moving LogicAns to NegationAns

This commit is contained in:
wadler 2018-03-17 11:51:09 -03:00
parent 29ed7cdbeb
commit 81b5da1ebd
4 changed files with 94 additions and 78 deletions

View file

@ -143,9 +143,9 @@ and similarly for `invʳ`, which does the same (up to renaming).
×-comm =
record
{ to = λ { (x , y) → (y , x)}
; fro = λ { (y , x) → (x , y)}
; invˡ = λ { (x , y) → refl }
; invʳ = λ { (y , x) → refl }
; from = λ { (y , x) → (x , y)}
; from∘to = λ { (x , y) → refl }
; to∘from = λ { (y , x) → refl }
}
\end{code}
@ -172,9 +172,9 @@ matching against a suitable pattern to enable simplificition.
×-assoc =
record
{ to = λ { ((x , y) , z) → (x , (y , z)) }
; fro = λ { (x , (y , z)) → ((x , y) , z) }
; invˡ = λ { ((x , y) , z) → refl }
; invʳ = λ { (x , (y , z)) → refl }
; from = λ { (x , (y , z)) → ((x , y) , z) }
; from∘to = λ { ((x , y) , z) → refl }
; to∘from = λ { (x , (y , z)) → refl }
}
\end{code}
@ -238,9 +238,9 @@ a suitable pattern to enable simplification.
-identityˡ =
record
{ to = λ { (tt , x) → x }
; fro = λ { x → (tt , x) }
; invˡ = λ { (tt , x) → refl }
; invʳ = λ { x → refl}
; from = λ { x → (tt , x) }
; from∘to = λ { (tt , x) → refl }
; to∘from = λ { x → refl}
}
\end{code}
@ -346,13 +346,13 @@ does the same (up to renaming).
{ to = λ { (inj₁ x) → (inj₂ x)
; (inj₂ y) → (inj₁ y)
}
; fro = λ { (inj₁ y) → (inj₂ y)
; from = λ { (inj₁ y) → (inj₂ y)
; (inj₂ x) → (inj₁ x)
}
; invˡ = λ { (inj₁ x) → refl
; from∘to = λ { (inj₁ x) → refl
; (inj₂ y) → refl
}
; invʳ = λ { (inj₁ y) → refl
; to∘from = λ { (inj₁ y) → refl
; (inj₂ x) → refl
}
}

View file

@ -1,52 +0,0 @@
---
title : "Logic Answers"
layout : page
permalink : /LogicAns
---
\begin{code}
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym)
open import Isomorphism using (_≃_)
open import Logic
\end{code}
*Equivalences for classical logic*
\begin{code}
ex1 : ¬¬-elim → excluded-middle
ex1 h = h excluded-middle-irrefutable
ex2 : excluded-middle → implication
ex2 em f with em
... | inj₁ a = inj₂ (f a)
... | inj₂ ¬a = inj₁ ¬a
ex3 : excluded-middle → peirce
ex3 em k with em
... | inj₁ a = a
... | inj₂ ¬a = k (λ a → ⊥-elim (¬a a))
help : excluded-middle → ∀ {A B : Set} → ¬ (A × B) → ¬ A ⊎ ¬ B
help em ¬a×b with em | em
... | inj₁ a | inj₁ b = ⊥-elim (¬a×b (a , b))
... | inj₁ a | inj₂ ¬b = inj₂ ¬b
... | inj₂ ¬a | inj₁ b = inj₁ ¬a
... | inj₂ ¬a | inj₂ ¬b = inj₁ ¬a
⊤⊥-iso : (¬ ⊥) ≃
⊤⊥-iso =
record
{ to = λ _ → tt
; fro = λ _ ff → ff
; invˡ = λ _ → extensionality (λ ())
; invʳ = λ { tt → refl }
}
\end{code}
*Existentials and Universals*
\begin{code}
∃¬¬∀ : ∀ {A : Set} {B : A → Set} → ∃ (λ (x : A) → ¬ B x) → ¬ (∀ (x : A) → B x)
∃¬¬∀ (x , ¬bx) ∀bx = ¬bx (∀bx x)
\end{code}

View file

@ -265,13 +265,14 @@ Philip Wadler, *International Conference on Functional Programming*, 2003.)
### Exercise
Prove the following three formulas are equivalent to each other,
and to the formulas `EM` and `⊎-Dual-+` given earlier.
Prove the following four formulas are equivalent to each other,
and to the formula `EM` given earlier.
\begin{code}
¬¬-Elim Peirce Implication : Set₁
¬¬-Elim = ∀ {A : Set} → ¬ ¬ A → A
Peirce = ∀ {A B : Set} → (((A → B) → A) → A)
Implication = ∀ {A B : Set} → (A → B) → ¬ A ⊎ B
×-Implies-⊎ = ∀ {A B : Set} → ¬ (A × B) → (¬ A) ⊎ (¬ B)
\end{code}

67
src/NegationAns.lagda Normal file
View file

@ -0,0 +1,67 @@
---
title : "Logic Answers"
layout : page
permalink : /LogicAns
---
\begin{code}
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym)
open import Data.Unit using (; tt)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Isomorphism using (_≃_)
open import Negation using
(¬_; id; EM; em-irrefutable; ¬¬-Elim; Peirce; Implication; ×-Implies-⊎)
\end{code}
In what follows, we occasionally require [extensionality][extensionality].
\begin{code}
postulate
extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) → f ≡ g
\end{code}
[extensionality]: Equality/index.html#extensionality
*Equivalences for classical logic*
\begin{code}
ex1 : ¬¬-Elim → EM
ex1 h = h em-irrefutable
ex2 : EM → Implication
ex2 em f with em
... | inj₁ a = inj₂ (f a)
... | inj₂ ¬a = inj₁ ¬a
ex3 : EM → Peirce
ex3 em k with em
... | inj₁ a = a
... | inj₂ ¬a = k (λ a → ⊥-elim (¬a a))
ex4 : EM → ×-Implies-⊎
ex4 em ¬a×b with em | em
... | inj₁ a | inj₁ b = ⊥-elim (¬a×b (a , b))
... | inj₁ a | inj₂ ¬b = inj₂ ¬b
... | inj₂ ¬a | _ = inj₁ ¬a
⊤⊥-iso : (¬ ⊥) ≃
⊤⊥-iso =
record
{ to = λ{ _ → tt }
; from = λ{ _ → id }
; from∘to = λ{ _ → extensionality (λ ()) }
; to∘from = λ{ tt → refl }
}
\end{code}
*Existentials and Universals*
\begin{code}
{-
∃¬¬∀ : ∀ {A : Set} {B : A → Set} → ∃ (λ (x : A) → ¬ B x) → ¬ (∀ (x : A) → B x)
∃¬¬∀ (x , ¬bx) ∀bx = ¬bx (∀bx x)
-}
\end{code}