
||||
is one greater than the length of its tail.
|
||||
|
||||
## Reverse
|
||||
|
||||
## Map
|
||||
|
||||
## Fold
|
||||
|
||||
Here is an example showing how to compute the length
|
||||
of `[ 0 , 1 , 2 ]`.
|
||||
\begin{code}
|
||||
map : ∀ {A B : Set} → (A → B) → List A → List B
|
||||
map f [] = []
|
||||
map f (x ∷ xs) = f x ∷ map f xs
|
||||
|
||||
foldr : ∀ {A B : Set} → (A → B → B) → B → List A → B
|
||||
foldr c n [] = n
|
||||
foldr c n (x ∷ xs) = c x (foldr c n xs)
|
||||
|
||||
ex₃ : length ([ 1 , 2 , 3 ]) ≡ 3
|
||||
ex₃ = refl
|
||||
|
||||
ex₄ : map (λ x → x * x) ([ 1 , 2 , 3 ]) ≡ [ 1 , 4 , 9 ]
|
||||
ex₄ = refl
|
||||
|
||||
ex₅ : foldr _+_ 0 ([ 1 , 2 , 3 ]) ≡ 6
|
||||
ex₅ = refl
|
||||
|
||||
ex₆ : length {ℕ} [] ≡ zero
|
||||
ex₆ = refl
|
||||
ex₃ : length ([ 0 , 1 , 2 ]) ≡ 3
|
||||
ex₃ =
|
||||
begin
|
||||
length ([ 0 , 1 , 2 ])
|
||||
≡⟨⟩
|
||||
length (0 ∷ 1 ∷ 2 ∷ [])
|
||||
≡⟨⟩
|
||||
suc (length (1 ∷ 2 ∷ []))
|
||||
≡⟨⟩
|
||||
suc (suc (length (2 ∷ [])))
|
||||
≡⟨⟩
|
||||
suc (suc (suc (length {ℕ} [])))
|
||||
≡⟨⟩
|
||||
suc (suc (suc zero))
|
||||
≡⟨⟩
|
||||
3
|
||||
∎
|
||||
\end{code}
|
||||
Computing the length of a list requires time
|
||||
proportional to the number of elements in the list.
|
||||
|
||||
In the second-to-last line, we cannot write
|
||||
simply `length []` but must instead write
|
||||
`length {ℕ} []`. This is because Agda has
|
||||
insufficient information to infer the implicit
|
||||
parameter; after all, `[]` could just as well
|
||||
be an empty list with elements of any type.
|
||||
|
||||
|
||||
## Reasoning about length
|
||||
|
||||
The length of one list appended to another is the
|
||||
sum of the lengths of the lists.
|
||||
\begin{code}
|
||||
length-++ : ∀ {A : Set} (xs ys : List A) → length (xs ++ ys) ≡ length xs + length ys
|
||||
length-++ {A} [] ys =
|
||||
|
@ -264,6 +317,120 @@ length-++ (x ∷ xs) ys =
|
|||
length (x ∷ xs) + length ys
|
||||
∎
|
||||
\end{code}
|
||||
The proof is by induction. The base case instantiates the
|
||||
first argument to `[]`, and follows by straightforward computation.
|
||||
As before, Agda cannot infer the implicit type parameter to `length`,
|
||||
and it must be given explicitly.
|
||||
The inductive case instantiates the first argument to `x ∷ xs`,
|
||||
and follows by straightforward computation combined with the
|
||||
inductive hypothesis. As usual, the inductive hypothesis is indicated by a recursive
|
||||
invocation of the proof, in this case `length-++ xs ys`, and it is promoted
|
||||
by the congruence `cong suc`.
|
||||
|
||||
|
||||
## Reverse
|
||||
|
||||
Using append, it is easy to formulate a function to reverse a list.
|
||||
\begin{code}
|
||||
reverse : ∀ {A : Set} → List A → List A
|
||||
reverse [] = []
|
||||
reverse (x ∷ xs) = reverse xs ++ [ x ]
|
||||
\end{code}
|
||||
The reverse of the empty list is the empty list.
|
||||
The reverse of the list with head `x` and tail `xs`
|
||||
is the reverse of its tail appended to a unit list
|
||||
containing its head.
|
||||
|
||||
Here is an example showing how to reverse the list `[ 0 , 1 , 2 ]`.
|
||||
\begin{code}
|
||||
ex₄ : reverse ([ 0 , 1 , 2 ]) ≡ [ 2 , 1 , 0 ]
|
||||
ex₄ =
|
||||
begin
|
||||
reverse ([ 0 , 1 , 2 ])
|
||||
≡⟨⟩
|
||||
reverse (0 ∷ 1 ∷ 2 ∷ [])
|
||||
≡⟨⟩
|
||||
reverse (1 ∷ 2 ∷ []) ++ [ 0 ]
|
||||
≡⟨⟩
|
||||
(reverse (2 ∷ []) ++ [ 1 ]) ++ [ 0 ]
|
||||
≡⟨⟩
|
||||
((reverse [] ++ [ 2 ]) ++ [ 1 ]) ++ [ 0 ]
|
||||
≡⟨⟩
|
||||
(([] ++ [ 2 ]) ++ [ 1 ]) ++ [ 0 ]
|
||||
≡⟨⟩
|
||||
(([] ++ 2 ∷ []) ++ 1 ∷ []) ++ 0 ∷ []
|
||||
≡⟨⟩
|
||||
(2 ∷ [] ++ 1 ∷ []) ++ 0 ∷ []
|
||||
≡⟨⟩
|
||||
2 ∷ ([] ++ 1 ∷ []) ++ 0 ∷ []
|
||||
≡⟨⟩
|
||||
(2 ∷ 1 ∷ []) ++ 0 ∷ []
|
||||
≡⟨⟩
|
||||
2 ∷ (1 ∷ [] ++ 0 ∷ [])
|
||||
≡⟨⟩
|
||||
2 ∷ 1 ∷ ([] ++ 0 ∷ [])
|
||||
≡⟨⟩
|
||||
2 ∷ 1 ∷ 0 ∷ []
|
||||
≡⟨⟩
|
||||
[ 2 , 1 , 0 ]
|
||||
∎
|
||||
\end{code}
|
||||
Because append takes time proportional to the length
|
||||
of the first list, reversing a list in this way takes
|
||||
time proportional to the *square* of the length of the
|
||||
list, since `1 + ⋯ + n ≡ n * (n + 1) / 2`.
|
||||
|
||||
\begin{code}
|
||||
upto : ℕ → List ℕ
|
||||
upto zero = []
|
||||
upto (suc n) = suc n ∷ upto n
|
||||
|
||||
sum : List ℕ → ℕ
|
||||
sum [] = zero
|
||||
sum (x ∷ xs) = x + sum xs
|
||||
|
||||
sum-upto : ∀ (n : ℕ) → 2 * sum (upto n) ≡ n * suc n
|
||||
sum-upto zero = refl
|
||||
sum-upto (suc n) = {!!}
|
||||
{-
|
||||
begin
|
||||
2 * sum (upto (suc n))
|
||||
≡⟨⟩
|
||||
2 * sum (suc n ∷ upto n)
|
||||
≡⟨⟩
|
||||
2 * (suc n + sum (upto n))
|
||||
≡⟨ +-dist-* 2 (suc n) (sum (upto n)) ⟩
|
||||
(2 * suc n) + (2 * sum (upto n))
|
||||
≡⟨ cong (_+_ (2 * suc n)) (sup-upto n) ⟩
|
||||
(2 * suc n) + (n * suc n)
|
||||
≡⟨ sym (+-dist-*
|
||||
-}
|
||||
\end{code}
|
||||
|
||||
|
||||
|
||||
## Reverse
|
||||
|
||||
## Map
|
||||
|
||||
## Fold
|
||||
|
||||
\begin{code}
|
||||
map : ∀ {A B : Set} → (A → B) → List A → List B
|
||||
map f [] = []
|
||||
map f (x ∷ xs) = f x ∷ map f xs
|
||||
|
||||
foldr : ∀ {A B : Set} → (A → B → B) → B → List A → B
|
||||
foldr c n [] = n
|
||||
foldr c n (x ∷ xs) = c x (foldr c n xs)
|
||||
|
||||
ex₅ : map (λ x → x * x) ([ 1 , 2 , 3 ]) ≡ [ 1 , 4 , 9 ]
|
||||
ex₅ = refl
|
||||
|
||||
ex₆ : foldr _+_ 0 ([ 1 , 2 , 3 ]) ≡ 6
|
||||
ex₆ = refl
|
||||
\end{code}
|
||||
|
||||
|
||||
\begin{code}
|
||||
data _∈_ {A : Set} (x : A) : List A → Set where
|
||||
|
|
3
src/extra/Dummy.agda
Normal file
3
src/extra/Dummy.agda
Normal file
|
@ -0,0 +1,3 @@
|
|||
import Data.List.Properties
|
||||
import Data.Nat.Properties
|
||||
|
Loading…
Reference in a new issue